1
|
Young AP, Szczesniak AM, Hsu K, Kelly ME, Denovan-Wright EM. Enantiomeric Agonists of the Type 2 Cannabinoid Receptor Reduce Retinal Damage during Proliferative Vitreoretinopathy and Inhibit Hyperactive Microglia In Vitro. ACS Pharmacol Transl Sci 2024; 7:1348-1363. [PMID: 38751621 PMCID: PMC11091991 DOI: 10.1021/acsptsci.4c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024]
Abstract
Microglia are resident immune cells of the central nervous system (CNS) and propagate inflammation following damage to the CNS, including the retina. Proliferative vitreoretinopathy (PVR) is a condition that can emerge following retinal detachment and is characterized by severe inflammation and microglial proliferation. The type 2 cannabinoid receptor (CB2) is an emerging pharmacological target to suppress microglial-mediated inflammation when the eyes or brain are damaged. CB2-knockout mice have exacerbated inflammation and retinal pathology during experimental PVR. We aimed to assess the anti-inflammatory effects of CB2 stimulation in the context of retinal damage and also explore the mechanistic roles of CB2 in microglia function. To target CB2, we used a highly selective agonist, HU-308, as well as its enantiomer, HU-433, which is a putative selective agonist. First, β-arrestin2 and Gαi recruitment was measured to compare activation of human CB2 in an in vitro heterologous expression system. Both agonists were then utilized in a mouse model of PVR, and the effects on retinal damage, inflammation, and cell death were assessed. Finally, we used an in vitro model of microglia to determine the effects of HU-308 and HU-433 on phagocytosis, cytokine release, migration, and intracellular signaling. We observed that HU-308 more strongly recruited both β-arrestin2 and Gαi compared to HU-433. Stimulation of CB2 with either drug effectively blunted LPS- and IFNγ-mediated signaling as well as NO and TNF release from microglia. Furthermore, both drugs reduced IL-6 accumulation, total caspase-3 cleavage, and retinal pathology following the induction of PVR. Ultimately, this work supports that CB2 is a valuable target for drugs to suppress inflammation and cell death associated with infection or sterile retinopathy, although the magnitude of effector recruitment may not be predictive of anti-inflammatory capacity.
Collapse
Affiliation(s)
- Alexander P. Young
- Department
of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Anna-Maria Szczesniak
- Department
of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Karolynn Hsu
- Department
of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Melanie E.M. Kelly
- Department
of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department
of Ophthalmology & Visual Sciences, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department
of Anesthesia, Pain Management & Perioperative Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | | |
Collapse
|
2
|
Saraiva SM, Martín-Banderas L, Durán-Lobato M. Cannabinoid-Based Ocular Therapies and Formulations. Pharmaceutics 2023; 15:pharmaceutics15041077. [PMID: 37111563 PMCID: PMC10146987 DOI: 10.3390/pharmaceutics15041077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
The interest in the pharmacological applications of cannabinoids is largely increasing in a wide range of medical areas. Recently, research on its potential role in eye conditions, many of which are chronic and/or disabling and in need of new alternative treatments, has intensified. However, due to cannabinoids’ unfavorable physicochemical properties and adverse systemic effects, along with ocular biological barriers to local drug administration, drug delivery systems are needed. Hence, this review focused on the following: (i) identifying eye disease conditions potentially subject to treatment with cannabinoids and their pharmacological role, with emphasis on glaucoma, uveitis, diabetic retinopathy, keratitis and the prevention of Pseudomonas aeruginosa infections; (ii) reviewing the physicochemical properties of formulations that must be controlled and/or optimized for successful ocular administration; (iii) analyzing works evaluating cannabinoid-based formulations for ocular administration, with emphasis on results and limitations; and (iv) identifying alternative cannabinoid-based formulations that could potentially be useful for ocular administration strategies. Finally, an overview of the current advances and limitations in the field, the technological challenges to overcome and the prospective further developments, is provided.
Collapse
Affiliation(s)
- Sofia M. Saraiva
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, Av. Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal
| | - Lucía Martín-Banderas
- Departamento Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Prof. García González n °2, 41012 Sevilla, Spain;
- Instituto de Biomedicina de Sevilla (IBIS), Campus Hospital Universitario Virgen del Rocío, 41013 Sevilla, Spain
- Correspondence: ; Tel.: +34-954556754
| | - Matilde Durán-Lobato
- Departamento Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Prof. García González n °2, 41012 Sevilla, Spain;
| |
Collapse
|
3
|
An Innovative Sandwich Type Biosensor towards Sensitive and Selective Monitoring of 2-Arachidonoylglycerol in Human Plasma Samples Using P(β-CD)-AuNPs-DDT as Amplificant Agent: A New Immuno-Platform for the Recognition of Endocannabinoids in Real Samples. BIOSENSORS 2022; 12:bios12100791. [PMID: 36290931 PMCID: PMC9599568 DOI: 10.3390/bios12100791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/20/2022]
Abstract
In this work, 2-AG was successfully detected in human plasma samples using a new sandwich-type electrochemical immune device based on poly-β-cyclodextrin P(β-CD) functionalized with AuNPs-DDT and toluidine blue. The P(β-CD) ensured the bioactivity and stability of the immobilized 2-AG antibody by providing a broad surface for the efficient immobilization of the biotinylated antibody. To complete the top section of the immunosensor (reporter), an HRP-conjugated antibody of 2-AG (secondary antibody (Ab2)) was attached to the surface of a glassy carbon electrode (GCE) modified by P(β-CD), as well as a primarily biotinylated antibody (Ab1). The biosensor fabrication process was monitored using field-emission scanning electron microscope (FE-SEM) and EDS methods. Using the differential pulse voltammetry technique, the immunosensor was utilized for detection of 2-AG in real samples. The suggested interface increased the surface area, which allowed for the immobilization of a large quantity of anti-2-AG antibody while also improving biocompatibility, stability, and electrical conductivity. Finally, the suggested immunosensor’s limit of quantitation was determined to be 0.0078 ng/L, with a linear range of 0.0078 to 1.0 ng/L. The results showed that the suggested bioassay can be utilized for diagnosis of 2-AG in clinical samples as a unique and ultrasensitive electrochemical biodevice.
Collapse
|
4
|
Chetoni P, Burgalassi S, Zucchetti E, Granchi C, Minutolo F, Tampucci S, Monti D. MAGL inhibitor NanoMicellar formulation (MAGL-NanoMicellar) for the development of an antiglaucoma eye drop. Int J Pharm 2022; 625:122078. [PMID: 35932931 DOI: 10.1016/j.ijpharm.2022.122078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/04/2022] [Accepted: 08/01/2022] [Indexed: 11/15/2022]
Abstract
The ocular endocannabinoid system (ECS) including enzymes and CB1/CB2 receptors determines various substantial effects, such as anti-inflammatory activity and reduction of the intraocular pressure (IOP). The modulation of 2-arachidonoylglycerol (2-AG) levels obtained via MAGL inhibition is considered as a promising pharmacological strategy to activate the ECS. Within the scope of this study, the effect of a selective monoacylglycerol lipase (MAGL) inhibitor (MAGL17b) was investigated by measuring the IOP reduction in normotensive rabbits after performing a solubilisation process of the molecule with non-ionic surfactants, to produce suitable eye drops containing the highest possible concentration of the drug. Furthermore, the study involved the evaluation of cytotoxicity and of in vitro/ex vivo corneal permeation of MAG17b of selected formulations based on polyoxyl(35)castor oil (C-EL) and polyethylene glycol (80) sorbitan monolaurate (TW80). The solubilisation of 0.5 mM MAGL17b with 3% w/w TW80 (TW80/3-17b), through the formation of NanoMicellar structures (diameter of 12.3 nm), determined a significant permeation of MAGL17b, both through excised rabbits corneas and reconstituted corneal epithelium, with a limited corneal epithelial cells death. The blockade of MAGL activity induced a IOP reduction up to 4 mmHg in albino and pigmented rabbits after topical instillation, thus confirming the potential efficacy of the MAGL inhibition approach in the treatment of ocular pathologies.
Collapse
Affiliation(s)
- Patrizia Chetoni
- Department of Pharmacy, University of Pisa, Pisa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa, Italy
| | - Susi Burgalassi
- Department of Pharmacy, University of Pisa, Pisa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa, Italy
| | | | | | | | - Silvia Tampucci
- Department of Pharmacy, University of Pisa, Pisa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa, Italy
| | - Daniela Monti
- Department of Pharmacy, University of Pisa, Pisa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa, Italy
| |
Collapse
|
5
|
Tran BN, Maass M, Musial G, Stern ME, Gehlsen U, Steven P. Topical application of cannabinoid-ligands ameliorates experimental dry-eye disease. Ocul Surf 2021; 23:131-139. [PMID: 34922011 DOI: 10.1016/j.jtos.2021.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/30/2021] [Accepted: 12/13/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE Dry eye disease (DED) is a multifactorial disease, with limitations regarding efficacy and tolerability of applied substances. Among several candidates, the endocannabinoid system with its receptors (CB1R and CB2R) were reported to modulate inflammation, wound healing and pain, which are also core DED pathomechanisms. This study is to investigate the therapeutic responses of Δ-9 tetrahydrocannabinol (a non-selective agonist) and two selective antagonists, SR141716A (CB1R antagonist) and SR144528 (CB2R antagonist), as a topical application using a DED mouse model. METHOD Experimental DED was induced in naïve C57BL/6 mice. Expression of CBR at the ocular surface of naïve and DED mice was determined by qPCR and in-situ hybridization. Either THC or CBR antagonists were compounded in an aqueous solution and dosed during the induction of DED. Tear production, cornea sensitivity, and cornea fluorescence staining were tested. At the end of each experiment, corneas were stained with β3-tubulin for analysis of corneal nerve morphology. Conjunctiva was analyzed for CD4+ and CD8+ infiltration. RESULTS CB1R and CB2R are present at the ocular surface, and desiccating stress increased CBR expressions (p < 0.05). After 10 days of DED induction, treated groups demonstrated a reduced CBR expression in the cornea, which was concurrent with improvements in the DED phenotype including fluorescence staining & inflammation. Applying THC protected corneal nerve morphology, thus maintained corneal sensitivity and reduced CD4+ T-cell infiltration. The CB1R antagonist maintained cornea sensitivity without changing nerve morphology. CONCLUSIONS Endocannabinoid receptor modulation presents a potential multi-functional therapeutic approach for DED.
Collapse
Affiliation(s)
- Bao N Tran
- Division of Dry-Eye and Ocular GVHD, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martina Maass
- Division of Dry-Eye and Ocular GVHD, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gwen Musial
- Division of Dry-Eye and Ocular GVHD, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Michael E Stern
- Division of Dry-Eye and Ocular GVHD, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; ImmunEyez LLC, Irvine, CA, USA
| | - Uta Gehlsen
- Division of Dry-Eye and Ocular GVHD, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philipp Steven
- Division of Dry-Eye and Ocular GVHD, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
6
|
Scuteri D, Rombolà L, Hamamura K, Sakurada T, Watanabe C, Sakurada S, Guida F, Boccella S, Maione S, Gallo Afflitto G, Nucci C, Tonin P, Bagetta G, Corasaniti MT. Is there a rational basis for cannabinoids research and development in ocular pain therapy? A systematic review of preclinical evidence. Biomed Pharmacother 2021; 146:112505. [PMID: 34891121 DOI: 10.1016/j.biopha.2021.112505] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/26/2021] [Accepted: 12/03/2021] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Purpose of the present systematic review is to investigate preclinical evidence in favor of the working hypothesis of efficacy of cannabinoids in ocular pain treatment. METHODS Literature search includes the most relevant repositories for medical scientific literature from inception until November, 24 2021. Data collection and selection of retrieved records adhere to PRISMA criteria. RESULTS In agreement with a priori established protocol the search retrieved 2471 records leaving 479 results after duplicates removal. Eleven records result from title and abstract screening to meet the inclusion criteria; only 4 results are eligible for inclusion in the qualitative synthesis impeding meta-analysis. The qualitative analysis highlights the antinociceptive and anti-inflammatory efficacy of Δ8-tetrahydrocannabinol, cannabidiol and its derivative HU-308 and of new racemic CB1 allosteric ligand GAT211 and its enantiomers GAT228 and GAT229. Moreover, CB2R agonists RO6871304 and RO6871085 and CB2R ligand HU910 provide evidence of anti-inflammatory efficacy. CB2 agonist HU308 reduces of 241% uveitis-induced leukocyte adhesion and changes lipidome profile. Methodological and design issues raise concern of risk of bias and the amount of studies is too small for generalization. Furthermore, the ocular pain model used can resemble only inflammatory but not neuropathic pain. CONCLUSIONS The role of the endocannabinoid system in ocular pain is underinvestigated, since only two studies assessing the effects of cannabinoid receptors modulators on pain behavior and other two on pain-related inflammatory processes are found. Preclinical studies investigating the efficacy of cannabinoids in ocular inflammatory and neuropathic pain models are needed to pave the way for clinical translation.
Collapse
Affiliation(s)
- D Scuteri
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; Regional Center for Serious Brain Injuries, S. Anna Institute, 88900 Crotone, Italy.
| | - L Rombolà
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| | - K Hamamura
- Department of Pharmacology, Daiichi University of Pharmacy, 815-8511 Fukuoka, Japan.
| | - T Sakurada
- Department of Pharmacology, Daiichi University of Pharmacy, 815-8511 Fukuoka, Japan.
| | - C Watanabe
- Department of Physiology and Anatomy, Tohoku Pharmaceutical University, 981-8558 Sendai, Japan.
| | - S Sakurada
- Department of Physiology and Anatomy, Tohoku Pharmaceutical University, 981-8558 Sendai, Japan.
| | - F Guida
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138 Naples, Italy.
| | - S Boccella
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138 Naples, Italy.
| | - S Maione
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138 Naples, Italy; Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy; IRCSS, Neuromed, Pozzilli, Italy.
| | - G Gallo Afflitto
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - C Nucci
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - P Tonin
- Regional Center for Serious Brain Injuries, S. Anna Institute, 88900 Crotone, Italy.
| | - G Bagetta
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - M T Corasaniti
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| |
Collapse
|
7
|
Zhou J, Kamali K, Lafreniere JD, Lehmann C. Real-Time Imaging of Immune Modulation by Cannabinoids Using Intravital Fluorescence Microscopy. Cannabis Cannabinoid Res 2021; 6:221-232. [PMID: 34042507 PMCID: PMC8266559 DOI: 10.1089/can.2020.0179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: The endocannabinoid system (ECS) is an endogenous regulatory system involved in a wide range of physiologic and disease processes. Study of ECS regulation provides novel drug targets for disease treatment. Intravital microscopy (IVM), a microscopy-based imaging method that allows the observation of cells and cell-cell interactions within various tissues and organs in vivo, has been utilized to study tissues and cells in their physiologic microenvironment. This article reviews the current state of the IVM techniques used in ECS-related inflammation research. Methodological Aspects of IVM: IVM with focus on conventional fluorescent microscope has been introduced in investigation of microcirculatory function and the behavior of individual circulating cells in an in vivo environment. Experimental setting, tissue protection under physiologic condition, and microscopical observation are described. Application of IVM in Experimental Inflammatory Disorders: Using IVM to investigate the effects of immune modulation by cannabinoids is extensively reviewed. The inflammatory disorders include sepsis, arthritis, diabetes, interstitial cystitis, and inflammatory conditions in the central nervous system and eyes. Conclusion: IVM is a critical tool in cannabinoid and immunology research. It has been applied to investigate the role of the ECS in physiologic and disease processes. This review demonstrates that the IVM technique provides a unique means in understanding ECS regulation on immune responses in diseases under their physical conditions, which could not be achieved by other methods.
Collapse
Affiliation(s)
- Juan Zhou
- Department of Anesthesiology, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, Canada
| | - Kiyana Kamali
- Department of Anesthesiology, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, Canada
| | | | - Christian Lehmann
- Department of Anesthesiology, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, Canada
- Department of Pharmacology, Dalhousie University, Halifax, Canada
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada
| |
Collapse
|
8
|
Mobed A, Kohansal F, Ahmadalipour A, Hasanzadeh M, Zargari F. Bioconjugation of 2-arachidonoyl glycerol (2-AG) biotinylated antibody with gold nano-flowers toward immunosensing of 2-AG in human plasma samples: A novel immuno-platform for the screening of immunomodulation and neuroprotection using biosensing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:311-321. [PMID: 33367337 DOI: 10.1039/d0ay02135k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Human 2-arachidonoylglycerol (2-AG) is an agonist of endocannabinoid system and acts as an important modulator of many physiological processes such as emotional state and pain sensation. Identification and quantification of 2-AG is vital for medical and pathological processes. There are no reports on the measurement of 2-AG in human biofluids using modern methods such as biosensors. This study reports an ultra-sensitive and selective immunosensor to determine endocannabinoids 2-AG in human plasma samples. In this study, gold nano-flowers (AuNFs) were synthesized and conjugated with a specific biotinylated antibody of 2-AG. Bioconjugated composite (bioreceptor with AuNFs) was immobilized on the surface of a gold electrode and used for the monitoring of the antigen (target molecules) based on the immunoreaction process. Moreover, a constructed interface was characterized by field-emission scanning electron microscopy (FE-SEM), dynamic light scattering (DLS), transmission electron microscopy (TEM) and zeta potential methods. Using the proposed immuno-platform, 2-AG was determined in two dynamic ranges of 0.00024-0.0078 ng L-1 and 2-16 ng L-1 with a lower limit of quantitation (LLOQ) of 0.00024 ng L-1. These results suggest that our immunosensor might be appropriate for an early diagnosis of 2-AG towards the screening of immunomodulatory activity and neuroprotection.
Collapse
Affiliation(s)
- Ahmad Mobed
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, 51664, Iran.
| | | | | | | | | |
Collapse
|
9
|
Abstract
Purpose: While cannabis has the potential to reduce corneal pain, cannabinoids might induce side effects. This review article examines the effects of cannabinoids on the cornea. As more states and countries consider the legalization of adult cannabis use, health-care providers will need to identify ocular effects of cannabis consumption.Methods: Studies included in this review examined the connection between cannabis and the cornea, more specifically anti-nociceptive and anti-inflammatory actions of cannabinoids. NCBI Databases from 1781 up to December 2019 were consulted.Results: Five studies examined corneal dysfunctions caused by cannabis consumption (opacification, decreased endothelial cell density). Twelve studies observed a reduction in corneal pain and inflammation (less lymphocytes, decreased corneal neovascularization, increased cell proliferation and migration).Conclusion: More than half of the studies examined the therapeutic effects of cannabinoids on the cornea. As the field is still young, more studies should be conducted to develop safe cannabinoid treatments for corneal diseases.
Collapse
Affiliation(s)
- Anne X Nguyen
- Faculty of Medicine, McGill University, Montréal, Quebec, Canada
| | - Albert Y Wu
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
10
|
Nguyen AX, Wu AY. Association between cannabis and the eyelids: A comprehensive review. Clin Exp Ophthalmol 2020; 48:230-239. [DOI: 10.1111/ceo.13687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/15/2019] [Accepted: 11/15/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Anne X. Nguyen
- Faculty of MedicineMcGill University Montréal Quebec Canada
| | - Albert Y. Wu
- Department of OphthalmologyStanford University School of Medicine Stanford California
| |
Collapse
|
11
|
Taskar P, Adelli G, Patil A, Lakhani P, Ashour E, Gul W, ElSohly M, Majumdar S. Analog Derivatization of Cannabidiol for Improved Ocular Permeation. J Ocul Pharmacol Ther 2019; 35:301-310. [PMID: 30998110 DOI: 10.1089/jop.2018.0141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Purpose: Cannabidiol (CBD), active component of plant Cannabis sativa, has anti-inflammatory properties that could potentially help treat diabetic retinopathy-induced pain and inflammation. However, CBD is a lipophilic molecule making its topical delivery to back of the eye challenging. This study aims at improving ocular penetration of CBD by means of analog derivatization. Methods: Analogs were designed using various ligands, such as amino acids (AAs) and dicarboxylic acids (DCAs) and their combinations. Select analogs were screened in vitro with respect to their stability in ocular tissue homogenates. Based on in vitro stability, analogs were selected for in rabbits testing. Formulations containing these compounds were tested in rabbits to determine ocular tissue disposition of CBD and the analogs after topical application. The rabbits were sacrificed 90 min post-topical application and the aqueous humor, vitreous humor (VH), iris-ciliary bodies (IC), and retina-choroid (RC) were analyzed for CBD and analog content. Results: CBD-divalinate-dihemisuccinate (CBD-Di-VHS) and CBD-divalinate (CBD-Di-Val) were stable in the ocular tissue homogenates. Post-topical application, CBD and CBD-Di-Val analog levels were detected only in RC. Dosing of CBD-Di-VHS nanoemulsion generated analog levels both in the VH and in the RC, respectively. In contrast, post dosing of CBD-monovalinate-monohemisuccinate (CBD-Mono-VHS), both the analog and CBD were detected in the IC and RC. Conclusion: The analogs demonstrated superior penetration into ocular tissues in comparison with CBD. CBD-Di-VHS and CBD-Mono-VHS exhibited better permeation properties, possibly due to improved stability and physicochemical characteristics imparted by AA and DCA combination derivatives.
Collapse
Affiliation(s)
- Pranjal Taskar
- 1 Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, Mississippi.,2 Research Institute of Pharmaceutical Sciences, University of Mississippi, Oxford, Mississippi
| | - Goutham Adelli
- 1 Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, Mississippi
| | - Akash Patil
- 1 Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, Mississippi.,2 Research Institute of Pharmaceutical Sciences, University of Mississippi, Oxford, Mississippi
| | - Prit Lakhani
- 1 Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, Mississippi.,2 Research Institute of Pharmaceutical Sciences, University of Mississippi, Oxford, Mississippi
| | - Eman Ashour
- 1 Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, Mississippi.,2 Research Institute of Pharmaceutical Sciences, University of Mississippi, Oxford, Mississippi
| | - Waseem Gul
- 3 ElSohly Laboratories, Inc., Oxford, Mississippi
| | - Mahmoud ElSohly
- 1 Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, Mississippi.,2 Research Institute of Pharmaceutical Sciences, University of Mississippi, Oxford, Mississippi.,3 ElSohly Laboratories, Inc., Oxford, Mississippi
| | - Soumyajit Majumdar
- 1 Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, Mississippi.,2 Research Institute of Pharmaceutical Sciences, University of Mississippi, Oxford, Mississippi
| |
Collapse
|
12
|
Lafreniere J, Kelly M. Potential for endocannabinoid system modulation in ocular pain and inflammation: filling the gaps in current pharmacological options. Neuronal Signal 2018; 2:NS20170144. [PMID: 32714590 PMCID: PMC7373237 DOI: 10.1042/ns20170144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 02/06/2023] Open
Abstract
Challenges in the management of ocular pain are an underappreciated topic. Currently available therapeutics lack both efficacy and clear guidelines for their use, with many also possessing unacceptable side effects. Promising novel agents would offer analgesic, anti-inflammatory, and possibly neuroprotective actions; have favorable ocular safety profiles; and show potential in managing neuropathic pain. Growing evidence supports a link between the endocannabinoid system (ECS) and a range of physiological and disease processes, notably those involving inflammation and pain. Both preclinical and clinical data suggest analgesic and anti-inflammatory actions of cannabinoids and ECS-modifying drugs in chronic pain conditions, including those of neuropathic origin. This review will examine existing evidence for the anatomical and physiological basis of ocular pain, specifically, ocular surface disease and the development of chronic ocular pain. The mechanism of action, efficacy, and limitations of currently available treatments will be discussed, and current knowledge related to ECS-modulation of ocular pain and inflammatory disease will be summarized. A perspective will be provided on the future directions of ECS research in terms of developing cannabinoid therapeutics for ocular pain.
Collapse
Affiliation(s)
| | - Melanie E.M. Kelly
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
13
|
Borowska-Fielding J, Murataeva N, Smith B, Szczesniak AM, Leishman E, Daily L, Toguri JT, Hillard CJ, Romero J, Bradshaw H, Kelly MEM, Straiker A. Revisiting cannabinoid receptor 2 expression and function in murine retina. Neuropharmacology 2018; 141:21-31. [PMID: 30121200 DOI: 10.1016/j.neuropharm.2018.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/15/2018] [Accepted: 08/05/2018] [Indexed: 01/12/2023]
Abstract
The cannabinoid receptor CB2 plays a significant role in the regulation of immune function whereas neuronal expression remains a subject of contention. Multiple studies have described CB2 in retina and a recent study showed that CB2 deletion altered retinal visual processing. We revisited CB2 expression using immunohistochemistry and a recently developed CB2-eGFP reporter mouse. We examined the consequence of acute vs. prolonged CB2 deactivation on the electroretinogram (ERG) responses. We also examined lipidomics in CB2 knockout mice and potential changes in microglia using Scholl analysis. Consistent with a published report, in CB2 receptor knockout mice see an increased ERG scotopic a-wave, as well as stronger responses in dark adapted cone-driven ON bipolar cells and, to a lesser extent cone-driven ON bipolar cells early in light adaptation. Significantly, however, acute block with CB2 antagonist, AM630, did not mimic the results observed in the CB2 knockout mice whereas chronic (7 days) block did. Immunohistochemical studies show no CB2 in retina under non-pathological conditions, even with published antibodies. Retinal CB2-eGFP reporter signal is minimal under baseline conditions but upregulated by intraocular injection of either LPS or carrageenan. CB2 knockout mice see modest declines in a broad spectrum of cannabinoid-related lipids. The numbers and morphology of microglia were unaltered. In summary minimal CB2 expression is seen in healthy retina. CB2 appears to be upregulated under pathological conditions. Previously reported functional consequences of CB2 deletion are an adaptive response to prolonged blockade of these receptors. CB2 therefore impacts retinal signaling but perhaps in an indirect, potentially extra-ocular fashion.
Collapse
Affiliation(s)
| | - Natalia Murataeva
- Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | - Ben Smith
- Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | | | - Emma Leishman
- Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | - Laura Daily
- Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | - J Thomas Toguri
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Cecelia J Hillard
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Julian Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Heather Bradshaw
- Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | - Melanie E M Kelly
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada; Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada; Anesthesia, Dalhousie University, Halifax, NS, Canada
| | - Alex Straiker
- Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
14
|
Thapa D, Cairns EA, Szczesniak AM, Toguri JT, Caldwell MD, Kelly MEM. The Cannabinoids Δ 8THC, CBD, and HU-308 Act via Distinct Receptors to Reduce Corneal Pain and Inflammation. Cannabis Cannabinoid Res 2018; 3:11-20. [PMID: 29450258 PMCID: PMC5812319 DOI: 10.1089/can.2017.0041] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background and Purpose: Corneal injury can result in dysfunction of corneal nociceptive signaling and corneal sensitization. Activation of the endocannabinoid system has been reported to be analgesic and anti-inflammatory. The purpose of this research was to investigate the antinociceptive and anti-inflammatory effects of cannabinoids with reported actions at cannabinoid 1 (CB1R) and cannabinoid 2 (CB2R) receptors and/or noncannabinoid receptors in an experimental model of corneal hyperalgesia. Methods: Corneal hyperalgesia (increased pain response) was generated using chemical cauterization of the corneal epithelium in wild-type (WT) and CB2R knockout (CB2R−/−) mice. Cauterized eyes were treated topically with the phytocannabinoids Δ8-tetrahydrocannabinol (Δ8THC) or cannabidiol (CBD), or the CBD derivative HU-308, in the presence or absence of the CB1R antagonist AM251 (2.0 mg/kg i.p.), or the 5-HT1A receptor antagonist WAY100635 (1 mg/kg i.p.). Behavioral pain responses to a topical capsaicin challenge at 6 h postinjury were quantified from video recordings. Mice were euthanized at 6 and 12 h postcorneal injury for immunohistochemical analysis to quantify corneal neutrophil infiltration. Results: Corneal cauterization resulted in hyperalgesia to capsaicin at 6 h postinjury compared to sham control eyes. Neutrophil infiltration, indicative of inflammation, was apparent at 6 and 12 h postinjury in WT mice. Application of Δ8THC, CBD, and HU-308 reduced the pain score and neutrophil infiltration in WT mice. The antinociceptive and anti-inflammatory actions of Δ8THC, but not CBD, were blocked by the CB1R antagonist AM251, but were still apparent, for both cannabinoids, in CB2R−/− mice. However, the antinociceptive and anti-inflammatory actions of HU-308 were absent in the CB2R−/− mice. The antinociceptive and anti-inflammatory effects of CBD were blocked by the 5-HT1A antagonist WAY100635. Conclusion: Topical cannabinoids reduce corneal hyperalgesia and inflammation. The antinociceptive and anti-inflammatory effects of Δ8THC are mediated primarily via CB1R, whereas that of the cannabinoids CBD and HU-308, involve activation of 5-HT1A receptors and CB2Rs, respectively. Cannabinoids could be a novel clinical therapy for corneal pain and inflammation resulting from ocular surface injury.
Collapse
Affiliation(s)
- Dinesh Thapa
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Elizabeth A Cairns
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - James T Toguri
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Meggie D Caldwell
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Melanie E M Kelly
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Anesthesia, Pain Management, and Perioperative Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
15
|
Soderstrom K, Soliman E, Van Dross R. Cannabinoids Modulate Neuronal Activity and Cancer by CB1 and CB2 Receptor-Independent Mechanisms. Front Pharmacol 2017; 8:720. [PMID: 29066974 PMCID: PMC5641363 DOI: 10.3389/fphar.2017.00720] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/25/2017] [Indexed: 12/29/2022] Open
Abstract
Cannabinoids include the active constituents of Cannabis or are molecules that mimic the structure and/or function of these Cannabis-derived molecules. Cannabinoids produce many of their cellular and organ system effects by interacting with the well-characterized CB1 and CB2 receptors. However, it has become clear that not all effects of cannabinoid drugs are attributable to their interaction with CB1 and CB2 receptors. Evidence now demonstrates that cannabinoid agents produce effects by modulating activity of the entire array of cellular macromolecules targeted by other drug classes, including: other receptor types; ion channels; transporters; enzymes, and protein- and non-protein cellular structures. This review summarizes evidence for these interactions in the CNS and in cancer, and is organized according to the cellular targets involved. The CNS represents a well-studied area and cancer is emerging in terms of understanding mechanisms by which cannabinoids modulate their activity. Considering the CNS and cancer together allow identification of non-cannabinoid receptor targets that are shared and divergent in both systems. This comparative approach allows the identified targets to be compared and contrasted, suggesting potential new areas of investigation. It also provides insight into the diverse sources of efficacy employed by this interesting class of drugs. Obtaining a comprehensive understanding of the diverse mechanisms of cannabinoid action may lead to the design and development of therapeutic agents with greater efficacy and specificity for their cellular targets.
Collapse
Affiliation(s)
- Ken Soderstrom
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Eman Soliman
- Department of Pharmacology and Toxicology, Zagazig University, Zagazig, Egypt
| | - Rukiyah Van Dross
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
- Center for Health Disparities, East Carolina University, Greenville, NC, United States
| |
Collapse
|
16
|
Kelly MEM, Lehmann C, Zhou J. The Endocannabinoid System in Local and Systemic Inflammation. ACTA ACUST UNITED AC 2017. [DOI: 10.4199/c00151ed1v01y201702isp074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|