1
|
Cuyler M, Twilley D, Thipe VC, Mandiwana V, Kalombo ML, Ray SS, Rikhotso-Mbungela RS, Janse van Vuuren A, Coetsee W, Katti KV, Lall N. Antihistamine and Wound Healing Potential of Gold Nanoparticles Synthesized Using Bulbine frutescens (L.) Willd. Nanotechnol Sci Appl 2024; 17:59-76. [PMID: 38504832 PMCID: PMC10949377 DOI: 10.2147/nsa.s445116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/22/2024] [Indexed: 03/21/2024] Open
Abstract
Background Atopic dermatitis (eczema) is an inflammatory skin condition with synthetic treatments that induce adverse effects and are ineffective. One of the proposed causes for the development of the condition is the outside-in hypothesis, which states that eczema is caused by a disruption in the skin barrier. These disruptions include developing dry cracked skin, which promotes the production of histamine. Bulbine frutescens (BF) is traditionally used to treat wounds and eczema; however, limited research has been conducted to scientifically validate this. Furthermore, gold nanoparticles (AuNPs) have been used to repair damaged skin; however, no research has been conducted on AuNPs synthesized using BF. Purpose The study aimed to determine whether BF alleviated skin damage through wound healing, reducing the production of histamine and investigate whether AuNPs synthesized using BF would enhance biological activity. Methods Four extracts and four synthesized AuNPs were prepared using BF and their antiproliferative and wound healing properties against human keratinocyte cells (HaCaT) were evaluated. Thereafter, the selected samples antiproliferative activity and antihistamine activity against phorbol 12-myristate 13-acetate (PMA) stimulated granulocytes were evaluated. Results Of the eight samples, the freeze-dried leaf juice (BFE; p < 0.01) extract and its AuNPs (BFEAuNPs; p < 0.05) displayed significant wound closure at 100 µg/mL and were further evaluated. The selected samples displayed a fifty percent inhibitory concentration (IC50) of >200 µg/mL against PMA stimulated granulocytes. Compared to the untreated (media with PMA) control (0.30 ± 0.02 ng/mL), BFEAuNPs significantly inhibited histamine production at a concentration of 100 (p < 0.01) and 50 µg/mL (p < 0.001). Conclusion BFE and BFEAuNPs stimulated wound closure, while BFEAuNPs significantly inhibited histamine production. Further investigation into BFEAuNPs in vivo wound healing activity and whether it can target histamine-associated receptors on mast cells as a potential mechanism of action should be considered.
Collapse
Affiliation(s)
- Marizé Cuyler
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, Gauteng, 0002, South Africa
| | - Danielle Twilley
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, Gauteng, 0002, South Africa
| | - Velaphi C Thipe
- Department of Radiology, Institute of Green Nanotechnology, University of Missouri, Columbia, MO, 65212, USA
| | - Vusani Mandiwana
- Chemical Cluster Centre for Nanostructures and Advanced Materials, Council for Scientific and Industrial Research, Pretoria, 0001, South Africa
| | - Michel L Kalombo
- Chemical Cluster Centre for Nanostructures and Advanced Materials, Council for Scientific and Industrial Research, Pretoria, 0001, South Africa
| | - Suprakas S Ray
- DST/CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria, 0001, South Africa
| | | | - Arno Janse van Vuuren
- Centre for High Transmission Electron Microscopy, Nelson Mandela University, Port Elizabeth, 6031, South Africa
| | - Will Coetsee
- Botanica Natural Products Pty (Ltd), Canterbury Farm MR 254, Alldays, Limpopo, 0909, South Africa
| | - Kattesh V Katti
- Department of Radiology, Institute of Green Nanotechnology, University of Missouri, Columbia, MO, 65212, USA
| | - Namrita Lall
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, Gauteng, 0002, South Africa
- School of Natural Resources, University of Missouri, Columbia, MO, 65211, USA
- College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, Karnataka, 570015, India
- Bio-Tech Research and Development Institute, University of the West Indies 770, Kingston, Jamaica
| |
Collapse
|
2
|
Maliehe TS, Nqotheni MI, Shandu JS, Selepe TN, Masoko P, Pooe OJ. Chemical Profile, Antioxidant and Antibacterial Activities, Mechanisms of Action of the Leaf Extract of Aloe arborescens Mill. PLANTS (BASEL, SWITZERLAND) 2023; 12:869. [PMID: 36840217 PMCID: PMC9968107 DOI: 10.3390/plants12040869] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Aloe arborescens Mill's extracts have been explored for antibacterial and antioxidant efficacies. However, there is limited information on its chemical composition and mechanism of action. The purpose of this study was to assess the chemical composition, antibacterial and antioxidant activities and mechanism of the whole leaf extract of A. arborescens Mill. The phytochemical profile was analysed with gas chromatography mass spectrometry (GC-MS). The antioxidant and antibacterial activities were screened using 1,1diphenyl2picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and micro-dilution assays, respectively. The effects of the extract on the bacterial respiratory chain dehydrogenase, membrane integrity and permeability were analysed using iodonitrotetrazolium chloride, 260 absorbing materials and relative electrical conductivity assays. GC-MS spectrum revealed 26 compounds with N,N'-trimethyleneurea (10.56%), xanthine (8.57%) and 4-hexyl-1-(7-ethoxycarbonylheptyl)bicyclo[4.4.0]deca-2,5,7-triene (7.10%), being the major components. The extract also exhibited antioxidant activity with median concentration (IC50) values of 0.65 mg/mL on DPPH and 0.052 mg/mL on ABTS. The extract exhibited minimum inhibitory concentration (MIC) values ranging from 0.07 to 1.13 mg/mL. The extract inhibited the bacterial growth by destructing the activity of the respiratory chain dehydrogenase, membrane integrity and permeability. Therefore, the leaf extract has the potential to serve as a source of antibacterial and antioxidant compounds.
Collapse
Affiliation(s)
- Tsolanku Sidney Maliehe
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, Private Bag X1001, Empangeni 3886, South Africa
- Department of Water and Sanitation, University of Limpopo, Private Bag X1106, Polokwane 0727, South Africa
| | - Mduduzi Innocent Nqotheni
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, Private Bag X1001, Empangeni 3886, South Africa
| | - Jabulani Siyabonga Shandu
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, Private Bag X1001, Empangeni 3886, South Africa
| | - Tlou Nelson Selepe
- Department of Water and Sanitation, University of Limpopo, Private Bag X1106, Polokwane 0727, South Africa
| | - Peter Masoko
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Polokwane 0727, South Africa
| | - Ofentse Jacob Pooe
- School of Life Science, Discipline of Biochemistry, University of KwaZulu-Natal, Durban 4000, South Africa
| |
Collapse
|
3
|
Panda SK, Buroni S, Swain SS, Bonacorsi A, da Fonseca Amorim EA, Kulshrestha M, da Silva LCN, Tiwari V. Recent advances to combat ESKAPE pathogens with special reference to essential oils. Front Microbiol 2022; 13:1029098. [PMID: 36560948 PMCID: PMC9763703 DOI: 10.3389/fmicb.2022.1029098] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022] Open
Abstract
Biofilm-associated bacteria, especially ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.), are a serious challenge worldwide. Due to the lack of discovery of novel antibiotics, in the past two decades, it has become necessary to search for new antibiotics or to study synergy with the existing antibiotics so as to counter life-threatening infections. Nature-derived compounds/based products are more efficient than the chemically synthesized ones with less resistance and lower side effects. In this descriptive review, we discuss the most promising therapeutics for the treatment of ESKAPE-related biofilms. The first aspect includes different types of natural agents [botanical drugs, essential oils (EOs), antimicrobial peptides, bacteriophages, and endolysins] effective against ESKAPE pathogens. The second part of the review deals with special references to EOs/essential oil components (EOCs) (with some exclusive examples), mode of action (via interfering in the quorum-sensing pathways, disruption of biofilm and their inhibitory concentrations, expression of genes that are involved, other virulence factors), existing in literature so far. Moreover, different essential oils and their major constituents were critically discussed using in vivo models to target ESKAPE pathogens along with the studies involving existing antibiotics.
Collapse
Affiliation(s)
- Sujogya Kumar Panda
- Centre of Environment Studies, Climate Change and Public Health, RUSA 2.0, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India
| | - Silvia Buroni
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Shasank Sekhar Swain
- Division of Microbiology and Noncommunicable Diseases (NCDs), Indian Council of Medical Research (ICMR)–Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Andrea Bonacorsi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Mukta Kulshrestha
- Department of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| | | | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India,*Correspondence: Vishvanath Tiwari,
| |
Collapse
|
4
|
Maroyi A. Traditional uses of wild and tended plants in maintaining ecosystem services in agricultural landscapes of the Eastern Cape Province in South Africa. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2022; 18:17. [PMID: 35292046 PMCID: PMC8925170 DOI: 10.1186/s13002-022-00512-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/24/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND Many communities in developing countries rely on ecosystem services (ESs) associated with wild and cultivated plant species. Plant resources provide numerous ESs and goods that support human well-being and survival. The aim of this study was to identify and characterize wild and tended plant species, and also investigate how local communities in the Eastern Cape Province in South Africa perceive ESs associated with plant resources. METHODS The study was conducted in six local municipalities in the Eastern Cape Province, between March 2016 and September 2021. Data on socio-economic characteristics of the participants, useful plants harvested from the wild and managed in home gardens were documented by means of questionnaires, observation and guided field walks with 196 participants. The ESs were identified using a free listing technique. RESULTS A total of 163 plant species were recorded which provided 26 cultural, regulating and provisioning ESs. Provisioning ESs were the most cited with at least 25 plant species contributing towards generation of cash income, food, traditional and ethnoveterinary medicines. Important species recorded in this study with relative frequency of citation (RFC) values > 0.3 included Alepidea amatymbica, Allium cepa, Aloe ferox, Artemisia afra, Brassica oleracea, Capsicum annuum, Cucurbita moschata, Hypoxis hemerocallidea, Opuntia ficus-indica, Spinacia oleracea, Vachellia karroo and Zea mays. CONCLUSION Results of this study highlight the importance of plant resources to the well-being of local communities in the Eastern Cape within the context of provision of essential direct and indirect ESs such as food, medicinal products, construction materials, fodder, regulating, supporting and cultural services. The ESs are the basis for subsistence livelihoods in rural areas, particularly in developing countries such as South Africa. Therefore, such body of knowledge can be used as baseline data for provision of local support for natural resource management initiatives in the province and other areas of the country.
Collapse
Affiliation(s)
- Alfred Maroyi
- Department of Botany, University of Fort Hare, Private Bag X1314, Alice, 5700, South Africa.
| |
Collapse
|
5
|
Ndlovu B, Africa C, Klaasen J, Rahiman F. Does South Africa hold the key to the development of alternative treatments for resistant dermatophyte infections? A review. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
|
6
|
Banerjee K, Chatterjee M, Sandur V R, Nachimuthu R, Madhyastha H, Thiagarajan P. Azadirachta indica A. Juss (Neem) oil topical formulation with liquid crystals ensconcing depot water for anti-inflammatory, wound healing and anti-methicillin resistant Staphylococcus aureus activities. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Rattray RD, Van Wyk BE. The Botanical, Chemical and Ethnobotanical Diversity of Southern African Lamiaceae. Molecules 2021; 26:molecules26123712. [PMID: 34207006 PMCID: PMC8233991 DOI: 10.3390/molecules26123712] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 11/24/2022] Open
Abstract
The Lamiaceae is undoubtedly an important plant family, having a rich history of use that spans the globe with many species being used in folk medicine and modern industries alike. Their ability to produce aromatic volatile oils has made them valuable sources of materials in the cosmetic, culinary, and pharmaceutical industries. A thorough account of the taxonomic diversity, chemistry and ethnobotany is lacking for southern African Lamiaceae, which feature some of the region’s most notable medicinal and edible plant species. We provide a comprehensive insight into the Lamiaceae flora of southern Africa, comprising 297 species in 42 genera, 105 of which are endemic to the subcontinent. We further explore the medicinal and traditional uses, where all genera with documented uses are covered for the region. A broad review of the chemistry of southern African Lamiaceae is presented, noting that only 101 species (34%) have been investigated chemically (either their volatile oils or phytochemical characterization of secondary metabolites), thus presenting many and varied opportunities for further studies. The main aim of our study was therefore to present an up-to-date account of the botany, chemistry and traditional uses of the family in southern Africa, and to identify obvious knowledge gaps.
Collapse
|
8
|
Taritla S, Kumari M, Kamat S, Bhat SG, Jayabaskaran C. Optimization of PhysicoChemical Parameters for Production of Cytotoxic Secondary Metabolites and Apoptosis Induction Activities in the Culture Extract of a Marine Algal-Derived Endophytic Fungus Aspergillus sp. Front Pharmacol 2021; 12:542891. [PMID: 33981211 PMCID: PMC8108993 DOI: 10.3389/fphar.2021.542891] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 02/17/2021] [Indexed: 01/20/2023] Open
Abstract
The endophytic fungal community in the marine ecosystem has been demonstrated to be relevant source of novel and pharmacologically active secondary metabolites. The current study focused on the evaluation of cytotoxic and apoptosis induction potential in the culture extracts of endophytic fungi associated with Sargassum muticum, a marine brown alga. The cytotoxicity of the four marine endophytes, Aspergillus sp., Nigrospora sphaerica, Talaromyces purpureogenus, and Talaromyces stipitatus, was evaluated by the MTT assay on HeLa cells. Further, several physicochemical parameters, including growth curve, culture media, and organic solvents, were optimized for enhanced cytotoxic activity of the selected extract. The Aspergillus sp. ethyl acetate extract (ASE) showed maximum cytotoxicity on multiple cancer cell lines. Chemical investigation of the metabolites by gas chromatography–mass spectroscopy (GC-MS) showed the presence of several compounds, including quinoline, indole, 2,4-bis(1,1-dimethylethyl) phenol, and hexadecenoic acid, known to be cytotoxic in ASE. The ASE was then tested for cytotoxicity in vitro on a panel of six human cancer cell lines, namely, HeLa (cervical adenocarcinoma), MCF-7 (breast adenocarcinoma), Hep G2 (hepatocellular carcinoma), A-549 (lung carcinoma), A-431 (skin/epidermis carcinoma), and LN-229 (glioblastoma). HeLa cells were most vulnerable to ASE treatment with an IC50 value of 24 ± 2 μg/ml. The mechanism of cytotoxicity exhibited by the ASE was further investigated on Hela cells. The results showed that the ASE was capable of inducing apoptosis in HeLa cells through production of reactive oxygen species, depolarization of mitochondrial membrane, and activation of the caspase-3 pathway, which shows a possible activation of the intrinsic apoptosis pathway. It also arrested the HeLa cells at the G2/M phase of the cell cycle, eventually leading to apoptosis. Through this study, we add to the knowledge about the marine algae associated with fungal endophytes and report its potential for purifying specific compounds responsible for cytotoxicity.
Collapse
Affiliation(s)
- Sidhartha Taritla
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Madhuree Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Siya Kamat
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Sarita G Bhat
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, India
| | - C Jayabaskaran
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
9
|
Bhatia P, Sharma A, George AJ, Anvitha D, Kumar P, Dwivedi VP, Chandra NS. Antibacterial activity of medicinal plants against ESKAPE: An update. Heliyon 2021; 7:e06310. [PMID: 33718642 PMCID: PMC7920328 DOI: 10.1016/j.heliyon.2021.e06310] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/28/2020] [Accepted: 02/15/2021] [Indexed: 12/25/2022] Open
Abstract
Antibiotic resistance has emerged as a threat to global health, food security, and development today. Antibiotic resistance can occur naturally but mainly due to misuse or overuse of antibiotics, which results in recalcitrant infections and Antimicrobial Resistance (AMR) among bacterial pathogens. These mainly include the MDR strains (multi-drug resistant) of ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). These bacterial pathogens have the potential to “escape” antibiotics and other traditional therapies. These bacterial pathogens are responsible for the major cases of Hospital-Acquired Infections (HAI) globally. ESKAPE Pathogens have been placed in the list of 12 bacteria by World Health Organisation (WHO), against which development of new antibiotics is vital. It not only results in prolonged hospital stays but also higher medical costs and higher mortality. Therefore, new antimicrobials need to be developed to battle the rapidly evolving pathogens. Plants are known to synthesize an array of secondary metabolites referred as phytochemicals that have disease prevention properties. Potential efficacy and minimum to no side effects are the key advantages of plant-derived products, making them suitable choices for medical treatments. Hence, this review attempts to highlight and discuss the application of plant-derived compounds and extracts against ESKAPE Pathogens.
Collapse
Affiliation(s)
- Priya Bhatia
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi 110021, India
| | - Anushka Sharma
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi 110021, India
| | - Abhilash J George
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi 110021, India
| | - D Anvitha
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi 110021, India
| | - Pragya Kumar
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi 110021, India
| | - Ved Prakash Dwivedi
- Immunobiology Group, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Nidhi S Chandra
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi 110021, India
| |
Collapse
|
10
|
Pawłowska KA, Hałasa R, Dudek MK, Majdan M, Jankowska K, Granica S. Antibacterial and anti-inflammatory activity of bistort (Bistorta officinalis) aqueous extract and its major components. Justification of the usage of the medicinal plant material as a traditional topical agent. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:113077. [PMID: 32531411 DOI: 10.1016/j.jep.2020.113077] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bistort rhizome (Bistorta officinalis) is a traditionally used plant material popular in Europe and Asia in the treatment of diarrhea and as a topical agent for skin conditions. It contains tannins mostly condensed flavan-3-ol derivatives. However, the in-depth phytochemical investigation of infusions from this plant materials is still lacking. Additionally, the scientific reports supporting the traditional topical application of bistort rhizome are scarce. AIM OF THE STUDY The major objective of the present study was to comprehensively investigate the chemical composition of infusion from subterranean parts of common bistort both using hyphenated chromatographic technique and isolation approach. Additionally, the influence of water extract on pro-inflammatory functions of human neutrophils was performed. As bacterial infections play a crucial role in the generation of skin inflammations the antimicrobial activity of the infusion and its major components was established. MATERIAL AND METHODS The chemical composition of the infusion was established using UHPLC-DAD-MS3 method. Major compounds which could not be identified using chromatographic analysis were isolated by column chromatography and preparative HPLC. Obtained pure phytochemicals were identified by NMR analysis. The influence of the extract and compounds on the cell viability and apoptosis was evaluated by flow cytometry. The release of pro-inflammatory cytokines after LPS stimulation was established by ELISA. Finally, the antimicrobial assays were performed by establishing MIC and MBC values using several bacterial strains. RESULTS The UHPLC analysis revealed the infusion contained mainly, galloyl glucose derivatives, procyanidins and chlorogenic acid. Several compounds were isolated and identified for the first time from the investigated plant material. It was shown that the infusion and its constituents influenced the release of proinflammatory cytokines such as IL-1β, TNF-α and IL-8 and also affected the viability and apoptosis of healthy cells. Both extract and isolated natural products displayed antimicrobial activity against skin pathogens. CONCLUSIONS The results obtained in the present study support that the infusions from common bistort influence key biological processes are crucial for skin conditions with the inflammatory background. The study justifies the traditional topical application of common bistort.
Collapse
Affiliation(s)
- Karolina A Pawłowska
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Centre for Preclinical Studies, Faculty of Pharmacy, Medical University of Warsaw, Ul. Banacha 1, 02-097, Warsaw, Poland.
| | - Rafał Hałasa
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdańsk, Al. Hallera 107, 80-416, Gdańsk, Poland.
| | - Marta K Dudek
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Ul. Sienkiewicza 112, 90-363, Łódź, Poland.
| | - Magdalena Majdan
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Centre for Preclinical Studies, Faculty of Pharmacy, Medical University of Warsaw, Ul. Banacha 1, 02-097, Warsaw, Poland; Department of Bromatology, Faculty of Pharmacy, Medical University of Warsaw, Ul. Banacha 1, 02-097, Warsaw, Poland.
| | - Katarzyna Jankowska
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Centre for Preclinical Studies, Faculty of Pharmacy, Medical University of Warsaw, Ul. Banacha 1, 02-097, Warsaw, Poland.
| | - Sebastian Granica
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Centre for Preclinical Studies, Faculty of Pharmacy, Medical University of Warsaw, Ul. Banacha 1, 02-097, Warsaw, Poland.
| |
Collapse
|
11
|
Américo ÁVLDS, Nunes KM, de Assis FFV, Dias SR, Passos CTS, Morini AC, de Araújo JA, Castro KCF, da Silva SKR, Barata LES, Minervino AHH. Efficacy of Phytopharmaceuticals From the Amazonian Plant Libidibia ferrea for Wound Healing in Dogs. Front Vet Sci 2020; 7:244. [PMID: 32656247 PMCID: PMC7326013 DOI: 10.3389/fvets.2020.00244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/14/2020] [Indexed: 11/16/2022] Open
Abstract
We comparatively evaluate two distinct formulations containing 5% of Jucá (Libidibia ferrea) for wound healing in dogs. An excision model study was performed in 11 dogs with three dermal wounds in each animal, which were treated with: (1) topical phytopharmaceutical based on Carbopol (PyC) containing 5% Jucá ethanolic extract; (2) topical phytopharmaceutical based on Astrocaryum murumuru butter (PyM) containing 5% Jucá ethanolic extract; and (3) commercial ointment (control). Wound treatment was carried out on alternated days starting at day (D) one until D21. Macroscopic (all time-points) and histological (D0 and D21) analyses were performed. The antimicrobial activity of Jucá was evaluated through Minimal Inhibitory Concentration (MIC). Phytochemical analysis of Jucá revealed 3.1% phenolic compound content expressed in rutin and the presence of hydrolyzable tannins and flavonoids. The mean wound retraction was 33.7 ± 5.5, 34.0 ± 4.7, and 28.4 ± 4.9 % for PyC, PyM, and control groups, respectively, with higher wound retraction for both herbal-treated groups compared to the control (P < 0.05). Alcoholic extract of Jucá had antimicrobial activity against the microorganisms Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida krusei at different degrees, with MIC ranging from 250 to 16.625 μg/ml. Microscopic evaluation showed that the phytotherapic formulations contributed to better dermal wound healing through wound fibroplasia. The alcoholic extract of Jucá pods has great potential for wound healing in dogs and can be used in the development of commercially viable phytotherapic formulations.
Collapse
Affiliation(s)
| | - Kariane Mendes Nunes
- Laboratory of R&D on Pharmaceutical and Cosmetic, Federal University of Western Pará, Santarém, Brazil
| | | | - Salatiel Ribeiro Dias
- Laboratory of Animal Health (LARSANA), Federal University of Western Pará, Santarém, Brazil
| | | | | | - Junior Avelino de Araújo
- Laboratory of R&D on Pharmaceutical and Cosmetic, Federal University of Western Pará, Santarém, Brazil
| | | | | | | | | |
Collapse
|
12
|
Ethnobotanical study and phytochemical profiling of Heptapleurum hypoleucum leaf extract and evaluation of its antimicrobial activities against diarrhea-causing bacteria. J Genet Eng Biotechnol 2020; 18:18. [PMID: 32537731 PMCID: PMC7293974 DOI: 10.1186/s43141-020-00030-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/30/2020] [Indexed: 01/28/2023]
Abstract
Background Due to the development of superbugs as a result of unprescribed and frequent use of antibiotics in recent years, an alternate form of medicine had to be introduced. In light of this global threat, researchers all over the world have been gravitating towards herbal medicines. In order to find out new ways of saving the planet using medicinal plants, ethnobotanical studies must be carried out. Concerning this, an ethnobotanical study has been done in this paper to identify potential medicinal plants in Rangamati, Bangladesh. Results For the ethnobotanical survey, randomized 104 people were interviewed and 62 different plant species were found to treat 19 different kinds of diseases and 84% of people reported to be completely recovered. Furthermore, among the 19 diseases found, the majority of them were common cold, abdominal pain or gastric, diarrhea, and dysentery. From the 62 different plant species, Heptapleurum hypoleucum, used for the treatment of diarrhea, was selected for conducting further studies due to its heavy use as reported by the tribal people. In this study, the aqueous, ethanol, and methanol extracts of Heptapleurum hypoleucum were subjected to microbial susceptibility assays using the agar well diffusion method. The test microorganisms were Salmonella typhi, Streptococcus pneumoniae, Staphylococcus aureus, Shigella flexneri, and Escherichia coli. Among these, the most susceptible organisms were Staphylococcus aureus (21 mm) and Salmonella typhi (19 mm) in the ethanolic extract. Also, the methanolic extract showed an inhibition zone of 13 mm against E. coli, which was more than that of the antibiotic’s (11 mm). Phytochemical screening of the plant revealed that it contains alkaloids, phenols, steroids, and flavonoids, but lacks saponins and tannins. Conclusion To combat the rising threat of antibiotic resistance, ethnoscience needs to be consolidated with modern biotechnological techniques to make the most use of the vast amount of natural resources. The findings of this study indicate that Heptapleurum hypoleucum, an ethnobotanical medicinal plant, has shown comparable antimicrobial activity with commercial antibiotics against several diarrhea-causing pathogens and also contains several medically important phytochemicals.
Collapse
|
13
|
Cock IE, Van Vuuren SF. A review of the traditional use of southern African medicinal plants for the treatment of fungal skin infections. JOURNAL OF ETHNOPHARMACOLOGY 2020; 251:112539. [PMID: 31899200 DOI: 10.1016/j.jep.2019.112539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/23/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Human dermatophyte infections are one of the most common classes of infection globally, with an estimated 1.7 billion people contracting at least one infection annually. Southern African ethnic groups used multiple plants to treat dermatophytosis and to alleviate the symptoms, yet the anti-dermatophyte properties of most species remain poorly explored. AIM OF THE STUDY Our study aimed to critically review the literature to document southern African plant species used to treat one or more dermatophytic infections, and to summarise scientific evaluations of these and other plant species. Our study aims to stimulate and focus future studies in this field. MATERIALS AND METHODS A thorough review of the ethnobotanical books, reviews and primary scientific studies were undertaken to identify southern African plants used traditionally to treat dermatophytosis, thereby identifying gaps in the research requiring further study. RESULTS Eighty-nine southern African plant species are recorded as traditional therapies for dermatophytosis. Scientific evaluations of 140 plant species were identified, although most of the species in those studies were selected for reasons apart from their traditional uses. None of those studies examined the mechanism of action of the plant species, and only a single study screened the extracts for toxicity. CONCLUSIONS Despite southern Africa having some of the longest continuous human civilisations globally, as well as unique and diverse flora, and good ethnobotanical records, the anti-dermatophyte properties of southern African medicinal plants remains relatively poorly explored. The efficacy of the majority of plants used traditionally to treat fungal skin disease are yet to be verified and substantial further research is required in this field.
Collapse
Affiliation(s)
- I E Cock
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, Queensland, 4111, Australia; Environmental Futures Research Institute, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, Queensland, 4111, Australia.
| | - S F Van Vuuren
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Gauteng, 2193, South Africa
| |
Collapse
|
14
|
van Vuuren S, Frank L. Review: Southern African medicinal plants used as blood purifiers. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112434. [PMID: 31812645 DOI: 10.1016/j.jep.2019.112434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMALOGICAL RELEVANCE Blood purification practices, also referred to as blood cleansing or detoxification, is an ancient concept which is widespread amongst African traditional medicine, but for which no modern scientific basis exists. There prevails considerable ambiguity in defining what a blood purifier is. AIM OF THE STUDY The purpose of this review is to firstly define what a blood purifier is in the context of African traditional medicine and compare to other cultural and westernized interpretations. Thereafter, this study identifies traditionally used medicinal plants used as blood purifiers in southern Africa and correlates these species to scientific studies, which may support evidence for these "blood purifying plant species". MATERIALS AND METHODS Ethnobotanical books and review articles were used to identify medicinal plants used for blood purification. Databases such as Scopus, ScienceDirect, PubMed and Google Scholar were used to source scientific articles. An evaluation was made to try correlate traditional use to scientific value of the plant species. RESULTS One hundred and fifty nine plant species have been documented as traditional remedies for blood purification. Most of the plant species have some pharmacological activity, however, very little link to the traditional use for blood purification. There has been some justification of the link between blood purification and the use as an antimicrobial and this has been explored in many of the plant species identified as blood purifiers. Other pharmacological studies specifically pertaining to the blood require further attention. CONCLUSION Irrespective of the ambiguity of interpretation, medicinal plants used to "cleanse the blood", play an important holistic role in traditional medicine and this review with recommendations for further study provides some value of exploring this theme in the future.
Collapse
Affiliation(s)
- S van Vuuren
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, South Africa.
| | - L Frank
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, South Africa
| |
Collapse
|
15
|
Diefenbach AL, Muniz FWMG, Oballe HJR, Rösing CK. Antimicrobial activity of copaiba oil (Copaifera ssp.) on oral pathogens: Systematic review. Phytother Res 2017; 32:586-596. [PMID: 29193389 DOI: 10.1002/ptr.5992] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/23/2017] [Accepted: 10/28/2017] [Indexed: 01/10/2023]
Abstract
Copaifera ssp. produces an oil-resin that presents antiinflammatory, antitumor, antiseptic, germicidal, antifungal, and antibacterial activity. This systematic review aimed to analyze the antimicrobial action of Copaiba oil against oral pathogens, when compared to that of control substances. A search on Medline/PubMed, LILACS, SciELO, EMBASE, and SCOPUS databases were performed up to March 2017. To be included, the studies needed to perform any antimicrobial activity essay, using copaiba oil and a control substance. The antimicrobial effect of each substance, in each study, was extracted. Eleven studies were included, and several copaiba species were used. All studies showed that copaiba oil, regardless of its species, presented a bactericidal and/or bacteriostatic effect in in vitro analyzes. Only one study showed that the antimicrobial effect of the Copaifera officinalis was similar to the one found in chlorhexidine. A higher risk of bias was detected in most of the included studies. The studies demonstrated that the antimicrobial activity of copaiba oil, in most cases, is lower than chlorhexidine, which is considered the gold standard. However, there is great potential against oral bacteria. Further high quality studies are warranted in order to assess the efficacy of copaiba oil on oral pathogens.
Collapse
Affiliation(s)
- Ana Lúcia Diefenbach
- Department of Periodontology, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2492, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Harry Juan Rivera Oballe
- Department of Periodontology, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2492, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cassiano Kuchenbecker Rösing
- Department of Periodontology, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2492, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|