1
|
Bashir S, Amn Zia M, Shoukat M, Kaleem I, Bashir S. Nanoparticles as a novel key driver for the isolation and detection of circulating tumour cells. Sci Rep 2024; 14:22580. [PMID: 39343959 PMCID: PMC11439955 DOI: 10.1038/s41598-024-67221-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/09/2024] [Indexed: 10/01/2024] Open
Abstract
Circulating tumour cells (CTCs), derived from primary tumours, play a pivotal role in cancer metastasis by migrating into the peripheral bloodstream. These cells are paramount in clinical research, serving as early diagnostic markers for metastatic cancer. Analysing CTC counts and their biomarker characteristics can provide invaluable insights into tumour identification, profiling, and metastatic capabilities. However, the rarity and diverse nature of CTCs in the bloodstream present significant challenges to their isolation and detection, especially in the initial stages of metastasis. Recent advancements in nanotechnology have led to the development of innovative CTC separation and detection methods. This review focuses on applying nanoparticles, nanomaterials, and microfluidic platforms to simplify the isolation and detection of CTCs. The infusion of nanotechnology in this field marks a crucial turning point, enabling the necessary progress to advance CTC research.
Collapse
Affiliation(s)
- Shahab Bashir
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Muhammad Amn Zia
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Madiha Shoukat
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Imdad Kaleem
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, 45550, Pakistan.
| | - Shahid Bashir
- Neuroscience Centre, King Fahad Specialist Hospital, Dammam, KSA, Saudi Arabia
| |
Collapse
|
2
|
Baumgartner W, Aceto N, Lifka S. Simulating the Effect of Removing Circulating Tumor Cells (CTCs) from Blood Reveals That Only Implantable Devices Can Significantly Reduce Metastatic Burden of Patients. Cancers (Basel) 2024; 16:3078. [PMID: 39272936 PMCID: PMC11394430 DOI: 10.3390/cancers16173078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Circulating tumor cells (CTCs) are cells that have separated from a solid cancerous lesion and entered the bloodstream. They play a crucial role in driving the metastatic spread to distant organs, which is the leading cause of cancer-related deaths. Various concepts for blood purification devices aiming to remove CTCs from the blood and prevent metastases have been developed. Until now, it is not clear if such devices can indeed reduce new metastasis formation in a significant way. Here, we present a simple theoretical model of CTCs in the bloodstream that can be used to predict a reduction in metastatic burden using an extracorporeal or intracorporeal blood purification device. The model consists of a system of ordinary differential equations that was numerically solved and simulated. Various simulations with different parameter settings of extracorporeal and intracorporeal devices revealed that only devices implanted directly in tumor-draining vessels can reduce the metastatic burden significantly. Even if an extracorporeal device is used permanently, the reduction in metastases is only 82%, while a permanently operating implanted device in the tumor-draining vessel would achieve a reduction of 99.8%. These results are mainly due to the fact that only a small fraction of CTCs reaches peripheral circulation, resulting in a proportionally small amount of purified blood in extracorporeal devices.
Collapse
Affiliation(s)
- Werner Baumgartner
- Institute of Biomedical Mechatronics, Johannes Kepler University of Linz, 4040 Linz, Austria
| | - Nicola Aceto
- Department of Biology, Institute of Molecular Health Sciences, ETH Zürich, 8093 Zurich, Switzerland
| | - Sebastian Lifka
- Institute of Biomedical Mechatronics, Johannes Kepler University of Linz, 4040 Linz, Austria
| |
Collapse
|
3
|
Xiao Y, Zhou Z, Zuo Y, Wu X, Liu Y, Li Y, Gao Y, Zhang X, Wang Y, Hu L, Li C. Layer-by-layer fabrication of alginate/polyethyleneimine multilayer on magnetic interface with enhanced efficiency in immuno-capturing circulating tumor cells. Anal Chim Acta 2024; 1312:342778. [PMID: 38834257 DOI: 10.1016/j.aca.2024.342778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND The technology of capturing circulating tumor cells (CTCs) plays a crucial role in the diagnosis, evaluation of therapeutic efficacy, and prediction of prognosis in lung cancer. However, the presence of complex blood environment often results in severe nonspecific protein adsorption and interferences from blood cells, which negatively impacts the specificity of CTCs capture. There is a great need for development of novel nanomaterials for CTCs capture with prominent anti-nonspecific adsorptions from proteins or blood cells. RESULTS We present a novel immune magnetic probe Fe3O4@(PEI/AA)4@Apt. The surface of Fe3O4 particles was modified with four layers of PEI/AA composite by layer-by-layer assembly. Furthermore, aptamers targeting epithelial marker EpCAM (SYL3C) and mesenchymal marker CSV (ZY5C) were simultaneously connected on Fe3O4@(PEI/AA)4 to improve the detection of different phenotypic CTCs and reduce false negatives. The results demonstrated that the (PEI/AA)4 coatings not only minimized non-specific protein adsorptions, but also significantly reduced the adsorption rate of red blood cells to a mere 1 %, as a result of which, the Fe3O4@(PEI/AA)4@Apt probe achieved a remarkably high capture efficiency toward CTCs (95.9 %). In the subsequent validation of clinical samples, the probe was also effective in capturing rare CTCs from lung cancer patients. SIGNIFICANCE AND NOVELTY A (PEI/AA) polymerized composite with controllable layers was fabricated by layer-by-layer self-assembly technique, which displayed remarkable anti-nonspecific adsorption capabilities toward proteins and cells. Importantly, Fe3O4@(PEI/AA)4@Apt probe significantly improved CTCs capture purity in lung cancer patients to 89.36 %. For the first time, this study combined controllable (PEI/AA) layers with magnetic separation to innovatively build a resistant interface that significantly improves the specific capture performances of CTCs, broadening the application of this polymerized composite.
Collapse
Affiliation(s)
- Yang Xiao
- School of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Zhiyi Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Yifan Zuo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Xueyuan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Yuping Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Yichen Li
- School of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Yuetong Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Xiashu Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Yu Wang
- Department of Pharmacy, Xuzhou Traditional Chinese Medicine Hospital, 169 Zhongshan South Road, Xuzhou, 221004, China
| | - Lili Hu
- Department of Pharmacy, Affiliated Hospital of Xuzhou Medical University, 99 Huaihai West Road, Xuzhou, 221004, China
| | - Chenglin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China.
| |
Collapse
|
4
|
Sandbhor P, Palkar P, Bhat S, John G, Goda JS. Nanomedicine as a multimodal therapeutic paradigm against cancer: on the way forward in advancing precision therapy. NANOSCALE 2024. [PMID: 38470224 DOI: 10.1039/d3nr06131k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Recent years have witnessed dramatic improvements in nanotechnology-based cancer therapeutics, and it continues to evolve from the use of conventional therapies (chemotherapy, surgery, and radiotherapy) to increasingly multi-complex approaches incorporating thermal energy-based tumor ablation (e.g. magnetic hyperthermia and photothermal therapy), dynamic therapy (e.g. photodynamic therapy), gene therapy, sonodynamic therapy (e.g. ultrasound), immunotherapy, and more recently real-time treatment efficacy monitoring (e.g. theranostic MRI-sensitive nanoparticles). Unlike monotherapy, these multimodal therapies (bimodal, i.e., a combination of two therapies, and trimodal, i.e., a combination of more than two therapies) incorporating nanoplatforms have tremendous potential to improve the tumor tissue penetration and retention of therapeutic agents through selective active/passive targeting effects. These combinatorial therapies can correspondingly alleviate drug response against hypoxic/acidic and immunosuppressive tumor microenvironments and promote/induce tumor cell death through various multi-mechanisms such as apoptosis, autophagy, and reactive oxygen-based cytotoxicity, e.g., ferroptosis, etc. These multi-faced approaches such as targeting the tumor vasculature, neoangiogenic vessels, drug-resistant cancer stem cells (CSCs), preventing intra/extravasation to reduce metastatic growth, and modulation of antitumor immune responses work complementary to each other, enhancing treatment efficacy. In this review, we discuss recent advances in different nanotechnology-mediated synergistic/additive combination therapies, emphasizing their underlying mechanisms for improving cancer prognosis and survival outcomes. Additionally, significant challenges such as CSCs, hypoxia, immunosuppression, and distant/local metastasis associated with therapy resistance and tumor recurrences are reviewed. Furthermore, to improve the clinical precision of these multimodal nanoplatforms in cancer treatment, their successful bench-to-clinic translation with controlled and localized drug-release kinetics, maximizing the therapeutic window while addressing safety and regulatory concerns are discussed. As we advance further, exploiting these strategies in clinically more relevant models such as patient-derived xenografts and 3D organoids will pave the way for the application of precision therapy.
Collapse
Affiliation(s)
- Puja Sandbhor
- Institute for NanoBioTechnology, Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Pranoti Palkar
- Radiobiology, Department of Radiation Oncology & Homi Bhabha National Institute, Mumbai, 400012, India
| | - Sakshi Bhat
- Radiobiology, Department of Radiation Oncology & Homi Bhabha National Institute, Mumbai, 400012, India
| | - Geofrey John
- Radiobiology, Department of Radiation Oncology & Homi Bhabha National Institute, Mumbai, 400012, India
| | - Jayant S Goda
- Radiobiology, Department of Radiation Oncology & Homi Bhabha National Institute, Mumbai, 400012, India
| |
Collapse
|
5
|
Kuru Cİ, Ulucan-Karnak F, Dayıoğlu B, Şahinler M, Şendemir A, Akgöl S. Affinity-Based Magnetic Nanoparticle Development for Cancer Stem Cell Isolation. Polymers (Basel) 2024; 16:196. [PMID: 38256995 PMCID: PMC10818538 DOI: 10.3390/polym16020196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/06/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Cancer is still the leading cause of death in the world despite the developing research and treatment opportunities. Failure of these treatments is generally associated with cancer stem cells (CSCs), which cause metastasis and are defined by their resistance to radio- and chemotherapy. Although known stem cell isolation methods are not sufficient for CSC isolation, they also bring a burden in terms of cost. The aim of this study is to develop a high-efficiency, low-cost, specific method for cancer stem cell isolation with magnetic functional nanoparticles. This study, unlike the stem cell isolation techniques (MACS, FACS) used today, was aimed to isolate cancer stem cells (separation of CD133+ cells) with nanoparticles with specific affinity and modification properties. For this purpose, affinity-based magnetic nanoparticles were synthesized and characterized by providing surface activity and chemical reactivity, as well as making surface modifications necessary for both lectin affinity and metal affinity interactions. In the other part of the study, synthesized and characterized functional polymeric magnetic nanoparticles were used for the isolation of CSC from the human osteosarcoma cancer cell line (SAOS-2) with a cancer stem cell subpopulation bearing the CD133 surface marker. The success and efficiency of separation after stem cell isolation were evaluated via the MACS and FACS methods. As a result, when the His-graft-mg-p(HEMA) nanoparticle was used at a concentration of 0.1 µg/mL for 106 and 108 cells, superior separation efficiency to commercial microbeads was obtained.
Collapse
Affiliation(s)
- Cansu İlke Kuru
- Department of Biochemistry, Faculty of Science, Ege University, 35100 İzmir, Turkey; (C.İ.K.); (S.A.)
| | - Fulden Ulucan-Karnak
- Department of Biochemistry, Faculty of Science, Ege University, 35100 İzmir, Turkey; (C.İ.K.); (S.A.)
| | - Büşra Dayıoğlu
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 İzmir, Turkey; (B.D.); (M.Ş.); (A.Ş.)
| | - Mert Şahinler
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 İzmir, Turkey; (B.D.); (M.Ş.); (A.Ş.)
| | - Aylin Şendemir
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 İzmir, Turkey; (B.D.); (M.Ş.); (A.Ş.)
| | - Sinan Akgöl
- Department of Biochemistry, Faculty of Science, Ege University, 35100 İzmir, Turkey; (C.İ.K.); (S.A.)
| |
Collapse
|
6
|
Piansaddhayanon C, Koracharkornradt C, Laosaengpha N, Tao Q, Ingrungruanglert P, Israsena N, Chuangsuwanich E, Sriswasdi S. Label-free tumor cells classification using deep learning and high-content imaging. Sci Data 2023; 10:570. [PMID: 37634014 PMCID: PMC10460430 DOI: 10.1038/s41597-023-02482-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/16/2023] [Indexed: 08/28/2023] Open
Abstract
Many studies have shown that cellular morphology can be used to distinguish spiked-in tumor cells in blood sample background. However, most validation experiments included only homogeneous cell lines and inadequately captured the broad morphological heterogeneity of cancer cells. Furthermore, normal, non-blood cells could be erroneously classified as cancer because their morphology differ from blood cells. Here, we constructed a dataset of microscopic images of organoid-derived cancer and normal cell with diverse morphology and developed a proof-of-concept deep learning model that can distinguish cancer cells from normal cells within an unlabeled microscopy image. In total, more than 75,000 organoid-drived cells from 3 cholangiocarcinoma patients were collected. The model achieved an area under the receiver operating characteristics curve (AUROC) of 0.78 and can generalize to cell images from an unseen patient. These resources serve as a foundation for an automated, robust platform for circulating tumor cell detection.
Collapse
Affiliation(s)
- Chawan Piansaddhayanon
- Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Computational Molecular Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Chula Intelligent and Complex Systems, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chonnuttida Koracharkornradt
- Center of Excellence in Computational Molecular Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Napat Laosaengpha
- Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Computational Molecular Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Qingyi Tao
- NVIDIA AI Technology Center, Singapore, Singapore
| | - Praewphan Ingrungruanglert
- Center of Excellence for Stem Cell and Cell Therapy, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nipan Israsena
- Center of Excellence for Stem Cell and Cell Therapy, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Ekapol Chuangsuwanich
- Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence in Computational Molecular Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Sira Sriswasdi
- Center of Excellence in Computational Molecular Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center for Artificial Intelligence in Medicine, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
7
|
Baa AK, Sharma A, Bhaskar S, Biswas A, Thakar A, Kumar R, Jayant S, Aland G, D’Souza A, Jadhav V, Bharde A, Khandare J, Pramanik R. Role of circulating tumour cells (CTCs) in recurrent/metastatic head and neck squamous cell carcinoma (HNSCC). Ecancermedicalscience 2023; 17:1578. [PMID: 37533950 PMCID: PMC10393317 DOI: 10.3332/ecancer.2023.1578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Indexed: 08/04/2023] Open
Abstract
Background Liquid biopsy is emerging as a non-invasive tool, providing a personalized snapshot of a primary and metastatic tumour. It aids in detecting early metastasis, recurrence or resistance to the disease. We aimed to assess the role of circulating tumour cells (CTCs) as a predictive biomarker in recurrent/metastatic head and neck cancer (head and neck squamous cell carcinoma (HNSCC)). Methodology Thirty-five patients receiving palliative chemotherapy underwent blood sampling [2 mL in Ethylenediaminetetraacetic acid (EDTA) vial] at baseline and at 3 months intervals. The CTCs were isolated and evaluated using anti-epithelial cell adhesion molecule antibody-based enrichment using the OncoDiscover platform. Results CTCs isolated from 80% of patients (n = 28) showed the sensitivity of cell detection at the baseline and 3 months intervals. The median CTC count was 1/1.5 mL of blood and the concordance with clinic-radiological outcomes was 51.4%. The median CTC count (1 (range:0-4) to 0 (range:0-1)) declined at 3 months in responders, while the non-responders had an increase in levels (0 (range :0-2) to 1 (range :0-3)). Although CTCs positively correlated with progression-free survival (PFS) and overall survival (OS), the association of CTCs did not show a significant difference with these parameters (PFS: 6 months versus 4 months; hazard ratio: 0.68; 95% confidence interval (CI): 0.29-1.58, p = 0.323; OS: 10 months versus 8 months; hazard ratio: 0.54; 95% (CI):0.18-1.57 p = 0.216) between CTC positive and CTC negative patients at 3 months. Conclusion This study highlights the utility of CTC as a disease progression-monitoring tool in recurrent HNSCC patients. Our findings suggest the potential clinical utility of CTC and the need for exploration in upfront settings of the disease as well (NCT: CTRL/2020/02/023378).
Collapse
Affiliation(s)
- Annie Kanchan Baa
- Department of Medical Oncology, Dr B. R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Atul Sharma
- Department of Medical Oncology, Dr B. R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Suman Bhaskar
- Department of Radiation Oncology, Dr B. R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Ahitagni Biswas
- Department of Radiation Oncology, Dr B. R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Alok Thakar
- Department of Head and Neck Surgery, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Rajeev Kumar
- Department of Head and Neck Surgery, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Sreeja Jayant
- Actorius Innovations and Research, Pune 411057, India, and Actorius Innovations and Research Co., Simi Valley, CA 93063, USA
| | - Gourishankar Aland
- Actorius Innovations and Research, Pune 411057, India, and Actorius Innovations and Research Co., Simi Valley, CA 93063, USA
| | - Alain D’Souza
- Actorius Innovations and Research, Pune 411057, India, and Actorius Innovations and Research Co., Simi Valley, CA 93063, USA
| | - Vikas Jadhav
- Actorius Innovations and Research, Pune 411057, India, and Actorius Innovations and Research Co., Simi Valley, CA 93063, USA
| | - Atul Bharde
- Actorius Innovations and Research, Pune 411057, India, and Actorius Innovations and Research Co., Simi Valley, CA 93063, USA
| | - Jayant Khandare
- Actorius Innovations and Research, Pune 411057, India, and Actorius Innovations and Research Co., Simi Valley, CA 93063, USA
| | - Raja Pramanik
- Department of Medical Oncology, Dr B. R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110 029, India
| |
Collapse
|
8
|
Asghari S, Mahmoudifard M. The detection of the captured circulating tumor cells on the core-shell nanofibrous membrane using hyaluronic acid-functionalized graphene quantum dots. J Biomed Mater Res B Appl Biomater 2023; 111:1121-1132. [PMID: 36727427 DOI: 10.1002/jbm.b.35219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/26/2022] [Accepted: 12/23/2022] [Indexed: 02/03/2023]
Abstract
In recent years, cancerous cases have increased remarkably worldwide, and metastasis is the leading cause of death. Therefore, research on the early detection of cancer and metastasis has expanded to aid successful cancer treatment. Here in this paper, at the first step, an electrospun nanofibrous membrane (NFM) with a core-shell structure was fabricated from PCL and HA to achieve cancer cell capturing (about 75% of cells). On the other hand, hyaluronic acid (HA)-functionalized graphene quantum dots (GQDs) were used to detect captured cancer cells on NFM through the changes in photoluminescence intensity. Therefore, CD44 receptor-HA interaction is the main principle used for both entrapment and detection of cancer cells. Results demonstrated the GQD-HA fluorescent intensity of solution decreased through the increase of the captured cancer cell numbers on NFM, which is related to the more adsorption of GQD nanocomposites to the CD44 receptors. In contrast, this intensity for noncancerous cells was steady with any cell concentrations. This difference shows the system's remarkable selectivity and specificity, which can be crucial in fluorescent imaging for accurate cancer diagnosis.
Collapse
Affiliation(s)
- Sahar Asghari
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Matin Mahmoudifard
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
9
|
Wei Y, Yang W, Huang Q, Chen Y, Zeng K, Chen J, Chen J. Clinical significance of circulating tumor cell (CTC)-specific microRNA (miRNA) in breast cancer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:229-234. [PMID: 36574883 DOI: 10.1016/j.pbiomolbio.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/05/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
As a noninvasive method, circulating tumor cell (CTC) provides ideal liquid biopsy specimens for early cancer screening and diagnosis. CTCs detection in breast cancer is correlated with patient prognosis such as disease-free survival (DFS) and overall survival (OS). Besides, accumulating evidence supported that CTCs count may be indicator for chemotherapy response as well. The functional roles of microRNA (miRNA) in breast cancer have been well-recognized for the last few years. Due to its stability in circulation, numerous studies have proven that circulating miRNA may serve as promising diagnostic and prognostic biomarkers in breast cancer. The potential ability of miRNAs in disease screening, staging or even molecular subtype classification makes them valuable tools for early breast cancer patients. It would be of great significance to characterize the miRNA expression profile in CTCs, which could provide reliable biological information originated from tumor. However, some issues need to be addressed before the utility of CTC-specific miRNAs in clinical setting. Taken together, we believe that CTC-specific miRNA detection will be trend for early breast cancer screening, diagnosis and treatment monitor in near future.
Collapse
Affiliation(s)
- Yanghui Wei
- Department of Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Hong Kong, China.
| | - Weiqin Yang
- School of Biomedical Sciences, The Chinese, University of Hong Kong, Hong Kong, China.
| | - Qingnan Huang
- Department of Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Hong Kong, China.
| | - Yong Chen
- Department of Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Hong Kong, China.
| | - Kai Zeng
- Department of Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Hong Kong, China.
| | - Juan Chen
- Department of Medicine & Rehabilitation, Tung Wah Eastern Hospital, Hong Kong, China.
| | - Jiawei Chen
- Department of Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Hong Kong, China.
| |
Collapse
|
10
|
Smolkova B, Kataki A, Earl J, Ruz-Caracuel I, Cihova M, Urbanova M, Buocikova V, Tamargo S, Rovite V, Niedra H, Schrader J, Kohl Y. Liquid biopsy and preclinical tools for advancing diagnosis and treatment of patients with pancreatic neuroendocrine neoplasms. Crit Rev Oncol Hematol 2022; 180:103865. [PMID: 36334880 DOI: 10.1016/j.critrevonc.2022.103865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
|
11
|
Striking Circulating Tumour Cells during Sleep. JOURNAL OF NANOTHERANOSTICS 2022. [DOI: 10.3390/jnt3030009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Circulating tumour cells (CTCs) with stem cell-like properties and epithelial-mesenchymal transition phenotype are precursor cells responsible for dissemination and metastatic spread of cancer [...]
Collapse
|
12
|
Ruzanova V, Proskurina A, Efremov Y, Kirikovich S, Ritter G, Levites E, Dolgova E, Potter E, Babaeva O, Sidorov S, Taranov O, Ostanin A, Chernykh E, Bogachev S. Chronometric Administration of Cyclophosphamide and a Double-Stranded DNA-Mix at Interstrand Crosslinks Repair Timing, Called "Karanahan" Therapy, Is Highly Efficient in a Weakly Immunogenic Lewis Carcinoma Model. Pathol Oncol Res 2022; 28:1610180. [PMID: 35693632 PMCID: PMC9185167 DOI: 10.3389/pore.2022.1610180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/27/2022] [Indexed: 12/12/2022]
Abstract
Background and Aims: A new technology based on the chronometric administration of cyclophosphamide and complex composite double-stranded DNA-based compound, which is scheduled in strict dependence on interstrand crosslinks repair timing, and named “Karanahan”, has been developed. Being applied, this technology results in the eradication of tumor-initiating stem cells and full-scale apoptosis of committed tumor cells. In the present study, the efficacy of this novel approach has been estimated in the model of Lewis carcinoma. Methods: To determine the basic indicative parameters for the approach, the duration of DNA repair in tumor cells, as well as their distribution along the cell cycle, have been assessed. Injections were done into one or both tumors in femoral region of the engrafted mice in accordance with the developed regimen. Four series of experiments were carried out at different periods of time. The content of poorly differentiated CD34+/TAMRA+ cells in the bone marrow and peripheral blood has been determined. Immunostaining followed by the flow cytometry was used to analyze the subpopulations of immune cells. Results: The high antitumor efficacy of the new technology against the developed experimental Lewis carcinoma was shown. It was found that the therapy efficacy depended on the number of tumor growth sites, seasonal and annual peculiarities. In some experiments, a long-term remission has been reached in 70% of animals with a single tumor and in 60% with two tumors. In mice with two developed grafts, mobilization capabilities of both poorly differentiated hematopoietic cells of the host and tumor stem-like cells decrease significantly. Being applied, this new technology was shown to activate a specific immune response. There is an increase in the number of NK cell populations in the blood, tumor, and spleen, killer T cells and T helper cells in the tumor and spleen, CD11b+Ly-6C+ and CD11b+Ly-6G+ cells in the tumor. A population of mature dendritic cells is found in the tumor. Conclusion: The performed experiments indicate the efficacy of the Karanahan approach against incurable Lewis carcinoma. Thus, the discussed therapy is a new approach for treating experimental neoplasms, which has a potential as a personalized anti-tumor therapeutic approach in humans.
Collapse
Affiliation(s)
- Vera Ruzanova
- Laboratory of Induced Cellular Processes, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk National Research State University, Novosibirsk, Russia
| | - Anastasia Proskurina
- Laboratory of Induced Cellular Processes, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Yaroslav Efremov
- Department of Natural Sciences, Novosibirsk National Research State University, Novosibirsk, Russia.,Common Use Center for Microscopic Analysis of Biological Objects SB RAS, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Svetlana Kirikovich
- Laboratory of Induced Cellular Processes, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Genrikh Ritter
- Laboratory of Induced Cellular Processes, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Evgenii Levites
- Laboratory of Induced Cellular Processes, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Evgenia Dolgova
- Laboratory of Induced Cellular Processes, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ekaterina Potter
- Laboratory of Induced Cellular Processes, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Oksana Babaeva
- Oncology Department, Municipal Hospital No. 1, Novosibirsk, Russia
| | - Sergey Sidorov
- Department of Natural Sciences, Novosibirsk National Research State University, Novosibirsk, Russia.,Oncology Department, Municipal Hospital No. 1, Novosibirsk, Russia
| | - Oleg Taranov
- Laboratory of Microscopic Research, State Research Center of Virology and Biotechnology "Vector", Koltsovo, Russia
| | - Alexandr Ostanin
- Laboratory of Cellular Immunotherapy, Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Elena Chernykh
- Laboratory of Cellular Immunotherapy, Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Sergey Bogachev
- Laboratory of Induced Cellular Processes, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
13
|
Targeting nanoparticles to malignant tumors. Biochim Biophys Acta Rev Cancer 2022; 1877:188703. [DOI: 10.1016/j.bbcan.2022.188703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/01/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022]
|
14
|
Wang H, Zheng Y, Sun Q, Zhang Z, Zhao M, Peng C, Shi S. Ginsenosides emerging as both bifunctional drugs and nanocarriers for enhanced antitumor therapies. J Nanobiotechnology 2021; 19:322. [PMID: 34654430 PMCID: PMC8518152 DOI: 10.1186/s12951-021-01062-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Ginsenosides, the main components isolated from Panax ginseng, can play a therapeutic role by inducing tumor cell apoptosis and reducing proliferation, invasion, metastasis; by enhancing immune regulation; and by reversing tumor cell multidrug resistance. However, clinical applications have been limited because of ginsenosides' physical and chemical properties such as low solubility and poor stability, as well as their short half-life, easy elimination, degradation, and other pharmacokinetic properties in vivo. In recent years, developing a ginsenoside delivery system for bifunctional drugs or carriers has attracted much attention from researchers. To create a precise treatment strategy for cancer, a variety of nano delivery systems and preparation technologies based on ginsenosides have been conducted (e.g., polymer nanoparticles [NPs], liposomes, micelles, microemulsions, protein NPs, metals and inorganic NPs, biomimetic NPs). It is desirable to design a targeted delivery system to achieve antitumor efficacy that can not only cross various barriers but also can enhance immune regulation, eventually converting to a clinical application. Therefore, this review focused on the latest research about delivery systems encapsulated or modified with ginsenosides, and unification of medicines and excipients based on ginsenosides for improving drug bioavailability and targeting ability. In addition, challenges and new treatment methods were discussed to support the development of these new tumor therapeutic agents for use in clinical treatment.
Collapse
Affiliation(s)
- Hong Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yu Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiang Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Mengnan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
15
|
Nanostructure Materials: Efficient Strategies for Circulating Tumor Cells Capture, Release, and Detection. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0257-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Singh B, Arora S, D'Souza A, Kale N, Aland G, Bharde A, Quadir M, Calderón M, Chaturvedi P, Khandare J. Chemo-specific designs for the enumeration of circulating tumor cells: advances in liquid biopsy. J Mater Chem B 2021; 9:2946-2978. [PMID: 33480960 DOI: 10.1039/d0tb02574g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Advanced materials and chemo-specific designs at the nano/micrometer-scale have ensured revolutionary progress in next-generation clinically relevant technologies. For example, isolating a rare population of cells, like circulating tumor cells (CTCs) from the blood amongst billions of other blood cells, is one of the most complex scientific challenges in cancer diagnostics. The chemical tunability for achieving this degree of exceptional specificity for extra-cellular biomarker interactions demands the utility of advanced entities and multistep reactions both in solution and in the insoluble state. Thus, this review delineates the chemo-specific substrates, chemical methods, and structure-activity relationships (SARs) of chemical platforms used for isolation and enumeration of CTCs in advancing the relevance of liquid biopsy in cancer diagnostics and disease management. We highlight the synthesis of cell-specific, tumor biomarker-based, chemo-specific substrates utilizing functionalized linkers through chemistry-based conjugation strategies. The capacity of these nano/micro substrates to enhance the cell interaction specificity and efficiency with the targeted tumor cells is detailed. Furthermore, this review accounts for the importance of CTC capture and other downstream processes involving genotypic and phenotypic CTC analysis in real-time for the detection of the early onset of metastases progression and chemotherapy treatment response, and for monitoring progression free-survival (PFS), disease-free survival (DFS), and eventually overall survival (OS) in cancer patients.
Collapse
Affiliation(s)
- Balram Singh
- Actorius Innovations and Research Pvt. Ltd, Pune, 411057, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Vu-Dinh H, Feng H, Jen CP. Effective Isolation for Lung Carcinoma Cells Based on Immunomagnetic Separation in a Microfluidic Channel. BIOSENSORS-BASEL 2021; 11:bios11010023. [PMID: 33467122 PMCID: PMC7830457 DOI: 10.3390/bios11010023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 01/10/2023]
Abstract
In this paper, we developed an isolation system for A549 human lung carcinoma cells as an effective factor for the early diagnosis of lung cancer. A microfluidic immunomagnetic method was used, in which the combination of immunomagnetic separation and a microfluidic system allowed for increased isolation efficiency with uncomplicated manipulation. In the microfluidic immunomagnetic strategy, A549 cells were combined with aptamer-conjugated carboxylated magnetic beads and then collected in a specified region by applying a magnetic field. The results were recorded using a fluorescence microscope, and the captured targets were then quantified. The isolation efficiency of A549 cells is up to 77.8%. This paper developed a simple working procedure, which is less time consuming, high-throughput, and trustworthy for the isolation of A549 cells. This procedure can be a useful reference method for the development of an effective diagnosis and treatment method for lung cancer in the future.
Collapse
Affiliation(s)
- Hien Vu-Dinh
- Department of Mechanical Engineering and Advanced Institute of Manufacturing for High-Tech Innovations, National Chung Cheng University, Chiayi 62102, Taiwan;
| | - Hui Feng
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
- Correspondence: (H.F.); (C.-P.J.); Tel.: +886-5-2729-382 (C.-P.J.)
| | - Chun-Ping Jen
- Department of Mechanical Engineering and Advanced Institute of Manufacturing for High-Tech Innovations, National Chung Cheng University, Chiayi 62102, Taiwan;
- Correspondence: (H.F.); (C.-P.J.); Tel.: +886-5-2729-382 (C.-P.J.)
| |
Collapse
|
18
|
Li Y, Zhang T, Huang J, Dong H, Xie J, Jia L. Biostable Double-Strand Circular Aptamers Conjugated Onto Dendrimers for Specific Capture and Inhibition of Circulating Leukemia Cells. Onco Targets Ther 2021; 13:13465-13477. [PMID: 33447051 PMCID: PMC7801922 DOI: 10.2147/ott.s287720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/15/2020] [Indexed: 11/23/2022] Open
Abstract
Background/Objective Circulating tumor cells (CTCs) are known as the root of cancer metastasis. Capture and inhibition of CTCs may prevent metastasis. Due to the rarity of CTCs in vivo, the current technology about CTCs capture is still challenging. The aim of our study was to conjugate the enhanced biostable double-strand (ds) circular aptamer (dApR) with dendrimers for capturing and restraining CTCs in vitro and in vivo. Methods CEM-targeting aptamer (Ap) was looped by ligation after phosphorylation to form circular ds aptamer dApR, which was then conjugated to dendrimers by biotin-streptavidin affinity reaction and named as G-dApR. The physicochemical properties of G-dApR were characterized by using PAGE gel electrophoresis, UV, DLS, AFM, fluorophotometer and laser confocal microscope. Biostability of G-dApR was also analyzed by gel electrophoresis. Confocal microscopy and flow cytometry were then performed to determine the binding specificity of G-dApR to CEM cells and the captured CTCs in mice and in human blood. Apoptosis of the captured cells was finally evaluated by using MTT assay, DAPI staining, AO/EB staining, cell cycle analysis and Annexin V-FITC/PI staining. Results Physicochemical characterization demonstrated the entity of dApR and G-dApR, and the nano-size of G-dApR (about 180 nm in aqueous phase). G-dApR exhibited the excellent biostability that confers their resistance to nuclease-mediated biodegradation in serum for at least 6 days. In our established CTCs model, we found that G-dApR could specifically and sensitively capture CTCs not non-target cells even in the presence of millions of interfering cells (108), in mice and in human blood. Finally, the activity of captured CTCs was significantly down-regulated by G-dApR, resulting in apoptosis. Conclusion We created the enhanced biostable dApR-coated dendrimers (G-dApR) that could specifically capture and restrain CTCs in vitro and in vivo for preventing CTC-mediated cancer metastasis.
Collapse
Affiliation(s)
- Yu Li
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, People's Republic of China
| | - Ting Zhang
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350002, People's Republic of China
| | - Jing Huang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, People's Republic of China
| | - Haiyan Dong
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, People's Republic of China
| | - Jingjing Xie
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Lee Jia
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian 350108, People's Republic of China
| |
Collapse
|
19
|
Nanoparticle-delivered miriplatin ultrasmall dots suppress triple negative breast cancer lung metastasis by targeting circulating tumor cells. J Control Release 2020; 329:833-846. [PMID: 33045314 DOI: 10.1016/j.jconrel.2020.10.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 12/18/2022]
Abstract
No effective therapy is yet available to treat triple negative breast cancer (TNBC), which has poor prognosis due to frequent metastasis. Cancer stem cells (CSCs) or CSC-like cells play crucial roles in cancer metastasis and are exceptionally tolerant with genetic lesions. The extent of DNA damages has an important impact on the fate of CSCs. Despite the importance of platinum [Pt(II)] agents in cancer therapy, accumulating reports showed the treatment failure of conventional Pt(II) drugs, which is likely due to their inadequate DNA damage effects. Miriplatin is a clinically approved drug only being locally-used for treating liver cancer. In this study, we developed a novel ultrasmall Pt(II) dot (uPtD) from miriplatin and encapsulated it into our recently-reported integrin α5(ITGA5) active targeting nanoparticles (uPtDs NPs) and tested their therapeutic efficacy against TNBC metastasis. It was found that uPtDs NPs displayed a superior DNA damage capability via enhanced-interactions with DNA and a significantly stronger effect in reducing CSC-like property of TNBC cells, compared to conventional cisplatin and miriplatin. Mechanistically, the severe DNA damages induced by uPtDs NPs activated the CHK1/2-CDC25A-cyclin A/E pathway to induce cell cycle arrest. Moreover, uPtDs NPs could target the in vivo circulating tumor cells (CTCs) to suppress TNBC lung metastasis. Given the desired-safety profile of miriplatin, the uPtDs represent a promising therapeutic agent of the metal-based nanomedicines to reduce cancer metastasis. SIGNIFICANCE: The miriplatin ultrasmall dots developed from clinically-prescribed miriplatin may serve as a potent systemically-administered agent to target CTCs and reduce cancer metastasis.
Collapse
|
20
|
Tian C, Xu X, Wang Y, Li D, Lu H, Yang Z. Development and Clinical Prospects of Techniques to Separate Circulating Tumor Cells from Peripheral Blood. Cancer Manag Res 2020; 12:7263-7275. [PMID: 32884342 PMCID: PMC7434565 DOI: 10.2147/cmar.s248380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022] Open
Abstract
Detection of circulating tumor cells (CTC) is an important liquid biopsy technique that has advanced considerably in recent years. To further advance the development of technology for curing cancer, several CTC technologies have been proposed by various research groups. Despite their potential role in early cancer diagnosis and prognosis, CTC methods are currently used for research purposes only, and very few methods have been accepted for clinical applications because of difficulties, including CTC heterogeneity, CTC separation from the blood, and a lack of thorough clinical validation. Although current CTC technologies have not been truly implemented, they possess high potential as future clinical diagnostic techniques for individualized cancer. Here, we review current developments in CTC separation technology. We also explore new CTC detection methods based on telomerase and nanomaterials, such as in vivo flow cytometry. In addition, we discuss the difficulties that must be overcome before CTC can be applied in clinical settings.
Collapse
Affiliation(s)
- Cheng Tian
- Yichang Central People's Hospital, First Clinical Medical College of Three Gorges University, Yichang 443000, People's Republic of China
| | - Xinhua Xu
- Yichang Central People's Hospital, First Clinical Medical College of Three Gorges University, Yichang 443000, People's Republic of China
| | - Yuke Wang
- Yichang Central People's Hospital, First Clinical Medical College of Three Gorges University, Yichang 443000, People's Republic of China
| | - Dailong Li
- Yichang Central People's Hospital, First Clinical Medical College of Three Gorges University, Yichang 443000, People's Republic of China
| | - Haiyan Lu
- Yichang Central People's Hospital, First Clinical Medical College of Three Gorges University, Yichang 443000, People's Republic of China
| | - Ziwei Yang
- Yichang Central People's Hospital, First Clinical Medical College of Three Gorges University, Yichang 443000, People's Republic of China
| |
Collapse
|
21
|
Cossu AM, Scrima M, Lombardi A, Grimaldi A, Russo M, Ottaiano A, Caraglia M, Bocchetti M. Future directions and management of liquid biopsy in non-small cell lung cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2020; 1:239-252. [PMID: 36046776 PMCID: PMC9400731 DOI: 10.37349/etat.2020.00015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/08/2020] [Indexed: 01/03/2023] Open
Abstract
Lung cancer represents the world’s most common cause of cancer death. In recent years, we moved from a generic therapeutic strategy to a personalized approach, based on the molecular characterization of the tumor. In this view, liquid biopsy is becoming an important tool for assessing the progress or onset of lung disease. Liquid biopsy is a non-invasive procedure able to isolate circulating tumor cells, tumor educated platelets, exosomes and free circulating tumor DNA from body fluids. The characterization of these liquid biomarkers can help to choose the therapeutic strategy for each different case. In this review, the authors will analyze the main aspects of lung cancer and the applications currently in use focusing on the benefits associated with this approach for predicting the prognosis and monitoring the clinical conditions of lung cancer disease.
Collapse
Affiliation(s)
- Alessia Maria Cossu
- Biogem Scarl, Institute of Genetic Research, Laboratory of Molecular and Precision Oncology, 83031 Ariano Irpino, Italy; Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Marianna Scrima
- Biogem Scarl, Institute of Genetic Research, Laboratory of Molecular and Precision Oncology, 83031 Ariano Irpino, Italy
| | - Angela Lombardi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Anna Grimaldi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Margherita Russo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Alessandro Ottaiano
- Department of Abdominal Oncology, SSD-Innovative Therapies for Abdominal Cancers, Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131Naples, Italy
| | - Michele Caraglia
- Biogem Scarl, Institute of Genetic Research, Laboratory of Molecular and Precision Oncology, 83031 Ariano Irpino, Italy; Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Marco Bocchetti
- Biogem Scarl, Institute of Genetic Research, Laboratory of Molecular and Precision Oncology, 83031 Ariano Irpino, Italy; Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
22
|
Jariyal H, Gupta C, Bhat VS, Wagh JR, Srivastava A. Advancements in Cancer Stem Cell Isolation and Characterization. Stem Cell Rev Rep 2020; 15:755-773. [PMID: 31863337 DOI: 10.1007/s12015-019-09912-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Occurrence of stem cells (CSCs) in cancer is well established in last two decades. These rare cells share several properties including presence of common surface markers, stem cell markers, chemo- and radio- resistance and are highly metastatic in nature; thus, considered as valuable prognostic and therapeutic targets in cancer. However, the studies related to CSCs pave number of issues due to rare cell population and difficulties in their isolation ascribed to common stem cell marker. Various techniques including flow cytometry, laser micro-dissection, fluorescent nanodiamonds and microfluidics are used for the isolation of these rare cells. In this review, we have included the advance strategies adopted for the isolation of CSCs using above mentioned techniques. Furthermore, CSCs are primarily found in the core of the solid tumors and their microenvironment plays an important role in maintenance, self-renewal, division and tumor development. Therefore, in vivo tracking and model development become obligatory for functional studies of CSCs. Fluorescence and bioluminescence tagging has been widely used for transplantation assay and lineage tracking experiments to improve our understanding towards CSCs behaviour in their niche. Techniques such as Magnetic resonance imaging (MRI) and Positron emission tomography (PET) have proved useful for tracking of endogenous CSCs which could be helpful in their identification in clinical settings.
Collapse
Affiliation(s)
- Heena Jariyal
- Department of Biotechnology, National institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India
| | - Chanchal Gupta
- Department of Biotechnology, National institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India
| | - Vedika Sandeep Bhat
- Department of Biotechnology, National institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India
| | - Jayant Ramakant Wagh
- Department of Biotechnology, National institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India
| | - Akshay Srivastava
- Department of Medical Device, National institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India.
| |
Collapse
|
23
|
Jiang Y, Zhuo X, Mao C. G Protein-coupled Receptors in Cancer Stem Cells. Curr Pharm Des 2020; 26:1952-1963. [DOI: 10.2174/1381612826666200305130009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/10/2020] [Indexed: 12/19/2022]
Abstract
G protein-coupled receptors (GPCRs) are highly expressed on a variety of tumour tissues while several
GPCR exogenous ligands become marketed pharmaceuticals. In recent decades, cancer stem cells (CSCs) become
widely investigated drug targets for cancer therapy but the underlying mechanism is still not fully elucidated.
There are vigorous participations of GPCRs in CSCs-related signalling and functions, such as biomarkers for
CSCs, activation of Wnt, Hedgehog (HH) and other signalling to facilitate CSCs progressions. This relationship
can not only uncover a novel molecular mechanism for GPCR-mediated cancer cell functions but also assist our
understanding of maintaining and modulating CSCs. Moreover, GPCR antagonists and monoclonal antibodies
could be applied to impair CSCs functions and consequently attenuate tumour growth, some of which have been
undergoing clinical studies and are anticipated to turn into marketed anticancer drugs. Therefore, this review
summarizes and provides sufficient evidences on the regulation of GPCR signalling in the maintenance, differentiation
and pluripotency of CSCs, suggesting that targeting GPCRs on the surface of CSCs could be potential
therapeutic strategies for cancer therapy.
Collapse
Affiliation(s)
- Yuhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xin Zhuo
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Canquan Mao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
24
|
Fanelli GN, Naccarato AG, Scatena C. Recent Advances in Cancer Plasticity: Cellular Mechanisms, Surveillance Strategies, and Therapeutic Optimization. Front Oncol 2020; 10:569. [PMID: 32391266 PMCID: PMC7188928 DOI: 10.3389/fonc.2020.00569] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
The processes of recurrence and metastasis, through which cancer relapses locally or spreads to distant sites in the body, accounts for more than 90% of cancer-related deaths. At present there are very few treatment options for patients at this stage of their disease. The main obstacle to successfully treat advanced cancer is the cells' ability to change in ways that make them resistant to treatment. Understanding the cellular mechanisms that mediate this cancer cell plasticity may lead to improved patient survival. Epigenetic reprogramming, together with tumor microenvironment, drives such dynamic mechanisms favoring tumor heterogeneity, and cancer cell plasticity. In addition, the development of new approaches that can report on cancer plasticity in their native environment have profound implications for studying cancer biology and monitoring tumor progression. We herein provide an overview of recent advancements in understanding the mechanisms regulating cell plasticity and current strategies for their monitoring and therapy management.
Collapse
Affiliation(s)
- Giuseppe Nicolò Fanelli
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Antonio Giuseppe Naccarato
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Cristian Scatena
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
25
|
Li M, Liu G, Wang K, Wang L, Fu X, Lim LY, Chen W, Mo J. Metal ion-responsive nanocarrier derived from phosphonated calix[4]arenes for delivering dauricine specifically to sites of brain injury in a mouse model of intracerebral hemorrhage. J Nanobiotechnology 2020; 18:61. [PMID: 32306970 PMCID: PMC7168846 DOI: 10.1186/s12951-020-00616-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/09/2020] [Indexed: 01/08/2023] Open
Abstract
Primary intracerebral hemorrhage (ICH) is a leading cause of long-term disability and death worldwide. Drug delivery vehicles to treat ICH are less than satisfactory because of their short circulation lives, lack of specific targeting to the hemorrhagic site, and poor control of drug release. To exploit the fact that metal ions such as Fe2+ are more abundant in peri-hematomal tissue than in healthy tissue because of red blood cell lysis, we developed a metal ion-responsive nanocarrier based on a phosphonated calix[4]arene derivative in order to deliver the neuroprotective agent dauricine (DRC) specifically to sites of primary and secondary brain injury. The potential of the dauricine-loaded nanocarriers for ICH therapy was systematically evaluated in vitro and in mouse models of autologous whole blood double infusion. The nanocarriers significantly reduced brain water content, restored blood-brain barrier integrity and attenuated neurological deficits by inhibiting the activation of glial cells, infiltration by neutrophils as well as production of pro-inflammatory factors (IL-1β, IL-6, TNF-α) and matrix-metalloprotease-9. These results suggest that our dauricine-loaded nanocarriers can improve neurological outcomes in an animal model of ICH by reducing inflammatory injury and inhibiting apoptosis and ferroptosis.
Collapse
Affiliation(s)
- Mingxin Li
- Clinical Research Center for Neurological Diseases of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.,School of Pharmacy, Guilin Medical University, Guilin, 541001, China
| | - Guohao Liu
- Clinical Research Center for Neurological Diseases of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.,Department of Radiology, Affiliated Hospital of Jilin Medical University, Jilin, 132013, China
| | - Kaixuan Wang
- Clinical Research Center for Neurological Diseases of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.,School of Pharmacy, Guilin Medical University, Guilin, 541001, China
| | - Lingfeng Wang
- Clinical Research Center for Neurological Diseases of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.,School of Pharmacy, Guilin Medical University, Guilin, 541001, China
| | - Xiang Fu
- Department of Pharmacy, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Lee Yong Lim
- Division of Pharmacy, School of Allied Health, University of Western Australia, Perth, WA, 6009, Australia
| | - Wei Chen
- Clinical Research Center for Neurological Diseases of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China. .,School of Pharmacy, Guilin Medical University, Guilin, 541001, China.
| | - Jingxin Mo
- Clinical Research Center for Neurological Diseases of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China. .,School of Chemistry, University of New South Wales Sydney, Kensington, NSW, 2052, Australia.
| |
Collapse
|
26
|
Siemer S, Wünsch D, Khamis A, Lu Q, Scherberich A, Filippi M, Krafft MP, Hagemann J, Weiss C, Ding GB, Stauber RH, Gribko A. Nano Meets Micro-Translational Nanotechnology in Medicine: Nano-Based Applications for Early Tumor Detection and Therapy. NANOMATERIALS 2020; 10:nano10020383. [PMID: 32098406 PMCID: PMC7075286 DOI: 10.3390/nano10020383] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/03/2020] [Accepted: 02/15/2020] [Indexed: 02/07/2023]
Abstract
Nanomaterials have great potential for the prevention and treatment of cancer. Circulating tumor cells (CTCs) are cancer cells of solid tumor origin entering the peripheral blood after detachment from a primary tumor. The occurrence and circulation of CTCs are accepted as a prerequisite for the formation of metastases, which is the major cause of cancer-associated deaths. Due to their clinical significance CTCs are intensively discussed to be used as liquid biopsy for early diagnosis and prognosis of cancer. However, there are substantial challenges for the clinical use of CTCs based on their extreme rarity and heterogeneous biology. Therefore, methods for effective isolation and detection of CTCs are urgently needed. With the rapid development of nanotechnology and its wide applications in the biomedical field, researchers have designed various nano-sized systems with the capability of CTCs detection, isolation, and CTCs-targeted cancer therapy. In the present review, we summarize the underlying mechanisms of CTC-associated tumor metastasis, and give detailed information about the unique properties of CTCs that can be harnessed for their effective analytical detection and enrichment. Furthermore, we want to give an overview of representative nano-systems for CTC isolation, and highlight recent achievements in microfluidics and lab-on-a-chip technologies. We also emphasize the recent advances in nano-based CTCs-targeted cancer therapy. We conclude by critically discussing recent CTC-based nano-systems with high therapeutic and diagnostic potential as well as their biocompatibility as a practical example of applied nanotechnology.
Collapse
Affiliation(s)
- Svenja Siemer
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Désirée Wünsch
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Aya Khamis
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Qiang Lu
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Arnaud Scherberich
- Laboratory of Tissue Engineering, Universitätspital Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland (M.F.)
| | - Miriam Filippi
- Laboratory of Tissue Engineering, Universitätspital Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland (M.F.)
| | - Marie Pierre Krafft
- Institut Charles Sadron (CNRS), University of Strasbourg, 23 rue du Loess, 67034 Strasbourg Cedex, France
| | - Jan Hagemann
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Carsten Weiss
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Postfach 3640, 76021 Karlsruhe, Germany
| | - Guo-Bin Ding
- Institute for Biotechnology, Shanxi University, No. 92 Wucheng Road, 030006 Taiyuan, China
| | - Roland H. Stauber
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
- Institute for Biotechnology, Shanxi University, No. 92 Wucheng Road, 030006 Taiyuan, China
- Correspondence: (R.H.S.); (A.G.); Tel.: +49-6131-176030 (A.G.)
| | - Alena Gribko
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
- Correspondence: (R.H.S.); (A.G.); Tel.: +49-6131-176030 (A.G.)
| |
Collapse
|
27
|
|
28
|
Clinical available circulating tumor cell assay based on tetra(4-aminophenyl) porphyrin mediated reduced graphene oxide field effect transistor. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.05.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
29
|
Gribko A, Künzel J, Wünsch D, Lu Q, Nagel SM, Knauer SK, Stauber RH, Ding GB. Is small smarter? Nanomaterial-based detection and elimination of circulating tumor cells: current knowledge and perspectives. Int J Nanomedicine 2019; 14:4187-4209. [PMID: 31289440 PMCID: PMC6560927 DOI: 10.2147/ijn.s198319] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Circulating tumor cells (CTCs) are disseminated cancer cells. The occurrence and circulation of CTCs seem key for metastasis, still the major cause of cancer-associated deaths. As such, CTCs are investigated as predictive biomarkers. However, due to their rarity and heterogeneous biology, CTCs’ practical use has not made it into the clinical routine. Clearly, methods for the effective isolation and reliable detection of CTCs are urgently needed. With the development of nanotechnology, various nanosystems for CTC isolation and enrichment and CTC-targeted cancer therapy have been designed. Here, we summarize the relationship between CTCs and tumor metastasis, and describe CTCs’ unique properties hampering their effective enrichment. We comment on nanotechnology-based systems for CTC isolation and recent achievements in microfluidics and lab-on-a-chip technologies. We discuss recent advances in CTC-targeted cancer therapy exploiting the unique properties of nanomaterials. We conclude by introducing developments in CTC-directed nanosystems and other advanced technologies currently in (pre)clinical research.
Collapse
Affiliation(s)
- Alena Gribko
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Julian Künzel
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Désirée Wünsch
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Qiang Lu
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Sophie Madeleine Nagel
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Shirley K Knauer
- Department of Molecular Biology II, Center for Medical Biotechnology (ZMB)/Center for Nanointegration (CENIDE), University Duisburg-Essen, Essen 45117, Germany
| | - Roland H Stauber
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Guo-Bin Ding
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ; .,Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, People's Republic of China,
| |
Collapse
|
30
|
Bankó P, Lee SY, Nagygyörgy V, Zrínyi M, Chae CH, Cho DH, Telekes A. Technologies for circulating tumor cell separation from whole blood. J Hematol Oncol 2019; 12:48. [PMID: 31088479 PMCID: PMC6518774 DOI: 10.1186/s13045-019-0735-4] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022] Open
Abstract
The importance of early cancer diagnosis and improved cancer therapy has been clear for years and has initiated worldwide research towards new possibilities in the care strategy of patients with cancer using technological innovations. One of the key research fields involves the separation and detection of circulating tumor cells (CTC) because of their suggested important role in early cancer diagnosis and prognosis, namely, providing easy access by a liquid biopsy from blood to identify metastatic cells before clinically detectable metastasis occurs and to study the molecular and genetic profile of these metastatic cells. Provided the opportunity to further progress the development of technology for treating cancer, several CTC technologies have been proposed in recent years by various research groups and companies. Despite their potential role in cancer healthcare, CTC methods are currently mainly used for research purposes, and only a few methods have been accepted for clinical application because of the difficulties caused by CTC heterogeneity, CTC separation from the blood, and a lack of thorough clinical validation. Therefore, the standardization and clinical application of various developed CTC technologies remain important subsequent necessary steps. Because of their suggested future clinical benefits, we focus on describing technologies using whole blood samples without any pretreatment and discuss their advantages, use, and significance. Technologies using whole blood samples utilize size-based, immunoaffinity-based, and density-based methods or combinations of these methods as well as positive and negative enrichment during separation. Although current CTC technologies have not been truly implemented yet, they possess high potential as future clinical diagnostic techniques for the individualized therapy of patients with cancer. Thus, a detailed discussion of the clinical suitability of these new advanced technologies could help prepare clinicians for the future and can be a foundation for technologies that would be used to eliminate CTCs in vivo.
Collapse
Affiliation(s)
- Petra Bankó
- Department of Biochemical Engineering, Budapest University of Technology and Economics, Budapest, Hungary
| | - Sun Young Lee
- Department of Radiation Oncology, Chonbuk National University Hospital, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Chonbuk National University-Biomedical, Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | | | - Miklós Zrínyi
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Chang Hoon Chae
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Dong Hyu Cho
- Research Institute of Clinical Medicine of Chonbuk National University-Biomedical, Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
- Department of Obstetrics and Gynecology, Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - András Telekes
- Department of Oncology, St. Lazarus Hospital, Salgótarján, Hungary
| |
Collapse
|
31
|
Li M, Yang Y, Xu C, Wei J, Liu Y, Cun X, Yu Q, Tang X, Yin S, Zhang Z, He Q. Tumor-Targeted Chemoimmunotherapy with Immune-Checkpoint Blockade for Enhanced Anti-Melanoma Efficacy. AAPS J 2019; 21:18. [PMID: 30635795 DOI: 10.1208/s12248-018-0289-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/17/2018] [Indexed: 12/22/2022] Open
Abstract
Chemoimmunotherapy with chemotherapeutics and immunoadjuvant inhibits tumor growth by activating cytotoxic T cells. However, this process also upregulates the expression of PD-1/PD-L1 and consequently leads to immune suppression. To maximize the anti-tumor immune responses and alleviate immunosuppression, PD-L1 antibody was combined with paclitaxel (PTX) and the immunoadjuvant α-galactosylceramide (αGC), which were coencapsulated into pH-sensitive TH peptide-modified liposomes (PTX/αGC/TH-Lip) to treat melanoma and lung metastasis. Compared to treatment with PD-L1 antibody or PTX/αGC/TH-Lip alone, the combination of PD-L1 antibody and PTX/αGC/TH-Lip further elevated the tumor-specific cytotoxic T cell responses and promoted apoptosis in tumor cells, leading to enhanced anti-tumor and anti-metastatic effects. In adoptive therapy, PD-L1 antibody further alleviated immunosuppression and enhanced the anti-tumor effect of CD8+ T cells. The combination of PD-L1 antibody and chemoimmunotherapy PTX/αGC/TH-Lip provides a promising strategy for enhancing treatment for melanoma and lung metastasis.
Collapse
Affiliation(s)
- Man Li
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Section 3, Southern Renmin Road, Chengdu, 610041, People's Republic of China
| | - Yuting Yang
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Section 3, Southern Renmin Road, Chengdu, 610041, People's Republic of China
| | - Chaoqun Xu
- Sichuan Academy of Chinese Medicine Science, Chengdu, 610041, People's Republic of China
| | - Jiaojie Wei
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Section 3, Southern Renmin Road, Chengdu, 610041, People's Republic of China
| | - Yingke Liu
- West China School of Stomotology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xingli Cun
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Section 3, Southern Renmin Road, Chengdu, 610041, People's Republic of China
| | - Qianwen Yu
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Section 3, Southern Renmin Road, Chengdu, 610041, People's Republic of China
| | - Xian Tang
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Section 3, Southern Renmin Road, Chengdu, 610041, People's Republic of China
| | - Sheng Yin
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Section 3, Southern Renmin Road, Chengdu, 610041, People's Republic of China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Section 3, Southern Renmin Road, Chengdu, 610041, People's Republic of China
| | - Qin He
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Section 3, Southern Renmin Road, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
32
|
Palmirotta R, Lovero D, Cafforio P, Felici C, Mannavola F, Pellè E, Quaresmini D, Tucci M, Silvestris F. Liquid biopsy of cancer: a multimodal diagnostic tool in clinical oncology. Ther Adv Med Oncol 2018; 10:1758835918794630. [PMID: 30181785 PMCID: PMC6116068 DOI: 10.1177/1758835918794630] [Citation(s) in RCA: 289] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/28/2018] [Indexed: 12/17/2022] Open
Abstract
Over the last decades, the concept of precision medicine has dramatically renewed
the field of medical oncology; the introduction of patient-tailored therapies
has significantly improved all measurable outcomes. Liquid biopsy is a
revolutionary technique that is opening previously unexpected perspectives. It
consists of the detection and isolation of circulating tumor cells, circulating
tumor DNA and exosomes, as a source of genomic and proteomic information in
patients with cancer. Many technical hurdles have been resolved thanks to newly
developed techniques and next-generation sequencing analyses, allowing a broad
application of liquid biopsy in a wide range of settings. Initially correlated
to prognosis, liquid biopsy data are now being studied for cancer diagnosis,
hopefully including screenings, and most importantly for the prediction of
response or resistance to given treatments. In particular, the identification of
specific mutations in target genes can aid in therapeutic decisions, both in the
appropriateness of treatment and in the advanced identification of secondary
resistance, aiming to early diagnose disease progression. Still application is
far from reality but ongoing research is leading the way to a new era in
oncology. This review summarizes the main techniques and applications of liquid
biopsy in cancer.
Collapse
Affiliation(s)
- Raffaele Palmirotta
- Section of Clinical and Molecular Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Domenica Lovero
- Section of Clinical and Molecular Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Paola Cafforio
- Section of Clinical and Molecular Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Claudia Felici
- Section of Clinical and Molecular Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Mannavola
- Section of Clinical and Molecular Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Eleonora Pellè
- Section of Clinical and Molecular Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Davide Quaresmini
- Section of Clinical and Molecular Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Marco Tucci
- Section of Clinical and Molecular Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Franco Silvestris
- Section of Clinical and Molecular Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, 70124, Italy
| |
Collapse
|
33
|
Hyaluronic Acid Layer-By-Layer (LbL) Nanoparticles for Synergistic Chemo-Phototherapy. Pharm Res 2018; 35:196. [PMID: 30143878 DOI: 10.1007/s11095-018-2480-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/11/2018] [Indexed: 02/05/2023]
Abstract
PURPOSE The aim of this study was to design hyaluronic acid (HA) layer-by-layer (LbL) nanoparticles, which carried paclitaxel (PTX) and Indocyanine green (ICG) to both tumor cells and tumor associated cells to achieve synergistic chemo-photothermal therapeutic effect. METHODS The LbL-engineered nanoparticles (PDIH) were prepared by dopamine self-polymerization on PTX nanocrystal to form thin, surface-adherent polydopamine (PDA) films, which subsequently absorbed ICG and HA. The tumor cell and tumor associated cell targeting and antitumor efficacy of PDIH were investigated both in vitro an in vivo using 4 T1 murine mammary cancer cell lines and mice bearing orthotopic 4 T1 breast tumor. RESULTS PDIH presented a long-rod shape in TEM and showed enhanced photothermal effect and cytotoxicity upon NIR laser irradiation both in vitro and in vivo. PDIH also displayed high target ability to CD44 overexpressed tumor cells and tumor associated cells mediated by HA. In vivo antitumor study indicated that PDIH therapeutic strategy could achieve remarkable antitumor efficacy. CONCLUSION PDIH showed excellent tumor-targeting property and chemo-photothermal therapeutic efficacy.
Collapse
|
34
|
Bai M, Zou B, Wang Z, Li P, Wang H, Ou Y, Cui K, Bian J, Li S, Xu X. Comparison of two detection systems for circulating tumor cells among patients with renal cell carcinoma. Int Urol Nephrol 2018; 50:1801-1809. [PMID: 30120680 DOI: 10.1007/s11255-018-1954-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/07/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND/AIMS Detection of circulating tumor cells (CTCs) in cancer patients has diagnostic and prognostic importance. However, the clinical implications of CTC detection in patients with renal cell carcinoma (RCC) are still unclear. In this study, we investigated the clinical significance of CTCs using two detection systems, the CellSearch system (CSS) and isolation by size of epithelial tumor cells (ISET), among RCC patients. METHODS We recruited 36 RCC patients and 22 healthy volunteers as controls. Blood was drawn before treatment. Samples were analyzed using the CSS and ISET. We prospectively followed the RCC patients to determine overall and progression-free survival. RESULTS We did not detect CTCs in the control group using either the CSS or ISET. CTCs were detected in 7/36 patients (19.4%) using the CSS and in 13/36 patients (36.1%) using ISET, while circulating microemboli (CTMs) were detected in three patients (8.3%). The presence of ISET-detected CTCs correlated with clinical tumor node metastasis (TNM) stages, while the CSS-detected CTCs did not. After 36 months (median), CTCs detected by both methods failed to correlate with overall and progression-free survival among RCC patients. CONCLUSION We discovered that ISET is more suitable than the CSS for detecting CTCs in RCC patients. The presence of CTCs/CTMs in RCC patients correlated with higher TNM stages, suggesting that the presence of CTCs could be a prognostic marker in RCC patients.
Collapse
Affiliation(s)
- Menglin Bai
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Benkui Zou
- Department of Urological Surgery, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Zhendan Wang
- Department of Thoracic Surgery, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Pang Li
- Department of Cardiovascular Surgery, Guangzhou Red Cross Hospital Affiliated to Jinan University, Guangzhou, Guangdong, China
| | - Huansheng Wang
- Department of Urological Surgery, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Yang Ou
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Kai Cui
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Jiasheng Bian
- Department of Urological Surgery, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Sheng Li
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital and Institute, Jinan, Shandong, China.
| | - Xiaobin Xu
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang, China.
| |
Collapse
|
35
|
Fan M, Wang F, Wang C. Reflux Precipitation Polymerization: A New Platform for the Preparation of Uniform Polymeric Nanogels for Biomedical Applications. Macromol Biosci 2018; 18:e1800077. [DOI: 10.1002/mabi.201800077] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/19/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Mingliang Fan
- State Key Laboratory of Molecular Engineering of Polymers; Department of Macromolecular Science; Fudan University; 220 Han Dan Road Shanghai 200433 China
| | - Fang Wang
- State Key Laboratory of Molecular Engineering of Polymers; Department of Macromolecular Science; Fudan University; 220 Han Dan Road Shanghai 200433 China
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers; Department of Macromolecular Science; Fudan University; 220 Han Dan Road Shanghai 200433 China
| |
Collapse
|
36
|
Yadav DK, Bai X, Yadav RK, Singh A, Li G, Ma T, Chen W, Liang T. Liquid biopsy in pancreatic cancer: the beginning of a new era. Oncotarget 2018; 9:26900-26933. [PMID: 29928492 PMCID: PMC6003564 DOI: 10.18632/oncotarget.24809] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/25/2018] [Indexed: 12/21/2022] Open
Abstract
With dismal survival rate pancreatic cancer remains one of the most aggressive and devastating malignancy. Predominantly, due to the absence of a dependable methodology for early identification and limited therapeutic options for advanced disease. However, it takes over 17 years to develop pancreatic cancer from initiation of mutation to metastatic cancer; therefore, if diagnosed early; it may increase overall survival dramatically, thus, providing a window of opportunity for early detection. Recently, genomic expression analysis defined 4 subtypes of pancreatic cancer based on mutated genes. Hence, we need simple and standard, minimally invasive test that can monitor those altered genes or their associated pathways in time for the success of precision medicine, and liquid biopsy seems to be one answer to all these questions. Again, liquid biopsy has an ability to pair with genomic tests. Additionally, liquid biopsy based development of circulating tumor cells derived xenografts, 3D organoids system, real-time monitoring of genetic mutations by circulating tumor DNA and exosome as the targeted drug delivery vehicle holds lots of potential for the treatment and cure of pancreatic cancer. At present, diagnosis of pancreatic cancer is frantically done on the premise of CA19-9 and radiological features only, which doesn't give a picture of genetic mutations and epigenetic alteration involved. In this manner, the current diagnostic paradigm for pancreatic cancer diagnosis experiences low diagnostic accuracy. This review article discusses the current state of liquid biopsy in pancreatic cancer as diagnostic and therapeutic tools and future perspectives of research in the light of circulating tumor cells, circulating tumor DNA and exosomes.
Collapse
Affiliation(s)
- Dipesh Kumar Yadav
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Rajesh Kumar Yadav
- Department of Pharmacology, Gandaki Medical College, Tribhuwan University, Institute of Medicine, Pokhara 33700, Nepal
| | - Alina Singh
- Department of Surgery, Bir Hospital, National Academy of Medical Science, Kanti Path, Kathmandu 44600, Nepal
| | - Guogang Li
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Tao Ma
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Wei Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
37
|
Ferhan AR, Jackman JA, Park JH, Cho NJ, Kim DH. Nanoplasmonic sensors for detecting circulating cancer biomarkers. Adv Drug Deliv Rev 2018; 125:48-77. [PMID: 29247763 DOI: 10.1016/j.addr.2017.12.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/29/2017] [Accepted: 12/08/2017] [Indexed: 12/20/2022]
Abstract
The detection of cancer biomarkers represents an important aspect of cancer diagnosis and prognosis. Recently, the concept of liquid biopsy has been introduced whereby diagnosis and prognosis are performed by means of analyzing biological fluids obtained from patients to detect and quantify circulating cancer biomarkers. Unlike conventional biopsy whereby primary tumor cells are analyzed, liquid biopsy enables the detection of a wide variety of circulating cancer biomarkers, including microRNA (miRNA), circulating tumor DNA (ctDNA), proteins, exosomes and circulating tumor cells (CTCs). Among the various techniques that have been developed to detect circulating cancer biomarkers, nanoplasmonic sensors represent a promising measurement approach due to high sensitivity and specificity as well as ease of instrumentation and operation. In this review, we discuss the relevance and applicability of three different categories of nanoplasmonic sensing techniques, namely surface plasmon resonance (SPR), localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering (SERS), for the detection of different classes of circulating cancer biomarkers.
Collapse
Affiliation(s)
- Abdul Rahim Ferhan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jae Hyeon Park
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| | - Dong-Hwan Kim
- School of Chemical Engineering, Sungkyunkwan University, 16419, Republic of Korea.
| |
Collapse
|
38
|
Huang Q, Wang Y, Chen X, Wang Y, Li Z, Du S, Wang L, Chen S. Nanotechnology-Based Strategies for Early Cancer Diagnosis Using Circulating Tumor Cells as a Liquid Biopsy. Nanotheranostics 2018; 2:21-41. [PMID: 29291161 PMCID: PMC5743836 DOI: 10.7150/ntno.22091] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/10/2017] [Indexed: 12/11/2022] Open
Abstract
Circulating tumor cells (CTCs) are cancer cells that shed from a primary tumor and circulate in the bloodstream. As a form of “tumor liquid biopsy”, CTCs provide important information for the mechanistic investigation of cancer metastasis and the measurement of tumor genotype evolution during treatment and disease progression. However, the extremely low abundance of CTCs in the peripheral blood and the heterogeneity of CTCs make their isolation and characterization major technological challenges. Recently, nanotechnologies have been developed for sensitive CTC detection; such technologies will enable better cell and molecular characterization and open up a wide range of clinical applications, including early disease detection and evaluation of treatment response and disease progression. In this review, we summarize the nanotechnology-based strategies for CTC isolation, including representative nanomaterials (such as magnetic nanoparticles, gold nanoparticles, silicon nanopillars, nanowires, nanopillars, carbon nanotubes, dendrimers, quantum dots, and graphene oxide) and microfluidic chip technologies that incorporate nanoroughened surfaces and discuss their key challenges and perspectives in CTC downstream analyses, such as protein expression and genetic mutations that may reflect tumor aggressiveness and patient outcome.
Collapse
Affiliation(s)
- Qinqin Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, and Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Yin Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, and Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Xingxiang Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, and Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Yimeng Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, and Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Zhiqiang Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, and Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Shiming Du
- Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, and Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, and Medical Research Institute, Wuhan University, Wuhan 430072, China
| |
Collapse
|