1
|
Meimei C, Jingru Z, Huijuan G, Candong L. Investigation of Ginseng-Ophiopogon Injection on Enhancing Physical Function by Pharmacogenomics and Metabolomics Evaluation. Comb Chem High Throughput Screen 2024; 27:2838-2849. [PMID: 37957852 DOI: 10.2174/0113862073244102231020050502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Ginseng-ophiopogon injection (GOI) is a clinically commonly used drug for Qi deficiency syndrome characterized by decreased physical function in China. This study aimed to clarify common pharmacological mechanisms of GOI in enhancing physical function. METHODS We performed an integrative strategy of weight-loaded swimming tests in cold water (5.5°C), hepatic glycogen and superoxide dismutase (SOD) detections, GC-TOF/MS-based metabolomics, multivariate statistical techniques, network pharmacology of known targets and constituents, and KEGG pathway analysis of GOI. RESULTS Compared with the control group, GOI showed significant increases in the weightloaded swimming time, hepatic levels of glycogen and SOD. Additionally, 34 significantly differential serum metabolites referred to glycolysis, gluconeogenesis and arginine biosynthesis were affected by GOI. The target collection revealed 98 metabolic targets and 50 experimentreported drug targets of ingredients in GOI involved in enhancing physical function. Further, the PPI network analysis revealed that 8 ingredients of GOI, such as ginsenoside Re, ginsenoside Rf, ginsenoside Rg1, and notoginsenoside R1, were well-associated with 48 hub targets, which had good ability in enhancing physical function. Meanwhile, nine hub proteins, such as SOD, mechanistic target of Rapamycin (mTOR), and nitric oxide synthases, were confirmed to be affected by GOI. Finally, 98 enriched KEGG pathways (P<0.01 and FDR<0.001) of GOI were obtained from 48 hub targets of the PPI network. Among them, pathways in cancer, Chagas disease, lipid and atherosclerosis, and PI3K-Akt signaling pathway ranked top four. CONCLUSION This study provided an integrative and efficient approach to understand the molecular mechanism of GOI in enhancing physical function.
Collapse
Affiliation(s)
- Chen Meimei
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
- Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
| | - Zhu Jingru
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
- Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
| | - Gan Huijuan
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
- Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
| | - Li Candong
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
- Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
| |
Collapse
|
2
|
Feng W, Duan C, Pan F, Yan C, Dong H, Wang X, Zhang J. Integration of metabolomics and network pharmacology to reveal the protective mechanism underlying Wogonoside in acute myocardial ischemia rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116871. [PMID: 37393028 DOI: 10.1016/j.jep.2023.116871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional medicine, both Scutellaria baicalensis Georgi (SBG) and the traditional formulas composed of it have been used to treat a wide range of diseases, including cancer and cardiovascular. Wogonoside (Wog) is the biologically active flavonoid compound extracted from the root of SBG, with potential cardiovascular protective effects. However, the mechanisms underlying the protective effect of Wog on acute myocardial ischemia (AMI) have not yet been clearly elucidated. AIM OF THE STUDY To explore the protective mechanism of Wog on AMI rats by comprehensively integrating traditional pharmacodynamics, metabolomics, and network pharmacology. METHODS The rat was pretreatment with Wog at a dose of 20 mg/kg/d and 40 mg/kg/d once daily for 10 days and then ligated the left anterior descending coronary artery of rats to establish the AMI rat model. Electrocardiogram (ECG), cardiac enzyme levels, heart weight index (HWI), Triphenyltetrazolium chloride (TTC) staining, and histopathological analyses were adopted to evaluate the protective effect of Wog on AMI rats. Moreover, a serum metabolomic-based UHPLC-Q-Orbitrap MS approach was performed to find metabolic biomarkers and metabolic pathways, and network pharmacology analysis was applied to predict targets and pathways of Wog in treating AMI. Then, the network pharmacology and metabolomic results were integrated to elucidate the mechanism of Wog in treating AMI. Finally, RT- PCR was used to detect the mRNA expression levels of PTGS1, PTGS2, ALOX5, and ALOX15 to validate the result of integrated metabolomics and network analysis. RESULTS Pharmacodynamic studies suggest that Wog could effectively prevent the ST-segment of electrocardiogram elevation, reduce the myocardial infarct size, heart weight index, and cardiac enzyme levels, and alleviate cardiac histological damage in AMI rats. Metabolomics analysis showed that the disturbances of metabolic profile in AMI rats were partly corrected by Wog and the cardio-protection effects on AMI rats involved 32 differential metabolic biomarkers and 4 metabolic pathways. In addition, the integrated analysis of network pharmacology and metabolomics showed that 7 metabolic biomarkers, 6 targets, and 6 crucial pathways were the main mechanism for the therapeutic application of Wog for AMI. Moreover, the results of RT-PCR showed that PTGS1, PTGS2, ALOX5, and ALOX15 mRNA expression levels were reduced after treatment with Wog. CONCLUSION Wog exerts cardio-protection effects on AMI rats via the regulation of multiple metabolic biomarkers, multiple targets, and multiple pathways, our current study will provide strong scientific evidence supporting the therapeutic application of Wog for AMI.
Collapse
Affiliation(s)
- Wenzhong Feng
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
| | - Cancan Duan
- Key Laboratory of Basic Pharmacology Ministry Education and Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi, 563000, China.
| | - Fuzhu Pan
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
| | - Caiying Yan
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
| | - Hongjing Dong
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| | - Xiao Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| | - Jianyong Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology Ministry Education and Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
3
|
Huang SS, Chu YJ, Chen XX, Su KH, Ko CY, Chi MH, Chao J, Su SY. Herbs for lochia discharge used among postpartum women in Taiwan. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116552. [PMID: 37146845 DOI: 10.1016/j.jep.2023.116552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In the traditional Taiwanese culture of "postpartum confinement", the term "lochia discharge" is a synonym for assisting postpartum uterine involution. Postpartum women in Taiwan consult traditional Chinese medicine (TCM) pharmacies to obtain various TCM formulations that facilitate lochia discharge. AIM OF THE STUDY As an ethnopharmacy study, we aimed to conduct field investigations to explore the herbal composition of TCM formulations for lochia discharge provided by TCM pharmacies in Taiwan and to identify the pharmaceutical implications of these TCM formulations. MATERIALS AND METHODS Through stratified sampling, we collected 98 formulations for postpartum lochia discharge from TCM pharmacies, which used a total of 60 medicinal materials. RESULTS The most common plant families of the medicinal materials found in Taiwanese lochia discharge formulations were Fabaceae and Lauraceae. Abiding by the TCM theory of nature and flavor, most drugs were warm in nature and sweet in flavor, and predominantly focused on the traditional functions of qi tonifying and blood activating. Correlation and network analyses of the medicinal components of lochia discharge formulations identified 11 core herbs, which, in the order of most to least frequently used, include Angelica sinensis, Ligusticum striatum, Glycyrrhiza uralensis, Zingiber officinale, Prunus persica, Eucommia ulmoides, Leonurus japonicus, Lycium chinense, Hedysarum polybotrys, Rehmannia glutinosa, and Paeonia lactiflora. These 11 herbs formed a total of 136 drug combinations in the 98 formulations, with 2-7 herbs in each combination. In addition, in the center of the network were A. sinensis and L. striatum, which jointly appeared in 92.8% of the formulations analyzed. CONCLUSIONS To our knowledge, this is the first study to systematically review lochia discharge formulations in Taiwan. The results of this study could provide an important basis for subsequent research in the clinical efficacy of Taiwanese lochia discharge formulations and the pharmacological mechanisms of their herbal components.
Collapse
Affiliation(s)
- Shyh-Shyun Huang
- School of Pharmacy, China Medical University, Taichung, Taiwan; Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan.
| | - Yan-Jhen Chu
- School of Pharmacy, China Medical University, Taichung, Taiwan.
| | - Xin-Xi Chen
- Food and Drug Safety, China Medical University, Taichung, Taiwan.
| | - Kuo-Han Su
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan.
| | - Chien-Yu Ko
- School of Pharmacy, China Medical University, Taichung, Taiwan.
| | - Min-Han Chi
- School of Pharmacy, China Medical University, Taichung, Taiwan.
| | - Jung Chao
- Food and Drug Safety, China Medical University, Taichung, Taiwan; Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.
| | - Shan-Yu Su
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan; School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
4
|
Huang LT, Li TJ, Li ML, Luo HY, Wang YB, Wang JH. Untargeted lipidomic analysis and network pharmacology for parthenolide treated papillary thyroid carcinoma cells. BMC Complement Med Ther 2023; 23:130. [PMID: 37095470 PMCID: PMC10123985 DOI: 10.1186/s12906-023-03944-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/29/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND With fast rising incidence, papillary thyroid carcinoma (PTC) is the most common head and neck cancer. Parthenolide, isolated from traditional Chinese medicine, inhibits various cancer cells, including PTC cells. The aim was to investigate the lipid profile and lipid changes of PTC cells when treated with parthenolide. METHODS Comprehensive lipidomic analysis of parthenolide treated PTC cells was conducted using a UHPLC/Q-TOF-MS platform, and the changed lipid profile and specific altered lipid species were explored. Network pharmacology and molecular docking were performed to show the associations among parthenolide, changed lipid species, and potential target genes. RESULTS With high stability and reproducibility, a total of 34 lipid classes and 1736 lipid species were identified. Lipid class analysis indicated that parthenolide treated PTC cells contained higher levels of fatty acid (FA), cholesterol ester (ChE), simple glc series 3 (CerG3) and lysophosphatidylglycerol (LPG), lower levels of zymosterol (ZyE) and Monogalactosyldiacylglycerol (MGDG) than controlled ones, but with no significant differences. Several specific lipid species were changed significantly in PTC cells treated by parthenolide, including the increasing of phosphatidylcholine (PC) (12:0e/16:0), PC (18:0/20:4), CerG3 (d18:1/24:1), lysophosphatidylethanolamine (LPE) (18:0), phosphatidylinositol (PI) (19:0/20:4), lysophosphatidylcholine (LPC) (28:0), ChE (22:6), and the decreasing of phosphatidylethanolamine (PE) (16:1/17:0), PC (34:1) and PC (16:0p/18:0). Four key targets (PLA2G4A, LCAT, LRAT, and PLA2G2A) were discovered when combining network pharmacology and lipidomics. Among them, PLA2G2A and PLA2G4A were able to bind with parthenolide confirmed by molecular docking. CONCLUSIONS The changed lipid profile and several significantly altered lipid species of parthenolide treated PTC cells were observed. These altered lipid species, such as PC (34:1), and PC (16:0p/18:0), may be involved in the antitumor mechanisms of parthenolide. PLA2G2A and PLA2G4A may play key roles when parthenolide treated PTC cells.
Collapse
Affiliation(s)
- Le-Tian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie-Jun Li
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ming-Lin Li
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Han-Yong Luo
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Bing Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Jia-He Wang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
5
|
Yang Y, Su C, Zhang XZ, Li J, Huang SC, Kuang HF, Zhang QY. Mechanisms of Xuefu Zhuyu Decoction in the treatment of coronary heart disease based on integrated metabolomics and network pharmacology approach. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1223:123712. [PMID: 37060624 DOI: 10.1016/j.jchromb.2023.123712] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/17/2023]
Abstract
Coronary heart disease (CHD) has become the leading cause of mortality, morbidity, and disability worldwide. Though the therapeutic effect of Xuefu Zhuyu Decoction (XFZY) on CHD has been demonstrated in China, the active ingredients and molecular mechanisms of XFZY have not been elucidated. The purpose of the current study is to explore the molecular mechanisms of XFZY in the treatment of CHD via network pharmacology, metabolomics, and experimental validation. First, we established a CHD rat model by permanently ligating the left anterior descending coronary artery (LAD), and evaluated the therapeutic effect of XFZY by hemorheology and histopathology. Second, network pharmacology was employed to screen the active ingredients and potential targets of XFZY for the treatment of CHD. Metabolomic was applied to identify the molecules present in the serum after XFZY treatment. Third, the results of network pharmacology and metabolomics were further analyzed by Cytoscape to elucidate the core ingredients and pathways. Finally, the obtained key pathways were verified by transmission electron microscopy and immunofluorescence assay. The results showed that XFZY was effective in the treatment of CHD in the rat model, and the highest dose exerted the best effect. Network pharmacology analysis revealed 215 active ingredients and 129 key targets associated with XFZY treatment of CHD. These targets were enriched in pathways of cancer, lipid and atherosclerosis, fluid shear stress and atherosclerosis, proteoglycans in cancer, chemical carcinogenesis - receptor activation, HIF-1 signaling, et al. Serum metabolomic identified 1081 metabolites involved in the therapeutic effect of XFZY on CHD. These metabolites were enriched in taurine and hypotaurine metabolism, histidine metabolism, retrograde endocannabinoid signaling pathways, et al. Cytoscape analysis combining the data from serum metabolomic and network pharmacology revealed that energy metabolism as the core pathway for XFZY treatment of CHD. Electron microscope observation identified changes in the level of autophagy in the mitochondrial structure of cardiomyocytes. Immunofluorescence assay showed that the expression levels of autophagy-related proteins LC3-B and P62/SQSTM1 were consistent with the levels of autophagy observed in mitochondria. In conclusion, our findings suggest that the possible mechanisms of XFZY in the treatment of CHD are reducing the level of autophagy, improving energy metabolism, and maintaining mitochondrial homeostasis in cardiomyocytes. Our study also shows that the combined strategies of network pharmacology, metabolomics, and experimental validation may provide a powerful approach for TCM pharmacology study.
Collapse
Affiliation(s)
- Yang Yang
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| | - Chang Su
- College of Xiangxing, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| | - Xiang-Zhuo Zhang
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| | - Jing Li
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| | - Shu-Chun Huang
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| | - Hui-Fang Kuang
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| | - Qiu-Yan Zhang
- School Infirmary, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
6
|
Zhang M, Zhang X, Pei J, Guo B, Zhang G, Li M, Huang L. Identification of phytochemical compounds of Fagopyrum dibotrys and their targets by metabolomics, network pharmacology and molecular docking studies. Heliyon 2023; 9:e14029. [PMID: 36911881 PMCID: PMC9977108 DOI: 10.1016/j.heliyon.2023.e14029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 01/30/2023] [Accepted: 02/19/2023] [Indexed: 03/05/2023] Open
Abstract
Acute lung injury (ALI) is a clinically severe lung illness with high incidence rate and mortality. Especially, coronavirus disease 2019 (COVID-19) poses a serious threat to world wide governmental fitness. It has distributed to almost from corner to corner of the universe, and the situation in the prevention and control of COVID-19 remains grave. Traditional Chinese medicine plays a vital role in the precaution and therapy of sicknesses. At present, there is a lack of drugs for treating these diseases, so it is necessary to develop drugs for treating COVID-19 related ALI. Fagopyrum dibotrys (D. Don) Hara is an annual plant of the Polygonaceae family and one of the long-history used traditional medicine in China. In recent years, its rhizomes (medicinal parts) have attracted the attention of scholars at home and abroad due to their significant anti-inflammatory, antibacterial and anticancer activities. It can work on SARS-COV-2 with numerous components, targets, and pathways, and has a certain effect on coronavirus disease 2019 (COVID-19) related acute lung injury (ALI). However, there are few systematic studies on its aerial parts (including stems and leaves) and its potential therapeutic mechanism has not been studied. The phytochemical constituents of rhizome of F. dibotrys were collected using TCMSP database. And metabolites of F. dibotrys' s aerial parts were detected by metabonomics. The phytochemical targets of F. dibotrys were predicted by the PharmMapper website tool. COVID-19 and ALI-related genes were retrieved from GeneCards. Cross targets and active phytochemicals of COVID-19 and ALI related genes in F. dibotrys were enriched by gene ontology (GO) and KEGG by metscape bioinformatics tools. The interplay network entre active phytochemicals and anti COVID-19 and ALI targets was established and broke down using Cytoscape software. Discovery Studio (version 2019) was used to perform molecular docking of crux active plant chemicals with anti COVID-19 and ALI targets. We identified 1136 chemicals from the aerial parts of F. dibotrys, among which 47 were active flavonoids and phenolic chemicals. A total of 61 chemicals were searched from the rhizome of F. dibotrys, and 15 of them were active chemicals. So there are 6 commonly key active chemicals at the aerial parts and the rhizome of F. dibotrys, 89 these phytochemicals's potential targets, and 211 COVID-19 and ALI related genes. GO enrichment bespoken that F. dibotrys might be involved in influencing gene targets contained numerous biological processes, for instance, negative regulation of megakaryocyte differentiation, regulation of DNA metabolic process, which could be put down to its anti COVID-19 associated ALI effects. KEGG pathway indicated that viral carcinogenesis, spliceosome, salmonella infection, coronavirus disease - COVID-19, legionellosis and human immunodeficiency virus 1 infection pathway are the primary pathways obsessed in the anti COVID-19 associated ALI effects of F. dibotrys. Molecular docking confirmed that the 6 critical active phytochemicals of F. dibotrys, such as luteolin, (+) -epicatechin, quercetin, isorhamnetin, (+) -catechin, and (-) -catechin gallate, can combine with kernel therapeutic targets NEDD8, SRPK1, DCUN1D1, and PARP1. In vitro activity experiments showed that the total antioxidant capacity of the aerial parts and rhizomes of F. dibotrys increased with the increase of concentration in a certain range. In addition, as a whole, the antioxidant capacity of the aerial part of F. dibotrys was stronger than that of the rhizome. Our research afford cues for farther exploration of the anti COVID-19 associated ALI chemical compositions and mechanisms of F. dibotrys and afford scientific foundation for progressing modern anti COVID-19 associated ALI drugs based on phytochemicals in F. dibotrys. We also fully developed the medicinal value of F. dibotrys' s aerial parts, which can effectively avoid the waste of resources. Meanwhile, our work provides a new strategy for integrating metabonomics, network pharmacology, and molecular docking techniques which was an efficient way for recognizing effective constituents and mechanisms valid to the pharmacologic actions of traditional Chinese medicine.
Collapse
Key Words
- ARDS, acute respiratory distress syndrome
- BC, BetweennessCentrality
- CC, ClosenessCentrality
- CHM, Chinese herbal medicines
- COVID-19 related ALI, Coronavirus disease 2019 related acute lung injury
- Coronavirus disease 2019 related acute lung injury
- DL, drug-like properties
- Fagopyrum dibotrys
- GO, Gene Ontology
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- LC-MS, liquid chromatography-mass spectrometry
- Metabolomics
- Molecular docking
- NC, NeighborhoodConnectivity
- NSCLC, Non-small cell lung carcinoma
- Network pharmacology
- OB, oral bioavailability
- PARP-1, Poly(ADP-ribose)polymerase-1
- PDB, Protein Data Bank database
- PPI network, protein-protein interaction network
- RMSD, Root mean square deviation
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- TCM, traditional Chinese medicine
- TCMSP, traditional Chinese medicine systems pharmacology database and analysis platform
- WTM, widely targeted metabolome
Collapse
Affiliation(s)
- Min Zhang
- A Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- College of Pharmacy, Baotou Medical College, Baotou, 014040, China
- Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, 010020, China
- Inner Mongolia Academy of Chinese and Mongolian Medicine, Hohhot, 010010, China
| | - Xinke Zhang
- A Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Baolin Guo
- A Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Guoshuai Zhang
- A Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Minhui Li
- College of Pharmacy, Baotou Medical College, Baotou, 014040, China
- Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, 010020, China
- Inner Mongolia Academy of Chinese and Mongolian Medicine, Hohhot, 010010, China
- Corresponding author. College of Pharmacy, Baotou Medical College, Baotou, 014040, China.
| | - Linfang Huang
- A Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Corresponding author.
| |
Collapse
|
7
|
Ying-ying G, Yan-fang W, Yan D, Su-ying Z, Dong L, Bin L, Xue W, Miao D, Rui-lin M, Xiao-hui L, Yu-pei J, Ai-jun S. Metabolomic mechanism and pharmacodynamic material basis of Buxue Yimu pills in the treatment of anaemia in women of reproductive age. Front Pharmacol 2023; 13:962850. [PMID: 36703727 PMCID: PMC9871362 DOI: 10.3389/fphar.2022.962850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Objective: To explore the pharmacological basis and mechanism of Buxue Yimu pills (BYP) in the treatment of anaemia in women from the perspective of metabolomics and network analysis. Materials and Methods: Forty-six women of reproductive age with haemoglobin 70-110 g/L were recruited. Blood samples were collected before and after 4 weeks of oral BYP treatment to assess the changes in haemoglobin, coagulation function, and iron metabolism indices. An integrated analysis of metabolomics (liquid chromatography mass spectrometry) and network analysis was performed to identify the potential pharmacodynamic mechanisms of BYP. Results: After BYP treatment, the haemoglobin level of patients significantly increased from 93.67 ± 9.77 g/L to 109.28 ± 12.62 g/L (p < 0.01), while no significant changes were found in iron metabolism and coagulation-related indicators. A total of 22 differential metabolites were identified after metabolomics analysis, which were mainly related to the inhibition of inflammation and oxidative stress. Integrating pharmacodynamics and metabolomics, a network of drug-active components-targets-metabolic pathways-metabolomics was established. Acetylcholinesterase, phospholipase A2 group IIA, and phospholipase A2 group IVA may be the most promising therapeutic targets. Conclusion: BYP can inhibit inflammation and oxidative stress as well as promote haematopoiesis, potentially improving anaemia.
Collapse
Affiliation(s)
- Guo Ying-ying
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wang Yan-fang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Deng Yan
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhang Su-ying
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Liu Dong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second Hospital, Sichuan University, Chengdu, China,Ministry of Education, Sichuan University, Chengdu, China
| | - Luo Bin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second Hospital, Sichuan University, Chengdu, China,Ministry of Education, Sichuan University, Chengdu, China
| | - Wang Xue
- Department of Obstetrics and Gynecology, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Healthcare Hospital), Hangzhou, China
| | - Deng Miao
- Department of Obstetrics and Gynecology, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Healthcare Hospital), Hangzhou, China
| | - Ma Rui-lin
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liu Xiao-hui
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Jiao Yu-pei
- National Protein Science Technology Center, Tsinghua University, Beijing, China
| | | |
Collapse
|
8
|
Wu J, Luo Y, Shen Y, Hu Y, Zhu F, Wu J, Liu Y. Integrated Metabonomics and Network Pharmacology to Reveal the Action Mechanism Effect of Shaoyao Decoction on Ulcerative Colitis. Drug Des Devel Ther 2022; 16:3739-3776. [PMID: 36324421 PMCID: PMC9620839 DOI: 10.2147/dddt.s375281] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background Traditional Chinese medicine (TCM) has the advantage of multi-component and multi-target, which becomes a hot spot in the treatment of numerous diseases. Shaoyao decoction (SYD) is a TCM prescription, which is mainly used to treat damp-heat dysentery clinically, with small side effects and low cost. However, its mechanism remains elusive. The purpose of this study is to explore the mechanism of SYD in the treatment of mice with ulcerative colitis (UC) induced by dextran sulfate sodium (DSS) through metabolomics and network pharmacology, and verify through molecular docking and immunohistochemistry, so as to provide a scientific basis for the role of SYD in the treatment of UC. Materials and Methods Firstly, DSS-induced UC models were established and then untargeted metabolomics analysis of feces, livers, serum and urine was performed to determine biomarkers and metabolic pathways closely related to the role of SYD. Besides, network pharmacology was applied to screen the active components and UC-related targets, which was verified by molecular docking. Finally, metabonomics and network pharmacology were combined to draw the metabolite-pathway-target network and verified by immunohistochemistry. Results Metabolomics results showed that a total of 61 differential metabolites were discovered in SYD-treated UC with 3 main metabolic pathways containing glycerophospholipid metabolism, sphingolipid metabolism and biosynthesis of unsaturated fatty acids, as well as 8 core targets involving STAT3, IL1B, IL6, IL2, AKT1, IL4, ICAM1 and CCND1. Molecular docking demonstrated that the first five targets had strong affinity with quercetin, wogonin, kaempferol and baicalein. Combined with metabolomics and network pharmacology, sphingolipid signaling pathway, PI3K/AKT-mTOR signaling pathway and S1P3 pathway were identified as the main pathways. Conclusion SYD can effectively ameliorate various symptoms and alleviate intestinal mucosal damage and metabolic disorder in DSS induced UC mice. Its effect is mainly related to sphingolipid metabolism, PI3K/AKT-mTOR signaling pathway and S1P3 pathway.
Collapse
Affiliation(s)
- Jin Wu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Yiting Luo
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Yan Shen
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, People’s Republic of China
| | - Yuyao Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, People’s Republic of China
| | - Fangyuan Zhu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Jiaqian Wu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Yingchao Liu
- Academic Affairs Office, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China,Correspondence: Yingchao Liu, Academic Affairs Office, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China, Email
| |
Collapse
|
9
|
Hu L, Yamamoto M, Chen J, Duan H, Du J, He L, Shi D, Yao X, Nagai T, Kiyohara H, Yao Z. Integrating network pharmacology and experimental verification to decipher the immunomodulatory effect of Bu-Zhong-Yi-Qi-Tang against poly (I:C)-induced pulmonary inflammation. Front Pharmacol 2022; 13:1015486. [DOI: 10.3389/fphar.2022.1015486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Pulmonary inflammation caused by respiratory tract viral infections is usually associated with acute exacerbation of respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD). Therefore, maintaining the pulmonary immune homeostasis is particular important for prevention of the acute exacerbation. Bu-Zhong-Yi-Qi-Tang (BZYQT), a traditional Chinese medicine formula, has been broadly used to improve respiratory and gastrointestinal disorders in China for over 700 years. Previously, we have found the regulatory activity of BZYQT on the lower respiratory immune system, while its potential effects during pulmonary inflammation remain unknown. Thus, the current study focused on deciphering its immunomodulatory effect and potential mechanism against pulmonary inflammation by using a viral RNA analogue, poly (I:C), induced murine pulmonary inflammation model and BEAS-2B cell model coupled with network pharmacology. Inflammatory cells in the bronchoalveolar lavage fluid were counted through microscope examination according to the cell’s morphology and staining characteristics; protein and gene levels of inflammatory mediators were determined with Elisa and quantitative PCR, respectively; network pharmacology was conducted based on 46 BZYQT-related potential bioactive components, pulmonary inflammation and immune-related targets. Our results indicated that the recruitment of neutrophils and the expression of Adgre1 (encoding the F4/80, which is a macrophage marker) in the lung induced by poly (I:C) were significantly reduced after BZYQT treatment, and these effects were further demonstrated to be related to the interference of leukocyte transendothelial migration from the decreased levels of CXCL10, IL-6, TNF-α, CXCL2, ICAM-1, VCAM-1, and E/P-selectins. Furthermore, BZYQT inhibited the CXCL10, TNF-α, and IFN-β expression of poly (I:C)-challenged BEAS-2B cells in a dose-dependent manner. Through integrating results from network pharmacology, experiments, and the published literature, isoliquiritigenin, Z-ligustilide, atractylenolide I, atractylenolide III, formononetin, ferulic acid, hesperidin, and cimigenoside were presumed as the bioactive components of BZYQT against pulmonary inflammation. Overall, our findings demonstrated that BZYQT possesses a pronounced immunomodulatory effect on poly (I:C)-induced pulmonary inflammation, which provides a pharmacological basis for BZYQT in the treatment of respiratory disorders.
Collapse
|
10
|
Wang F, Bai J, Li F, Liu J, Wang Y, Li N, Wang Y, Xu J, Liu W, Xu L, Chen L. Investigation of the mechanism of the anti-cancer effects of Astragalus propinquus Schischkin and Pinellia pedatisecta Schott (A&P) on melanoma via network pharmacology and experimental verification. Front Pharmacol 2022; 13:895738. [PMID: 36034875 PMCID: PMC9411814 DOI: 10.3389/fphar.2022.895738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Melanoma is a commonly malignant cutaneous tumor in China. Astragalus propinquus Schischkin and Pinellia pedatisecta Schott (A&P) have been clinically used as adjunctive drugs in the treatment of malignant melanoma. However, the effect and mechanism of A&P on melanoma have yet to be explored. The current investigation seeks to characterize the active components of A&P and their potential roles in treating malignant melanoma using network pharmacology and in vitro and in vivo experiments. We first used the traditional Chinese medicine systems pharmacology (TCMSP) database and high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS) to identify a total of 13 effective compounds within A&P. 70 common genes were obtained by matching 487 potential genes of A&P with 464 melanoma-related genes, and then we built up protein-protein interaction (PPI) network of these 70 genes, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The results revealed that A&P might influence the pathobiology of melanoma through the PI3K/Akt pathway. Molecular docking also confirmed that higher content of ingredients in A&P, including hederagenin, quercetin, beta-sitosterol and stigmasterol, had a strong binding activity (affinity < −5 kcal/mol) with the core targets AKT1, MAPK3 and ESR1. Furthermore, we confirmed A&P could inhibit melanoma cells proliferation and induce cells apoptosis through suppressing the PI3K/Akt signaling pathway by in vitro and in vivo xenograft model experiments. These findings indicate that A&P may function as a useful therapy for melanoma through the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Fang Wang
- Department of Pharmacy, Xi’an International Medical Center Hospital, Xi’an, Shaanxi Province, China
| | - Juan Bai
- Department of Pharmacy, Xi’an International Medical Center Hospital, Xi’an, Shaanxi Province, China
| | - Feng Li
- Department of Pharmacy, Xi’an International Medical Center Hospital, Xi’an, Shaanxi Province, China
| | - Jing Liu
- Department of Pharmacy, Xi’an International Medical Center Hospital, Xi’an, Shaanxi Province, China
| | - Yanli Wang
- Department of Pharmacy, Xi’an International Medical Center Hospital, Xi’an, Shaanxi Province, China
| | - Ning Li
- Department of Pharmacy, Xi’an International Medical Center Hospital, Xi’an, Shaanxi Province, China
| | - Yaqi Wang
- Department of Pharmacy, Xi’an International Medical Center Hospital, Xi’an, Shaanxi Province, China
| | - Jin Xu
- Department of Pharmacy, Xi’an International Medical Center Hospital, Xi’an, Shaanxi Province, China
| | - Wanbao Liu
- Department of Pharmacy, Xi’an International Medical Center Hospital, Xi’an, Shaanxi Province, China
| | - Liting Xu
- Department of Pharmacy, Xi’an International Medical Center Hospital, Xi’an, Shaanxi Province, China
| | - Lin Chen
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
- *Correspondence: Lin Chen,
| |
Collapse
|
11
|
Wu K, Han L, Zhao Y, Xiao Q, Zhang Z, Lin X. Deciphering the molecular mechanism underlying the effects of epimedium on osteoporosis through system bioinformatic approach. Medicine (Baltimore) 2022; 101:e29844. [PMID: 35960074 PMCID: PMC9371495 DOI: 10.1097/md.0000000000029844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Epimedium has gained widespread clinical application in Traditional Chinese Medicine, with the functions of promoting bone reproduction, regulating cell cycle and inhibiting osteoclastic activity. However, its precise cellular pharmacological therapeutic mechanism on osteoporosis (OP) remains elusive. This study aims to elucidate the molecular mechanism of epimedium in the treatment of OP based on system bioinformatic approach. Predicted targets of epimedium were collected from TCMSP, BATMAN-TCM and ETCM databases. Differentially expressed mRNAs of OP patients were obtained from Gene Expression Omnibus database by performing Limma package of R software. Epimedium-OP common targets were obtained by Venn diagram package for further analysis. The protein-protein interaction network was constructed using Cytoscape software. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were carried out by using clusterProfiler package. Molecular docking analysis was conducted by AutoDock 4.2 software to validate the binding affinity between epimedium and top 3 proteins based on the result of protein-protein interaction. A total of 241 unique identified epimedium targets were screened from databases, of which 62 overlapped with the targets of OP and were considered potential therapeutic targets. The results of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that these targets were positive regulation of cell cycle, cellular response to oxidative stress and positive regulation of cell cycle process as well as cellular senescence, FoxO, PI3K-Akt, and NF-kappa B signaling pathways. Molecular docking showed that epimedium have a good binding activity with key targets. Our study demonstrated the multitarget and multi-pathway characteristics of epimedium on OP, which elucidates the potential mechanisms of epimedium against OP and provides theoretical basis for further drug development.
Collapse
Affiliation(s)
- Keliang Wu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Futian District, Shenzhen, Guangdong Province, China
| | - Linjing Han
- Guangzhou University of Chinese Medicine, Baiyun District, Guangzhou, Guangdong Province, China
| | - Ying Zhao
- Guangzhou University of Chinese Medicine, Baiyun District, Guangzhou, Guangdong Province, China
| | - Qinghua Xiao
- Integrated Traditional Chinese and Western Medicine Hospital of Shenzhen, Bao’an District, Shenzhen, Guangdong Province, China
| | - Zhen Zhang
- Integrated Traditional Chinese and Western Medicine Hospital of Shenzhen, Bao’an District, Shenzhen, Guangdong Province, China
| | - Xiaosheng Lin
- Integrated Traditional Chinese and Western Medicine Hospital of Shenzhen, Bao’an District, Shenzhen, Guangdong Province, China
- *Correspondence: Xiaosheng Lin, Integrated Traditional Chinese and Western Medicine Hospital of Shenzhen, 3rd Shajin Road, Bao’an District, Shenzhen, Guangdong Province, 518104, China (e-mail: )
| |
Collapse
|
12
|
Mechanism of Fructus Mume Pills Underlying Their Protective Effects in Rats with Acetic Acid-Inducedulcerative Colitis via the Regulation of Inflammatory Cytokines and the VEGF-PI3K/Akt-eNOS Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4621131. [PMID: 35620404 PMCID: PMC9129976 DOI: 10.1155/2022/4621131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/04/2022] [Accepted: 03/22/2022] [Indexed: 12/19/2022]
Abstract
Background Fructus mume pills (FMPs) have been clinically proven to be effective for treating ulcerative colitis (UC). However, the therapeutic and protective mechanisms have not been fully studied. Aim We aimed to explore the mechanism of FMPs in an acetic acid (AA)-induced ulcerative colitis rat model. Methods The targets, GO terms, and KEGG pathways for the FMPs and UC were screened and constructed using network pharmacology. A possible mechanism was verified in a 4% AA-induced colitis rat model. Colitis activity and state were evaluated using the disease activity index, and colon ulceration and intestinal mucosal damage were determined by histopathological observation through HE, AB-PAS, and Masson pathological staining. The concentrations of TNF-α, IL-6, IL-8, IL-10, MPO, MMP9, CXCR1, eNOS, and VEGF were measured to evaluate vascular permeability effects. Results The network pharmacology results showed 108 active compounds, and 139 FMP-related targets were identified. Twenty-nine targets were identified for FMPs against UC, which included MMP9, MMP3, ESR1, PTGS1, PPARA, MPO, and NOS2. A total of 1,536 GO terms and 41 pathways were associated with FMP treatment of UC. The pharmacological evaluation showed that FMPs attenuated inflammation in AA-induced colitis by reducing the serum concentrations of TNF-α, IL-6, IL-8, and IL-10 and the colonic concentrations of MPO, MMP9, and CXCR1. FMPs ameliorated hyperpermeability by reducing the colonic VEGF and eNOS concentrations. FMPs also significantly decreased the VEGFA, VEGFR2, Src, and eNOS protein expressions in colon tissue through the VEGF-PI3K/Akt-eNOS signaling pathway. Conclusion These results suggest that FMPs control UC inflammation by regulating inflammatory cytokine concentrations. FMPs alleviate AA-induced UC by regulating microvascular permeability through the VEGF-PI3K/Akt-eNOS signaling pathway.
Collapse
|
13
|
Zhao Q, Ren X, Song SY, Yu RL, Li X, Zhang P, Shao CL, Wang CY. Deciphering the Underlying Mechanisms of Formula Le-Cao-Shi Against Liver Injuries by Integrating Network Pharmacology, Metabonomics, and Experimental Validation. Front Pharmacol 2022; 13:884480. [PMID: 35548342 PMCID: PMC9081656 DOI: 10.3389/fphar.2022.884480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022] Open
Abstract
Le-Cao-Shi (LCS) has long been used as a folk traditional Chinese medicine formula against liver injuries, whereas its pharmacological mechanisms remain elusive. Our study aims to investigate the underlying mechanism of LCS in treating liver injuries via integrated network pharmacology, metabonomics, and experimental validation. By network pharmacology, 57 compounds were screened as candidate compounds based on ADME parameters from the LCS compound bank (213 compounds collected from the literature of three single herbs). According to online compound–target databases, the aforementioned candidate compounds were predicted to target 87 potential targets related to liver injuries. More than 15 pathways connected with these potential targets were considered vital pathways in collectively modulating liver injuries, which were found to be relevant to cancer, xenobiotic metabolism by cytochrome P450 enzymes, bile secretion, inflammation, and antioxidation. Metabonomics analysis by using the supernatant of the rat liver homogenate with UPLC-Q-TOF/MS demonstrated that 18 potential biomarkers could be regulated by LCS, which was closely related to linoleic acid metabolism, glutathione metabolism, cysteine and methionine metabolism, and glycerophospholipid metabolism pathways. Linoleic acid metabolism and glutathione metabolism pathways were two key common pathways in both network pharmacology and metabonomics analysis. In ELISA experiments with the CCl4-induced rat liver injury model, LCS was found to significantly reduce the levels of inflammatory parameters, decrease liver malondialdehyde (MDA) levels, and enhance the activities of hepatic antioxidant enzymes, which validated that LCS could inhibit liver injuries through anti-inflammatory property and by suppressing lipid peroxidation and improving the antioxidant defense system. Our work could provide new insights into the underlying pharmacological mechanisms of LCS against liver injuries, which is beneficial for its further investigation and modernization.
Collapse
Affiliation(s)
- Qing Zhao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xia Ren
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shu-Yue Song
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ri-Lei Yu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xin Li
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Peng Zhang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Chang-Lun Shao, ; Chang-Yun Wang,
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Chang-Lun Shao, ; Chang-Yun Wang,
| |
Collapse
|
14
|
Dan H, Haichao Z, Ziyang Y, Di Z, Shuihan Z. Protective effects of Fufang Ejiao Jiang against aplastic anemia assessed by network pharmacology and metabolomics strategy. DIGITAL CHINESE MEDICINE 2021. [DOI: 10.1016/j.dcmed.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
15
|
Chen K, Zhang L, Qu Z, Wan F, Li J, Yang Y, Yan H, Huang S. Uncovering the Mechanisms and Molecular Targets of Weibing Formula 1 against Gastritis: Coupling Network Pharmacology with GEO Database. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5533946. [PMID: 34471638 PMCID: PMC8405302 DOI: 10.1155/2021/5533946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/09/2021] [Accepted: 08/03/2021] [Indexed: 01/02/2023]
Abstract
Weibing Formula 1, a classic traditional formula, has been widely used clinically to treat gastritis in recent years. However, the potential pharmacological mechanism of Weibing Formula 1 is still unclear to date. A network pharmacology-based strategy was performed to uncover the underlying mechanisms of Weibing Formula 1 against gastritis. Furthermore, we structured the drug-active ingredients-genes-disease network and PPI network of shared targets, and function enrichment analysis of these targets was carried out. Ultimately, Gene Expression Omnibus (GEO) datasets and real-time quantitative PCR were used to verify the related genes. We found 251 potential targets corresponding to 135 bioactive components of Weibing Formula 1. Then, 327 gastritis-related targets were known gastritis-related targets. Among which, 60 common targets were shared between potential targets of Weibing Formula 1 and known gastritis-related targets. The results of pathway enrichment analysis displayed that 60 common targets mostly participated in various pathways related to Toll-like receptor signaling pathway, MAPK signaling pathway, cytokine-cytokine receptor interaction pathway, chemokine signaling pathway, and apoptosis. Based on the GSE60427 dataset, 15 common genes were shared between differentially expressed genes and 60 candidate targets. The verification results of the GSE5081 dataset showed that except for DUOX2 and VCAM1, the other 13 genes were significantly upregulated in gastritis, which was consistent with the results in the GSE60427 dataset. More importantly, real-time quantitative PCR results showed that the expressions of PTGS2, MMP9, CXCL2, and CXCL8 were significantly upregulated and NOS2, EGFR, and IL-10 were downregulated in gastritis patients, while the expressions of PTGS2, MMP9, CXCL2, and CXCL8 were significantly downregulated and NOS2, EGFR, and IL-10 were upregulated after the treatment of Weibing Formula 1. PTGS2, NOS2, EGFR, MMP9, CXCL2, CXCL8, and IL-10 may be the important direct targets of Weibing Formula 1 in gastritis treatment. Our study revealed the mechanism of Weibing Formula 1 in gastritis from an overall and systematic perspective, providing a theoretical basis for further knowing and application of this formula in the future.
Collapse
Affiliation(s)
- Ke Chen
- Department of Traditional Chinese Medicine, People's Hospital of Xinjin District, Chengdu, China
| | - Luojian Zhang
- Department of Rehabilitation Medicine, China MCC5 Group Corp. Ltd. Hospital, China
| | - Zhen Qu
- Department of Foot and Ankle, Sichuan Provincial Orthopaedic Hospital, China
| | - Feng Wan
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, China
- State Key Laboratory of Southwestern Chinese Medicine Resources/Chengdu University of Traditional Chinese Medicine, China
| | - Jia Li
- Department of Traditional Chinese Medicine, People's Hospital of Xinjin District, Chengdu, China
| | - Ye Yang
- Department of Traditional Chinese Medicine, People's Hospital of Xinjin District, Chengdu, China
| | - Hui Yan
- Department of Traditional Chinese Medicine, People's Hospital of Xinjin District, Chengdu, China
| | - Shile Huang
- Department of Acupuncture and Moxibustion, Hospital of Chengdu University of Traditional Chinese Medicine, China
| |
Collapse
|
16
|
Liu SJ, Hu SQ, Chen YC, Guo J. Uncovering the mechanism of quercetin for treating spermatogenesis impairment by a network pharmacology approach. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1961878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Si-Jia Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Su-Qin Hu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yu-Cai Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Jian Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| |
Collapse
|
17
|
Cao B, Lin J, Wu Z, Liu H, Zhang D, Xu H, Xu R, Han L. Mechanisms exploration of Xiaojin Pills on lung cancer based on metabolomics and network pharmacology. J Pharm Pharmacol 2021; 73:1071-1079. [PMID: 33864464 DOI: 10.1093/jpp/rgab050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/23/2021] [Indexed: 01/04/2023]
Abstract
OBJECTIVES This study was designed to evaluate the pharmacological activity and therapeutic mechanism of Xiaojin Pills (XJW) on lung cancer. METHODS Mice were orally administered with Xiaojin Pills for 21 days. Tumour samples were collected to evaluate the antilung cancer effect, and blood samples were collected to identify differential metabolites with metabolomics. Through the analysis of network pharmacology, the active ingredients and targets related to XJW therapy for lung cancer were filtered. KEY FINDINGS Different expression of seven metabolites related to seven pathways, including Arachidonic acid metabolism, Citrate cycle, tryptophan metabolism, glyoxylate and dicarboxylate metabolism, arginine and proline metabolism, primary bile acid biosynthesis and nicotinate and nicotinamide metabolism, were demonstrated to explain the efficacy of XJW in the treatment of lung cancer. Furthermore, a total of 19 active ingredients (ursolic acid, α-thujone, pelargonidin, succinic acid, boswellic acid, muscone, daidzein, xanthorrhizol, isoeugenol, oleic acid, β-caryophyllene, vanillin, β-sitosterol, lupeol, palmitic acid, eugenol, methylbutenol, β-elemene and quercetin) acted directly on 9 targets (CAT, PTGS2, PTGS1, CTH, ABTA, ALT1, ME2, AGXT and AGXT 2) and regulated 3 out of 7 metabolites (3-Hydroxyanthranilic acid, Pyruvate and Prostaglandin G2). CONCLUSIONS Through metabolomics and network pharmacology analyses, this study demonstrated that the major metabolites of XJW in treating lung cancer were regulated by multitarget and multicomponent interaction network.
Collapse
Affiliation(s)
- Bo Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenfeng Wu
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Huimin Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Xu
- Chengdu Yongkang Pharmaceutical Co., Ltd., Chengdu, China
| | - Runchun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
18
|
Xi Z, Wang M, Xia J, Li H, Hua Y, Xu T, An Z, Tian Y. Explore the effects of Shidan granules on chronic atrophic gastritis using LC-MS based plasma metabolomics study. Biomed Chromatogr 2021; 35:e5129. [PMID: 33780017 DOI: 10.1002/bmc.5129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/11/2021] [Accepted: 03/22/2021] [Indexed: 12/27/2022]
Abstract
Shidan granule (SDG), a traditional Chinese medicine in-hospital preparation, has been demonstrated to exert good effects on chronic atrophic gastritis (CAG) in clinics. However, the underlying mechanism of SDG against CAG is still unclear. This study utilized an untargeted plasma metabolomics approach to explore the potential mechanism of SDG in CAG rats using LC-MS and pattern recognition analysis. The results indicated that SDG could effectively improve the biochemical indexes and pathology features of CAG rats. Nineteen potential biomarkers (variable importance in projection > 1 and P < 0.05) contributing to CAG progress were identified. After SDG intervention, 17 biomarkers were obviously restored to normal levels. Further metabolic pathway analysis showed that aspartate and glutamate metabolism, arachidonic acid metabolism, arginine and proline metabolism, and TCA cycle were the most related pathways for SDG treatment. Based on these findings, the main mechanisms of SDG against CAG might be attributed to the regulatory effects of energy balance, inflammatory suppression, and improvement in disturbed amino acid and lipid metabolism. This study provided information for the mechanism research of SDG against CAG and would promote its clinical application.
Collapse
Affiliation(s)
- Zhaohong Xi
- Department of Gastroenterology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Min Wang
- Department of Pharmacy, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Junquan Xia
- Department of Gastroenterology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Li
- Department of Gastroenterology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yongzhi Hua
- Department of Gastroenterology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tingting Xu
- Department of Gastroenterology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhentao An
- Department of Gastroenterology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yaozhou Tian
- Department of Gastroenterology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
19
|
Wang M, Xu J, Zhang Y, Yang N, Ge W, Song R. Integrated multiplatform-based metabonomics and network analysis to explore the mechanism of Polygonum cuspidatum on hyperlipidemia. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1176:122769. [PMID: 34058527 DOI: 10.1016/j.jchromb.2021.122769] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/07/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
Hyperlipidemia is a major risk factor and pathological basis for cardiovascular diseases. Polygonum cuspidatum (HZ), a famous traditional Chinese medicine, is frequently used to treat hyperlipidemia. However, little is known about its underlying mechanism. Herein, an integrated approach combining multiplatform-based metabonomics and network analysis was adopted to elucidate the ameliorative mechanism of HZ on hyperlipidemia. The global metabolomic characters of HZ on hyperlipidemia were investigated by GC-MS and LC-MS based metabonomics. Significant metabonomic alterations were observed in hyperlipidemic group, which could be restored by HZ supplementation. Furthermore, the drug-ingredients-target-metabolic pathway network was constructed, and the result indicated that HZ exhibited hypolipidemic efficacy through resveratrol, polydatin, torachrysone-8-O-β-D-(6'-oxayl)-glucoside, physciondiglucoside, (+)-catechin, β-sitosterol, quercetin, luteolin and physovenine acting on phospholipase A2, unspecific monooxygenase, arachidonate 15-lipoxygenase, aromatic-L-amino-acid decarboxylase, alcohol dehydrogenase and triacylglycerol lipase. In conclusion, this study explored potential mechanism of HZ on hyperlipidemia with the aid of the integrated approach combining multiplatform-based metabonomics and network analysis, which might provide a theoretical basis for the clinical application of HZ.
Collapse
Affiliation(s)
- Min Wang
- China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing 210000, Jiangsu Province, China
| | - Jie Xu
- China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing 210000, Jiangsu Province, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210000, China
| | - Yuxin Zhang
- China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing 210000, Jiangsu Province, China
| | - Na Yang
- China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing 210000, Jiangsu Province, China
| | - Weihong Ge
- China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing 210000, Jiangsu Province, China.
| | - Rui Song
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210000, China.
| |
Collapse
|
20
|
A network pharmacology-integrated metabolomics strategy for clarifying the action mechanisms of Schisandrae Chinensis Fructus for treating drug-induced liver injury by acetaminophen. Bioorg Med Chem 2021; 31:115992. [PMID: 33421914 DOI: 10.1016/j.bmc.2020.115992] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 12/21/2022]
Abstract
Schisandrae Chinensis Fructus (SCF) was a Traditional Chinese Medicine (TCM) for protecting liver. However, underlying therapeutic mechanisms of SCF for drug-induced liver injury (DILI) by acetaminophen (APAP) are still unclear. This study aims to discover the potential regulation mechanisms of SCF in the treatment of DILI by APAP using the integrated network pharmacology, plasma metabolomics profiling with UPLC-Q-TOF-MS approach. The key targets in the shared pathways of network pharmacology and metabolomics were screened and experimentally validated by Quantitative Real-time PCR analysis. The results showed that SCF could exert excellent effects on DILI by APAP probably through regulating ErbB signaling pathway and Arachidonic acid metabolism pathway, which was reflected by the reduced gene expression of TNF-α, IL-6, IL-1β, COX-2 and EGFR, as well as the increased gene expression of Nrf2, HO-1, MDM2, MAPK8, SRC, PLD1, CYP2E1, CYP1A2, CYP3A1. This study systematically explored the pharmacological mechanisms of SCF in the treatment of DILI, meanwhile, metabolomics combine with network pharmacology approach might be a useful strategy for early diagnosis of DILI by APAP.
Collapse
|
21
|
Li RL, He LY, Zhang Q, Liu J, Lu F, Duan HXY, Fan LH, Peng W, Huang YL, Wu CJ. HIF-1α is a Potential Molecular Target for Herbal Medicine to Treat Diseases. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4915-4949. [PMID: 33235435 PMCID: PMC7680173 DOI: 10.2147/dddt.s274980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
HIF-1α is an important factor regulating oxygen balance in mammals, and its expression is closely related to various physiological and pathological conditions of the body. Because HIF-1α plays an important role in the occurrence and development of cancer and other diseases, it has become an enduring research hotspot. At the same time, natural medicines and traditional Chinese medicine compounds have amazing curative effects in various diseases related to HIF-1 subtype due to their unique pharmacological effects and more effective ingredients. Therefore, in this article, we first outline the structure of HIF-1α and the regulation related to its expression, then introduce various diseases closely related to HIF-1α, and finally focus on the regulation of natural medicines and compound Chinese medicines through various pathways. This will help us understand HIF-1α systematically, and use HIF-1α as a target to discover more natural medicines and traditional Chinese medicines that can treat related diseases.
Collapse
Affiliation(s)
- Ruo-Lan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Li-Ying He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Jia Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Feng Lu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Hu-Xin-Yue Duan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Lin-Hong Fan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Yong-Liang Huang
- Pharmacy Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, People's Republic of China
| | - Chun-Jie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| |
Collapse
|
22
|
Xiao W, Sun W, Lian H, Shen J. Integrated Network and Experimental Pharmacology for Deciphering the Medicinal Substances and Multiple Mechanisms of Duhuo Jisheng Decoction in Osteoarthritis Therapy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:7275057. [PMID: 33204290 PMCID: PMC7657680 DOI: 10.1155/2020/7275057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/16/2020] [Accepted: 10/21/2020] [Indexed: 12/23/2022]
Abstract
Osteoarthritis (OA) is currently the most common joint disorder worldwide. In last decades, herbal remedies have achieved a significant advancement in the treatment of OA. Duhuo Jisheng Decoction (DHJS), an herbal formula consisting of 15 medicinal herbs, has a long-time practice in OA therapy in China. However, its therapeutic mechanisms have not been comprehensively elucidated. In the present work, integrated network and experimental pharmacology were performed for investigating the therapeutic substances and mechanisms of DHJS. Based on network analysis, the contribution of each herb to OA therapy was evaluated. Furthermore, a series of potential targets and signaling pathways were enriched, which could be involved in the therapeutic effects and mechanisms of DHJS. Further experimental results indicated that DHJS attenuated TNFα, IL-6, MMP-1, MMP-9, MMP-13, and ADAMTs-5 expression, inhibited NF-κB and p38 MAPK signaling pathway, activated AMPK-SIRT1 signaling pathway, and suppressed chondrocyte apoptosis, which synergistically contributed to OA therapy. Our work demonstrated that DHJS could be very promising for OA therapy through synergistically acting on multitargets and multipathways.
Collapse
Affiliation(s)
- Wenyu Xiao
- Department of Orthopaedics, Shanghai Tenth People's Hospital Chongming Branch, School of Medicine, Tongji University, Shanghai 202157, China
| | - Weibing Sun
- Department of Orthopaedics, Shanghai Tenth People's Hospital Chongming Branch, School of Medicine, Tongji University, Shanghai 202157, China
| | - Hui Lian
- Department of Orthopaedics, Shanghai Tenth People's Hospital Chongming Branch, School of Medicine, Tongji University, Shanghai 202157, China
| | - Juexin Shen
- Department of Orthopaedics, Shanghai Tenth People's Hospital Chongming Branch, School of Medicine, Tongji University, Shanghai 202157, China
| |
Collapse
|
23
|
Shi XQ, Zhu ZH, Yue SJ, Tang YP, Chen YY, Pu ZJ, Tao HJ, Zhou GS, Yang Y, Guo MJ, Ting-Xia Dong T, Tsim KWK, Duan JA. Integration of organ metabolomics and proteomics in exploring the blood enriching mechanism of Danggui Buxue Decoction in hemorrhagic anemia rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113000. [PMID: 32663590 DOI: 10.1016/j.jep.2020.113000] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/16/2020] [Accepted: 05/20/2020] [Indexed: 05/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danggui Buxue Decoction (DBD), as a classical Chinese medicine prescription, is composed of Danggui (DG) and Huangqi (HQ) at a ratio of 1:5, and it has been used clinically in treating anemia for hundreds of years. AIM OF THE STUDY The aim of this study was to explore the treatment mechanisms of DBD in anemia rats from the perspective of thymus and spleen. MATERIALS AND METHODS In this study, a successful hemorrhagic anemia model was established, and metabolomics (UPLC-QTOF-MS/MS) and proteomics (label-free approach) together with bioinformatics (Gene Ontology analysis and Reactome pathway enrichment), correlation analysis (pearson correlation matrix) and joint pathway analysis (MetaboAnalyst) were employed to discover the underlying mechanisms of DBD. RESULTS DBD had a significant blood enrichment effect on hemorrhagic anemia rats. Metabolomics and proteomics results showed that DBD regulated a total of 10 metabolites (lysophosphatidylcholines, etc.) and 41 proteins (myeloperoxidase, etc.) in thymus, and 9 metabolites (L-methionine, etc.) and 24 proteins (transferrin, etc.) in spleen. With GO analysis and Reactome pathway enrichment, DBD mainly improved anti-oxidative stress ability of thymocyte and accelerated oxidative phosphorylation to provide ATP for splenocyte. Phenotype key indexes were strongly and positively associated with most of the differential proteins and metabolites, especially nucleosides, amino acids, Fabp4, Decr1 and Ndufs3. 14 pathways in thymus and 9 pathways in spleen were obtained through joint pathway analysis, in addition, the most influential pathway in thymus was arachidonic acid metabolism, while in spleen was the biosynthesis of phenylalanine, tyrosine and tryptophan. Furthermore, DBD was validated to up-regulate Mpo, Hbb and Cp levels and down-regulate Ca2+ level in thymus, as well as up-regulate Fabp4, Ndufs3, Tf, Decr1 and ATP levels in spleen. CONCLUSION DBD might enhance thymus function mainly by reducing excessive lipid metabolism and intracellular Ca2+ level, and promote ATP production in spleen to provide energy.
Collapse
Affiliation(s)
- Xu-Qin Shi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing,, 210023, Jiangsu Province, China
| | - Zhen-Hua Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Shi-Jun Yue
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Yu-Ping Tang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China.
| | - Yan-Yan Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Zong-Jin Pu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Hui-Juan Tao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Gui-Sheng Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing,, 210023, Jiangsu Province, China.
| | - Meng-Jie Guo
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing,, 210023, Jiangsu Province, China
| | - Tina Ting-Xia Dong
- Division of Life Science and Centre for Chinese Medicine, The Hongkong University of Science and Technology, Hongkong, 999077, China
| | - Karl Wah-Keung Tsim
- Division of Life Science and Centre for Chinese Medicine, The Hongkong University of Science and Technology, Hongkong, 999077, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| |
Collapse
|
24
|
Comparatively Evaluating the Role of Herb Pairs Containing Angelicae Sinensis Radix in Xin-Sheng-Hua Granule by Withdrawal Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9456350. [PMID: 33029181 PMCID: PMC7528019 DOI: 10.1155/2020/9456350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/06/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022]
Abstract
The present study aims to investigate the roles of herb pairs containing Angelicae Sinensis Radix (Danggui) in Xin-Sheng-Hua Granule (XSHG) on hemolytic and aplastic anemia (HAA) mice. HAA model mice were induced by acetyl phenylhydrazine and cyclophosphamide; then the samples of XSHG and its decomposed recipes (DY, DC, DT, DH, DJ, and DZ) were orally administrated to these mice. Indicators of peripheral blood routine, organ index, and ATPase activities were tested. Moreover, the main effective components in these samples were also analyzed by UHPLC-TQ-MS/MS. Clear separation between the control and model groups from score plot of principal component analysis (PCA) was easily seen, indicating that HAA model was successfully conducted. Afterwards, relative distance calculation method between dose groups and control group from PCA score plot was adopted to evaluate the integrated effects of hematinic function of different samples. And the orders of hematinic effects were as follows: XHSG > DJ > DT > DZ > DH > DC > DY. Further analysis of these samples by UHPLC-TQ-MS/MS revealed that XSHG underwent complicated changes when herb pairs containing Danggui were excluded from XSHG, respectively. Compared with XSHG, the vast majority of active compounds in sample DY (formula minus herb pair Danggui-Yimucao) decreased significantly, which could partly explain why herb pair Danggui-Yimucao made great contribution to XSHG. These findings showed that withdrawal analysis method is a valuable tool to analyze the impacts of herb pairs containing Danggui on XSHG, which could lay foundation to reveal the compatibility rules of this formula.
Collapse
|
25
|
Li AP, Yang L, Cui T, Zhang LC, Liu YT, Yan Y, Li K, Qin XM. Uncovering the mechanism of Astragali Radix against nephrotic syndrome by intergrating lipidomics and network pharmacology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 77:153274. [PMID: 32771537 DOI: 10.1016/j.phymed.2020.153274] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/05/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Astragali Radix (AR), a common Traditional Chinese Medicine (TCM), is commonly used for treating nephrotic syndrome (NS) in China. At present, the research on the efficacy of AR against NS is relative clearly, but there are fewer researches on the mechanism. PURPOSE The aim of this study was to evaluate the potential beneficial effects of AR in an adriamycin-induced nephropathy rat model, as well as investigate the possible mechanisms of action and potential lipid biomarkers. METHODS In this work, a rat model of NS was established by two injections of ADR (3.5 + 1 mg/kg) into the tail vein. The potential metabolites and targets involved in the anti-NS effects of AR were predicted by lipidomics coupled with the network pharmacology approach, and the crucial metabolite and protein were further validated by western blotting and ELISA. RESULTS The results showed that 22 metabolites such as l-carnitine, LysoPC (20:3), and SM (d18:1/16:0) were associated with renal injury. Moreover, SMPD1, CPT1A and LCAT were predicted as lipids linked targets of AR against NS, whilst glycerophospholipid, sphingolipid and fatty acids metabolism were involved as key pathways of AR against NS. Besides, AR could play a critical role in NS by improving oxidative stress, inhibiting apoptosis and reducing inflammation. Interestingly, our results indicated that key metabolite l-carnitine and target CPT1 were one of the important metabolites and targets for AR to exert anti-NS effects. CONCLUSION In summary, this study offered a new understanding of the protection mechanism of AR against NS by network pharmacology and lipidomic method.
Collapse
Affiliation(s)
- Ai-Ping Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, China
| | - Liu Yang
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, China; College of Chemistry and Chemical Engineering of Shanxi University, Taiyuan 030006, China
| | - Ting Cui
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, China
| | - Li-Chao Zhang
- Institutes of Biomedical sciences of Shanxi University, Taiyuan 030006, China.
| | - Yue-Tao Liu
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, China
| | - Yan Yan
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, China
| | - Ke Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
26
|
Li C, Chen W, Zhang M, Zhang C, Cao B, Dong B, Qi S, Zhang Y, Fei X, Li X, Li R, Wang J, Li G. Modulatory effects of Xihuang Pill on lung cancer treatment by an integrative approach. Biomed Pharmacother 2020; 130:110533. [PMID: 32739739 DOI: 10.1016/j.biopha.2020.110533] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/05/2020] [Accepted: 07/11/2020] [Indexed: 12/17/2022] Open
Abstract
Lung cancer has a rapidly increasing incidence and remains the highest ranked cancer in terms of mortality worldwide. Xihuang Pill(XHW), a famous four-herb traditional Chinese formulation, has been used to treat lung cancer in China for more than 100 years. It is usually prescribed as a complementary and alternative medicine for cancer therapy. However, the main active ingredients of XHW that treat lung cancer and their regulatory effects remain unclear. Here, we revealed modulatory effects effects of XHW on lung cancer in a mouse model of Lewis lung cancer (LLC) by a comprehensive strategy combining network pharmacology with metabolomics. The results demonstrated that XHW inhibited tumour growth in this model. Additionally, 11 differentially expressed metabolites were identified in the XHW group compared to those in the model group or normal group by untargeted metabolomics. They were enriched in amino acid-related metabolic pathways, and the top three pathways were phenylalanine metabolism; phenylalanine, tyrosine and tryptophan biosynthesis; and aminoacyl-tRNA biosynthesis. A total of 107 active components derived from Niuhuang, Shexiang, Ruxiang and Moyao, directly acted on 13 important targets (NR3C2, AKR1D1, MPO, PNP, NT5E, TAAR1, ADRB2, ADRB1, ADRA1A, ADRA2B, ADRA2A, MAOA and MAOB) to regulate 4 metabolites (L-phenylalanine, l-adrenaline, corticosterone and guanosine). Our results suggested that the key metabolites of XHW involved in the treatment of lung cancer were regulated by a multi-component and multi-target interaction network. This research elucidated the modulatory effect and therapeutic advantages of XHW treatment for lung tumours through an integrated approach.
Collapse
Affiliation(s)
- Chunyu Li
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wei Chen
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Mingyu Zhang
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Congen Zhang
- Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Bo Cao
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bin Dong
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shuya Qi
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujun Zhang
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaofei Fei
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xingjie Li
- Research Center for Clinical and Translational Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - RuiSheng Li
- Research Center for Clinical and Translational Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Jiabo Wang
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Guohui Li
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
27
|
Liu WJ, Jiang ZM, Chen Y, Xiao PT, Wang ZY, Huang TQ, Liu EH. Network pharmacology approach to elucidate possible action mechanisms of Sinomenii Caulis for treating osteoporosis. JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112871. [PMID: 32325182 DOI: 10.1016/j.jep.2020.112871] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 05/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sinomenii Caulis (SC) is a well-konwn traditional Chinese medicine used for treatment of rheumatoid arthritis (RA), dermatophytosis and paralysis. Patients with RA are usually secondary to osteoporosis, but the potential protective effect of SC on osteoporosis (OP) is seldom reported and its possible action mechanism is little known. AIM The purpose of this study was to demonstrate the anti-osteoporosis effects of SC extract and alkaloids in prednisolone (Pre)-induced OP of zebrafish, and then to explore the potential mechanism of SC on system level by network pharmacology. METHODS Firstly, zebrafish OP model was established to investigate the anti-osteoporosis effect of SC. Secondly, the targets of SC and OP from multiple databases were collected, and Compound-Target-Pathway network based on protein-protein interaction (PPI) was constructed. Moreover, gene enrichment and annotation were performed via the DAVID server. Finally, the reliability of the network pharmacology prediction results in Pre-induced OP of zebrafish was verified by qRT-PCR. RESULTS The results indicated that SC extract and alkaloids have remarkable ability to promote bone formation of cranial bones and reduce TRAP contents in Pre-induced OP of zebrafish. 32 OP-related ingredients in SC and 77 OP-related targets were screened from multiple databases, and 15 OP-related pathways were enriched by the KEGG database. Further experimental validation indicated that SC extract and alkaloids could regulate the expression of MAPK14, CASP3, CXCL8, IL-1β, IL6, PTGS2, TNF-α, ESR1, and MMP9 for treatment of OP. CONCLUSION In summary, we conducted an integrative analysis to provide convincing evidence that SC may partially alleviate OP by inhibiting pro-inflammatory cytokines and regulating of RANK/RANKL/OPG system.
Collapse
Affiliation(s)
- Wen-Jin Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, PR China
| | - Zheng-Meng Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, PR China
| | - Yi Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, PR China
| | - Ping-Ting Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, PR China
| | - Zi-Yuan Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, PR China
| | - Tian-Qing Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, PR China
| | - E-Hu Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, PR China.
| |
Collapse
|
28
|
Jiang M, Wang W, Zhang J, Wang C, Bi Y, Li P, Yang S, Li J, Xu YT, Wang T. Protective Effects and Possible Mechanisms of Actions of Bushen Cuyun Recipe on Diminished Ovarian Reserve Induced by Cyclophosphamide in Rats. Front Pharmacol 2020; 11:546. [PMID: 32477106 PMCID: PMC7237638 DOI: 10.3389/fphar.2020.00546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022] Open
Abstract
Backgrounds Diminished ovarian reserve (DOR) contributes significantly to female infertility. Bushen Cuyun Recipe (BCR, Tradename Yueliang Yin), a product marketed in China, has shown effects in the treatment of female infertility in clinical practices of traditional Chinese medicine (TCM). In this study, we aimed to investigate the chemical compositions of BCR and its efficacy based on scientific evidence and pharmacological mechanisms in DOR treatments. Methods The chemical compositions of BCR were determined by the UHPLC-LTQ-Orbitrap MS method. DOR was induced in a rat model by intraperitoneal injection of cyclophosphamide (CTX) 90 mg/kg once. After the CTX treatment for 14 days, rats were intragastrically administrated deionized water, dehydroepiandrosterone (DHEA), or BCR in low, middle, and high doses for 30 days. Ovarian index, ovarian morphology, follicle number, and anti-Müllerian hormone (AMH) in serum were determined to assess the effects of BCR. To investigate possible action mechanisms, network pharmacological analysis was used to predict possible pathways in the effects of BCR on female infertility. In experimental studies, the contents of hormones in the hypothalamic-pituitary-ovarian axis (HPOA, including estradiol (E2), follicle-stimulating hormone (FSH), and gonadotropin-releasing hormone (GnRH)) and pyroptosis-related proteins, including gasdermin D (GSDMD), caspase-1, and interleukin-18 (IL-18), in ovarian were detected by ELISA, immunofluorescence and Western blot. Results Chemical studies revealed a total 84 components in BCR, which included 43 flavonoids, 13 triterpenoids, 11 phenolic acids, 8 alkaloids, 1 coumarin, 1 anthraquinone, and 7 other components. After treatments with BCR, the ovarian morphology, ovarian index, estrous cycle, growing follicles and corpus luteum from last ovulation, and serum AMH in DOR rats were significantly improved. Network pharmacological analysis suggested that the NOD-like receptor signaling pathway ranked No. 1 among the mechanisms by which BCR affects female infertility. Experimental results demonstrated that the content of serum FSH in DOR rats was significantly decreased and the contents of serum GnRH and E2 were significantly elevated after BCR treatment and that the elevated level of GSDMD, caspase-1, and IL-18 was significantly reversed in BCR-treated rats. Conclusions The chemical compositions of BCR were first identified in the present study. BCR was demonstrated to show protective effects on DOR. The possible mechanisms of BCR on DOR might be mediated by regulating gonadal hormones of the HPOA and protecting granulosa cells in ovary against pyroptosis.
Collapse
Affiliation(s)
- Mei Jiang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Weiling Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jingxuan Zhang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chunguo Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yucong Bi
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Pin Li
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Song Yang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jialin Li
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan-Tong Xu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
29
|
Wang ML, Yang QQ, Ying XH, Li YY, Wu YS, Shou QY, Ma QX, Zhu ZW, Chen ML. Network Pharmacology-Based Approach Uncovers the Mechanism of GuanXinNing Tablet for Treating Thrombus by MAPKs Signal Pathway. Front Pharmacol 2020; 11:652. [PMID: 32477130 PMCID: PMC7237702 DOI: 10.3389/fphar.2020.00652] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 04/22/2020] [Indexed: 11/24/2022] Open
Abstract
Background GuanXinNing tablet (GXNT), a traditional Chinese patent medicine, has been found to have remarkable antithrombotic effects and can effectively inhibit pro-thrombotic factors in previous studies. However, the mechanism of its antithrombotic effects remains little known. Methods In this study, we first determined and identified the sources of each main compound in GXNT using liquid chromatography-mass spectrometry (LC-MS). Through the approach of network pharmacology, we predicted the action targets of the active components, mapped the target genes related to thrombus, and obtained potential antithrombotic targets for active ingredients. We then performed gene ontology (GO) enrichment analyses and KEGG signaling pathway analyses for the action targets, and constructed networks of active component–target and active component–target–pathway for GXNT. Additionally, we evaluated the pharmacodynamic effects of GXNT on thrombus using the rat thrombus model induced by FeCl3, observed the effects of antiplatelet aggregation via platelet assay, and further verified the results predicted by network pharmacology via Western blot. Results In total, 14 active ingredients were identified in GXNT, and 83 action targets were predicted, 17 of which are antithrombotic targets that potentially participate in processes including response to oxidative stress and positive regulation of blood vessel endothelial cell migration. KEGG pathway analyses revealed that the predicted action targets were involved in multiple signal pathways, such as MAPK, IL-17, and platelet activation. Pharmacodynamics study found that GXNT could significantly reduce the thrombus length and weight, lower platelet aggregation function, and decrease the levels of Fbg and PAI-1. In addition, GXNT could significantly increase 6-keto-PGF1α content and regulate the ratio of TXB2/6-keto-PGF1α, while not having dramatic effects on TXB2. GXNT was also observed to visibly inhibit maximum platelet aggregation. Herein, we further studied the thrombus-related MAPKs signaling pathway and found that GXNT could significantly reduce the phosphorylation levels of p38MAPK, ERK, and JNK proteins in platelet. Conclusions This study revealed the pharmacodynamic material basis of GXNT and its potential multicomponent–multitarget–multipath pharmacological effects, confirmed the antithrombotic effects of GXNT, and showed that its mechanism may be related to inhibiting phosphorylation of p38, ERK, and JNK proteins in MAPKs signaling pathway, partially verifying the results from network pharmacology. The results from this study could provide a theoretical basis for the development and clinical application of GXNT.
Collapse
Affiliation(s)
- Mu-Lan Wang
- Academy of Chinese Medicine & Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou, China.,The Department of Medicine, Chiatai Qingchunbao Pharmaceutical Co., Ltd., Hangzhou, China
| | - Qin-Qin Yang
- Academy of Chinese Medicine & Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Experimental Animals, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Xu-Hui Ying
- The Department of Medicine, Chiatai Qingchunbao Pharmaceutical Co., Ltd., Hangzhou, China
| | - Yuan-Yuan Li
- Academy of Chinese Medicine & Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yang-Sheng Wu
- Academy of Chinese Medicine & Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qi-Yang Shou
- Academy of Chinese Medicine & Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Quan-Xin Ma
- Academy of Chinese Medicine & Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zi-Wei Zhu
- The Department of Medicine, Chiatai Qingchunbao Pharmaceutical Co., Ltd., Hangzhou, China
| | - Min-Li Chen
- Academy of Chinese Medicine & Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
30
|
Li JM, Liao CC, Huang HC, Lin CL, Lo HY, Hsiang CY, Ho TY. Regulation effect and mechanism of Sheng-Hua-Tang on female reproductive system: From experimental transcriptomic analysis to clinical applications. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112431. [PMID: 31783136 DOI: 10.1016/j.jep.2019.112431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sheng-Hua-Tang (SHT) is commonly used to treat female illnesses, especially postpartum conditioning. However, its effects and mechanisms on female reproductive system remain unclear. The aim of the present study was to investigate the effect of SHT on female brain-ovary-uterus axis from bench to clinic. MATERIALS AND METHODS Mice were administrated SHT (200 mg/kg) orally for seven consecutive days. Brain, ovary, and uterus tissues were then collected for microarray analysis. A nationwide database analysis and a pilot randomized, open-label clinical trial were further applied to evaluate the clinical application and effects of SHT on postpartum women. RESULTS Microarray analysis showed that oral administration of SHT induced a cascade reaction of gene expression, with 17, 883, and 1592 genes were significantly regulated by SHT in brain, ovary, and uterus, respectively. Population-based analysis of one million subjects in Taiwan's National Health Insurance Research Database between 1997 and 2013 showed that SHT was commonly used in menstrual disorders in female population, especially dysmenorrhea, abnormal uterine bleeding, and variation of menstrual cycle. Clinical trial on postpartum women showed that oral administration SHT for one week alleviated uterine contraction pain and breast swelling pain. Furthermore, Mmp2, Mmp3, Mmp9, Mmp11, Mmp15, Oxtr, Plrl, and Tph2 gene expression affected by SHT in mice were correlated with clinical effects of SHT in human subjects. CONCLUSION This report provided the scientific evidences of mechanisms and clinical efficacies of SHT. Moreover, our findings might afford insights for clinical doctors in terms of SHT prescription.
Collapse
Affiliation(s)
- Jung-Miao Li
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan; Department of Chinese Medicine, Show Chwan Memorial Hospital, Changhua, 50008, Taiwan.
| | - Chung-Chih Liao
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan.
| | - Hui-Chi Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, 40402, Taiwan.
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung, 40447, Taiwan; College of Medicine, China Medical University, Taichung, 40402, Taiwan.
| | - Hsin-Yi Lo
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan.
| | - Chien-Yun Hsiang
- Department of Microbiology and Immunology, China Medical University, Taichung, 40402, Taiwan.
| | - Tin-Yun Ho
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, 41354, Taiwan.
| |
Collapse
|
31
|
Zhang Z, Yi P, Yang J, Huang J, Xu P, Hu M, Zhang C, Wang B, Peng W. Integrated network pharmacology analysis and serum metabolomics to reveal the cognitive improvement effect of Bushen Tiansui formula on Alzheimer's disease. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112371. [PMID: 31683034 DOI: 10.1016/j.jep.2019.112371] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bushen Tiansui Formula (BSTSF) is a traditional Chinese medicine formula used clinically to treat Alzheimer's disease (AD) for many years. Previously, we have partially elucidated the mechanisms involved in the therapeutic effects of BSTSF on AD. However, the underlying mechanisms remain largely unclear. AIM OF THE STUDY The aim of this study was to further investigate the therapeutic effects of BSTSF on AD using an integrated strategy of network pharmacology and serum metabolomics. MATERIALS AND METHODS The rat models of AD were established using Aβ 1-42 injection, and morris water maze test was used to evaluate the efficacy of BSTSF on AD. Next, network pharmacology analysis was applied to identify the active compounds and target genes, which might be responsible for the effect of BSTSF. Then, a metabolomics strategy has been developed to find the possible significant serum metabolites and metabolic pathway induced by BSTSF. Additionally, two parts of the results were integrated to confirm each other. RESULTS The results of the network pharmacology analysis showed 37 compounds and 64 potential target genes related to the treatment of AD with BSTSF. The functional enrichment analysis indicated that the potential mechanism was mainly associated with the tumor necrosis factor signaling pathway and phosphatidylinositol 3 kinase/protein kinase B signaling pathway. Based on metabolomics, 78 differential endogenous metabolites were identified as potential biomarkers related to the BSTSF for treating AD. These metabolites were mainly involved in the relevant pathways of linoleic acid metabolism, α-linolenic acid metabolism, glycerophospholipid metabolism, tryptophan metabolism, and arginine and proline metabolism. These findings were partly consistent with the findings of the network pharmacology analysis. CONCLUSIONS In conclusion, our results solidly supported and enhanced out current understanding of the therapeutic effects of BSTSF on AD. Meanwhile, our work revealed that the proposed network pharmacology-integrated metabolomics strategy was a powerful means for identifying active components and mechanisms contributing to the pharmacological effects of traditional Chinese medicine.
Collapse
Affiliation(s)
- Zheyu Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Pengji Yi
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Jingjing Yang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jianhua Huang
- Hunan Academy of Chinese Medicine, Changsha, 410013, China
| | - Panpan Xu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Muli Hu
- Department of Scientific Research, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Chunhu Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Bing Wang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
32
|
Li Z, Zuo L, Shi Y, Tian D, Liu L, Yang Y, Zhou L, Zhang X, Kang J, Hao X, Yuan C, Sun Z. Combination of high-resolution accurate mass spectrometry and network pharmacology provides a new method for the chemical constituents' study and target prediction in vivo of Garcinia multiflora. J Sep Sci 2019; 43:978-986. [PMID: 31867785 DOI: 10.1002/jssc.201900755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 12/27/2022]
Abstract
Garcinia multiflora is a kind of evergreen tree which is widely distributed in the south of China. However, few researches focused on the constituents in different parts of G. multiflora as well as their potential targets and pathways in vivo. To clarify the chemical constituents of G. multiflora rapidly and predict the potential targets as well as pathways in vivo that this plant may have effects on, a feasible and accurate strategy was developed to identify the chemical constituents in fruits, leaves, and branches of G. multiflora by ultra-high performance liquid chromatography with Q-Exactive hybrid quadrupole-orbitrap high-resolution accurate mass spectrometry. Network pharmacology was then employed and a "compounds-targets-diseases" network was established. Sixty-one compounds including polycyclic polyprenylated acylphloroglucinols, xanthones, and flavonoids were finally identified in different parts of G. multiflora, and the contents of seven constituents were quantified, respectively. On the basis of the network pharmacology analysis results, compounds in this plant were speculated to have potential pharmacodynamic effect on cancer, inflammatory, respiratory diseases, cardiovascular diseases, and metabolic diseases. This research will provide a new method for the advanced study on the pharmacodynamic materials basis of G. multiflora, and offer valuable evidences for medicinal purpose of this plant.
Collapse
Affiliation(s)
- Zhuolun Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, P. R. China
| | - Lihua Zuo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, P. R. China
| | - Yingying Shi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, P. R. China
| | - Dongsong Tian
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, P. R. China
| | - Liwei Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, P. R. China
| | - Yantao Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, P. R. China
| | - Lin Zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, P. R. China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, P. R. China
| | - Jian Kang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, P. R. China
| | - Xiaojiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, P. R. China
| | - Chunmao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, P. R. China
| | - Zhi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, P. R. China
| |
Collapse
|
33
|
Liu X, Zhou QG, Zhu XC, Xie L, Cai BC. Screening for Potential Active Components of Fangji Huangqi Tang on the Treatment of Nephrotic Syndrome by Using Integrated Metabolomics Based on "Correlations Between Chemical and Metabolic Profiles". Front Pharmacol 2019; 10:1261. [PMID: 31695617 PMCID: PMC6817620 DOI: 10.3389/fphar.2019.01261] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/30/2019] [Indexed: 12/21/2022] Open
Abstract
As for traditional Chinese medicine (TCM) prescription, what puzzled researchers most was how to select proper chemical markers to represent the whole pharmacological action system. In this paper, an integrated metabolomic method was presented for a systematic discovery of potential active components in Fangji Huangqi Tang (FHT), a well-known TCM prescription for nephrotic syndrome treatment, based on “correlations between chemical and metabolic profiles.” Firstly, a metabolomics study was carried out to select representative biomarkers of nephrotic syndrome. Then, after drug administration, the dynamic process of serum composition was investigated by the ultra-high performance liquid chromatography coupled with electrospray ionization–quadrupole–time of flight–mass spectrometry (UHPLC-ESI-Q-TOF-MS) technique to detect the prototypes and related metabolites of relative components from FHT. Pearson correlation analysis was finally used to find out the correlations between the endogenous metabolic spectrums and the chemical serum spectrums. As a result, 17 biomarkers for nephrotic syndrome indication were identified, and the main metabolic pathways of their concern included linoleic acid metabolism; cyanoamino acid metabolism; alpha-linolenic acid metabolism; glycine, serine, and threonine metabolism; arachidonic acid metabolism; and glycerophospholipid metabolism. Meanwhile, active components in FHT for nephrotic syndrome treatment were screened out, including (+)-tetrandrine demethylation, fenfangjine G hydrogenation, tetrandrine, N-methylfangchinoline, tetrandrine demethylation, fangchinoline, glycyrrhetic acid, astragaloside II alcohol dehydration, atractylenolide III demethylation + hydrogenation, atractylenolide III demethylation + hydrogenation, and licoricone-N-acetylcysteine conjugation. This study demonstrated a promising way to elucidate the active chemical material basis of TCM prescription.
Collapse
Affiliation(s)
- Xiao Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi-Gang Zhou
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Xiao-Chai Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Xie
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bao-Chang Cai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
34
|
Liu J, Li Y, Zhang Y, Huo M, Sun X, Xu Z, Tan N, Du K, Wang Y, Zhang J, Wang W. A Network Pharmacology Approach to Explore the Mechanisms of Qishen Granules in Heart Failure. Med Sci Monit 2019; 25:7735-7745. [PMID: 31613871 PMCID: PMC6813758 DOI: 10.12659/msm.919768] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
This study aimed to investigate the intrinsic mechanisms of Qishen granules (QSG) in the treatment of HF, and to provide new evidence and insights for its clinical application. Information on QSG ingredients was collected from Traditional Chinese medicine systems pharmacology (TCMSP), TCM@Taiwan, TCMID, and Batman, and input into SwissTargetPrediction to identify the compound targets. HF-related targets were detected from Therapeutic Target Database (TTD), Disgenet-Gene, Drugbank database, and Online Mendelian Inheritance in Man (OMIM) database. The overlap targets of QSG and HF were identified for pathway enrichment analysis by utilizing the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The protein-protein interaction (PPI) network of QSG-HF was constructed, following by the generation of core targets, construction of core modules, and KEGG analysis of the core functional modules. There were 1909 potential targets predicted from the 243 bioactive compounds in QSG which shared 129 common targets with HF-related targets. KEGG pathway analysis of common targets indicated that QSG could regulated 23 representative pathways. In the QSG-HF PPI network analysis, 10 key targets were identified, including EDN1, AGT, CREB1, ACE, CXCR4, ADRBK1, AGTR1, BDKRB1, ADRB2, and F2. Further cluster and enrichment analysis suggested that neuroactive ligand-receptor interaction, cGMP-PKG signaling pathway, renin secretion, vascular smooth muscle contraction, and the renin-angiotensin system might be core pathways of QSG for HF. Our study elucidated the possible mechanisms of QSG from a systemic and holistic perspective. The key targets and pathways will provide new insights for further research on the pharmacological mechanism of QSG.
Collapse
Affiliation(s)
- Junjie Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Yuan Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Yili Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Mengqi Huo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Xiaoli Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Zixuan Xu
- Respiratory Department, Nanjing Pukou Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Nannan Tan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Kangjia Du
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Yong Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Jian Zhang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Wei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China (mainland)
| |
Collapse
|
35
|
Wang R, Shi L, Liu S, Liu Z, Song F, Sun Z, Liu Z. Mass spectrometry-based urinary metabolomics for the investigation on the mechanism of action of Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. leaves against ischemic stroke in rats. JOURNAL OF ETHNOPHARMACOLOGY 2019; 241:111969. [PMID: 31125596 DOI: 10.1016/j.jep.2019.111969] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/19/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a traditional Chinese medicine, Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. leaves (ESL) can treat ischemic, neurasthenia, and hypertension diseases. However, only few studies have been conducted on the mechanism of action of ESL for ischemic disease treatment. AIM OF THE STUDY This study aimed to discover the potential biomarkers in the rats caused by ischemic stroke and build a gene-enzyme-biomarker network to explore the mechanism of ESL treatment on ischemic stroke further. MATERIALS AND METHODS The urinary metabolomics strategy was developed by combining UPLC-Q-TOF/MS with multivariate data analysis. The gene-enzyme-biomarker network was built by Cytoscape 3.6.0 on the basis of the potential biomarkers filtered out via urinary metabolomic analysis. Then, the potential target enzymes of ESL in the treatment of ischemic stroke were selected for further validation analysis via the ELISA kits. RESULTS A total of 42 biomarkers associated with ischemic stroke have been identified, among which 38 species can be adjusted by ESL, including 5'-methylthioadenosine, prostaglandin A2, l-methionine, aldosterone, 11b-hydroxyprogesterone, prostaglandin E3, dehydroepiandrosterone, taurine, 5-methoxyindoleacetate, and p-cresol glucuronide. These biomarkers were involved in several metabolic pathways, including taurine and hypotaurine, arachidonic acid, cysteine and methionine, steroid hormone biosynthesis, tryptophan, and tyrosine metabolism pathways. The gene-enzyme-biomarker network was built, and three predicted target proteins, including cyclooxygenase-2 (COX-2), monoamine oxidase (MAO), and nitric oxide synthase (NOS), were selected as the potential target enzymes for ESL in ischemic stroke treatment. CONCLUSIONS All results showed that ESL can play a therapeutic role in treating ischemic stroke through different pathways. This study will provide an overall view of the mechanism underlying the action of ESL against ischemic stroke.
Collapse
Affiliation(s)
- Rongjin Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Liqiang Shi
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Fengrui Song
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zhiheng Sun
- School of Chemistry, Jilin University, Changchun, 130000, China
| | - Zhongying Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|
36
|
Pang HQ, An HM, Yang H, Wu SQ, Fan JL, Mi L, Wang H, Li P, Gao W. Comprehensive chemical profiling of Yindan Xinnaotong soft capsule and its neuroprotective activity evaluation in vitro. J Chromatogr A 2019; 1601:288-299. [DOI: 10.1016/j.chroma.2019.05.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/22/2019] [Accepted: 05/13/2019] [Indexed: 12/20/2022]
|
37
|
Chen R, Wang J, Zhan R, Zhang L, Wang X. Integrated Systems Pharmacology, Urinary Metabonomics, and Quantitative Real-Time PCR Analysis to Uncover Targets and Metabolic Pathways of the You-Gui Pill in Treating Kidney-Yang Deficiency Syndrome. Int J Mol Sci 2019; 20:E3655. [PMID: 31357410 PMCID: PMC6696241 DOI: 10.3390/ijms20153655] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/13/2019] [Accepted: 07/23/2019] [Indexed: 12/19/2022] Open
Abstract
Kidney-yang deficiency syndrome (KYDS) is a metabolic disease caused by a neuro-endocrine disorder. The You-gui pill (YGP) is a classic traditional Chinese medicine (TCM) formula for the treatment of KYDS and has been widely used to warm and recuperate KYDS clinically for hundreds of years in China. However, it is unknown whetherthe corresponding targets and metabolic pathways can also be found via using metabonomics based on one platform (e.g., 1H NMR) to study different biological samples of KYDS. At the same time, relevant reports on further molecular verification (e.g., RT-qPCR analysis) of these targets associated with biomarkers and metabolic pathways have not yet, to our knowledge, been seen in KYDS's research. In the present study, a comprehensive strategy integrating systems pharmacology and 1H NMR-based urinary metabonomics analysis was proposed to identify the target proteins and metabolic pathways that YGP acts on KYDS. Thereafter, further validation of target proteins in kidney tissue was performed through quantitative real-time PCR analysis (RT-qPCR). Furthermore, biochemical parameters and histopathological analysis were studied. As a result, seven target proteins (L-serine dehydratase; phosphoenolpyruvate carboxykinase; spermidine synthase; tyrosyl-tRNA synthetase, glutamine synthetase; 3-hydroxyacyl-CoA dehydrogenase; glycine amidinotransferase) in YGP were discovered to play a therapeutic role in KYDS via affecting eight metabolic pathways (glycine, serine and threonine metabolism; butanoate metabolism; TCA cycle, etc.). Importantly, three target proteins (i.e., 3-hydroxyacyl-CoA dehydrogenase; glutamine synthetase; and glycine amidinotransferase) and two metabolic pathways (butanoate metabolism and dicarboxylate metabolism) related to KYDS, to our knowledge, had been newly discovered in our study. The mechanism of action mainly involved energy metabolism, oxidative stress, ammonia metabolism, amino acid metabolism, and fatty acid metabolism. In short, our study demonstrated that targets and metabolic pathways for the treatment of KYDS by YGP can be effectively found via combining with systems pharmacology and urinary metabonomics. In addition to this, common and specific targets and metabolic pathways of KYDS treated by YGP can be found effectively by integration with the analysis of different biological samples (e.g., serum, urine, feces, and tissue). It is; therefore, important that this laid the foundation for deeper mechanism research and drug-targeted therapy of KYDS in future.
Collapse
Affiliation(s)
- Ruiqun Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Jia Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Runhua Zhan
- Shool of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lei Zhang
- College of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiufeng Wang
- College of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
38
|
Hao J, Hu H, Liu J, Wang X, Liu X, Wang J, Niu M, Zhao Y, Xiao X. Integrated Metabolomics and Network Pharmacology Study on Immunoregulation Mechanisms of Panax ginseng through Macrophages. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:3630260. [PMID: 31341490 PMCID: PMC6614982 DOI: 10.1155/2019/3630260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/03/2019] [Indexed: 11/29/2022]
Abstract
Panax ginseng (PG) is a widely used functional food and herbal with immunoregulation activity. Currently, immunoregulation studies of PG mainly focused on the specific actions of individual constituents. However, the integral immunoregulation mechanisms of PG need further research. In this study, an integrated metabolomics and network pharmacology approach were used to investigate it. High-content screening was used to evaluate macrophage phagocytosis activity of PG. Untargeted metabolomics profiling of murine macrophage cells with UHPLC-Q-TOF-MS and a multivariate data method were performed to discover the potential biomarkers and metabolic pathways. Then, a macrophage phenotype related "ingredients-targets-metabolites" network of PG was constructed using network pharmacology for further research. As a result, PG can significantly enhance macrophage phagocytosis of GFP-E. coli. A total of twenty potential biomarkers and ten main pathways for which levels changed markedly upon treatment were identified, including glycerophospholipid metabolism, glutathione metabolism, choline metabolism, and taurine metabolism. Twenty compounds of PG associated with metabolomic changes were selected by the network pharmacology analysis, including ginsenoside Re, ginsenoside Rg1, frutinone A, and kaempferol. The network pharmacology results also showed that PG can polarize macrophages to both M1 and M2 phenotype but may be prone to M2 phenotype. In conclusion, our results indicated that PG may be prone to polarize macrophages to M2 phenotype by mainly regulating the glutathione and choline metabolism, which was related to twenty compounds of PG.
Collapse
Affiliation(s)
- Junjie Hao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Department of China Military Institute of Chinese Materia, the Fifth Medical Center, Chinese PLA General Hospital, Beijing 100039, China
| | - Huangwanyin Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Department of China Military Institute of Chinese Materia, the Fifth Medical Center, Chinese PLA General Hospital, Beijing 100039, China
| | - Jing Liu
- Department of China Military Institute of Chinese Materia, the Fifth Medical Center, Chinese PLA General Hospital, Beijing 100039, China
- Chengde Medical University, Chengde 067000, China
| | - Xuan Wang
- Department of China Military Institute of Chinese Materia, the Fifth Medical Center, Chinese PLA General Hospital, Beijing 100039, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100039, China
| | - Xiaoyi Liu
- Department of China Military Institute of Chinese Materia, the Fifth Medical Center, Chinese PLA General Hospital, Beijing 100039, China
| | - Jiabo Wang
- Department of China Military Institute of Chinese Materia, the Fifth Medical Center, Chinese PLA General Hospital, Beijing 100039, China
| | - Ming Niu
- Department of China Military Institute of Chinese Materia, the Fifth Medical Center, Chinese PLA General Hospital, Beijing 100039, China
| | - Yanling Zhao
- Department of China Military Institute of Chinese Materia, the Fifth Medical Center, Chinese PLA General Hospital, Beijing 100039, China
| | - Xiaohe Xiao
- Department of China Military Institute of Chinese Materia, the Fifth Medical Center, Chinese PLA General Hospital, Beijing 100039, China
| |
Collapse
|
39
|
Shi XQ, Yue SJ, Tang YP, Chen YY, Zhou GS, Zhang J, Zhu ZH, Liu P, Duan JA. A network pharmacology approach to investigate the blood enriching mechanism of Danggui buxue Decoction. JOURNAL OF ETHNOPHARMACOLOGY 2019; 235:227-242. [PMID: 30703496 DOI: 10.1016/j.jep.2019.01.027] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/21/2019] [Accepted: 01/26/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danggui buxue Decoction (DBD) has been frequently used to treat with blood deficiency, which consisted of Danggui (DG) and Huangqi (HQ) at a ratio of 1:5. Accumulating evidence showed that blood deficiency in traditional Chinese medicine (TCM) was similar to anemia in modern medicine. AIM OF THE STUDY The purpose of this study was to explore its therapeutic mechanism of with network pharmacology approach. MATERIALS AND METHODS We explored the chemical compounds of DBD and used compound ADME screening to identify the potential compounds. Targets for the therapeutic actions of DBD were obtained from the PharmMapper, Swiss, SEA and STITCH. GO analysis and pathway enrichment analysis was performed using the DAVID webserver. Cytoscape was used to visualize the compound-target-pathway network for DBD. The pharmacodynamics and crucial targets were also validated. RESULTS Thirty-six potential active components in DBD and 49 targets which the active components acted on were identified. 47 KEGG pathways which DBD acted on were also come to light. And then, according to KEGG pathway annotation analysis, only 16 pathways seemed to be related to the blood nourishing effect of DBD, such as PI3K-AKT pathway, and so on. Only 32 targets participated in these 16 pathways and they were acted on by 29 of the 36 active compounds. Whole pharmacodynamic experiments showed that DBD had significant effects to blood loss rats. Furthermore, DBD could promote the up-regulation of hematopoietic and immune related targets and the down-regulation of inflammatory related targets. Significantly, with the results of effective rate, molecular docking and experimental validation, we predicted astragaloside IV in HQ, senkyunolide A and senkyunolide K in DG might be the major contributing compounds to DBD's blood enriching effect. CONCLUSION In this study, a systematical network pharmacology approach was built. Our results provided a basis for the future study of senkyunolide A and senkyunolide K as the blood enriching compounds in DBD. Furthermore, combined network pharmacology with validation experimental results, the nourishing blood effect of DBD might be manifested by the dual mechanism of enhancing immunity and promoting hematopoiesis.
Collapse
Affiliation(s)
- Xu-Qin Shi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Shi-Jun Yue
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China; Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China
| | - Yu-Ping Tang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China; Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China.
| | - Yan-Yan Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China; Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China
| | - Gui-Sheng Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Jing Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Zhen-Hua Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Pei Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| |
Collapse
|
40
|
Gong W, Zhu S, Chen C, Yin Q, Li X, Du G, Zhou Y, Qin X. The Anti-depression Effect of Angelicae Sinensis Radix Is Related to the Pharmacological Activity of Modulating the Hematological Anomalies. Front Pharmacol 2019; 10:192. [PMID: 30894817 PMCID: PMC6414447 DOI: 10.3389/fphar.2019.00192] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/14/2019] [Indexed: 12/31/2022] Open
Abstract
Angelicae Sinensis Radix (AS), a well-known herb in traditional Chinese medicine (TCM), has been wildly used for replenishing the blood and promoting circulation, in Asia for thousands of years. It has been confirmed that AS also possesses the pharmacological activity of anti-depression. At the same time, recent studies suggested that depression is associated with anemia, and depression could be ameliorated via modulating the blood system. However, it is still unknown whether the anti-depression effect of AS is related to its pharmacological activity of modulating the blood system. In the current study, hematological examination and metabonomic techniques were performed to explore potential anti-depression mechanisms of AS, related to the function of modulating the blood system in a chronic unpredictable mild stress (CUMS) model. The results demonstrated that AS could significantly improve CUMS-induced depressive symptom, hematological anomalies, and hypoxia symptoms. The analysis of metabonomics demonstrated that 26 potential biomarkers in depression could be regulated by the administration of AS. Among them, eight biomarkers participate in the metabolic pathways of amino acid and sphingolipid, and energy metabolism could also be regulated in an anemia model through the administration of AS, as reported in previous literatures. Further results proved that AS modulated energy metabolism in depression through the inhibition of the expression of pyruvate dehydrogenase lipoamide kinase isozyme 1 (PDK-1) and lactate dehydrogenase A (LDHA). These results suggested that the modulation of the blood system was involved in the anti-depression effect of AS. The mechanism may be associated with the promotion of the body’s energy metabolism, the stabilization of cell membranes, the promotion of serum protein synthesis, and the enhancement of immunity.
Collapse
Affiliation(s)
- Wenxia Gong
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Shiwei Zhu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Congcong Chen
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Qicai Yin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Xiao Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Guanhua Du
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuzhi Zhou
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| |
Collapse
|
41
|
Li C, Niu M, Wang R, Zhou XW, Dong B, Qi S, Chen W, Zhang M, Shi Y, Li R, Li G. The modulatory properties of Si Jun Zi Tang enhancing anticancer of gefitinib by an integrating approach. Biomed Pharmacother 2019; 111:1132-1140. [DOI: 10.1016/j.biopha.2018.12.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 01/13/2023] Open
|
42
|
|
43
|
Liu X, Zhu X, Xie L, Cai B. Pharmacokinetic/pharmacodynamic modelling of effective components of Fangji Huangqi Tang for its treatment of nephrotic syndrome. NEW J CHEM 2019. [DOI: 10.1039/c8nj03040e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An interesting study on the underlying correlations between pharmacokinetic parameters and the effective indexes of FHT based on PK-PD model.
Collapse
Affiliation(s)
- Xiao Liu
- School of Pharmacy, Nanjing University of Chinese Medicine
- Nanjing 210023
- China
| | - Xiaochai Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine
- Nanjing 210023
- China
| | - Li Xie
- School of Pharmacy, Nanjing University of Chinese Medicine
- Nanjing 210023
- China
| | - Baochang Cai
- School of Pharmacy, Nanjing University of Chinese Medicine
- Nanjing 210023
- China
| |
Collapse
|
44
|
A Network Pharmacology Analysis to Explore the Effect of Astragali Radix-Radix Angelica Sinensis on Traumatic Brain Injury. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3951783. [PMID: 30596090 PMCID: PMC6286735 DOI: 10.1155/2018/3951783] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/04/2018] [Accepted: 11/08/2018] [Indexed: 12/23/2022]
Abstract
Traumatic brain injury (TBI) is a critical public health and socioeconomic problem worldwide. The herb pair Astragali Radix (AR)-Radix Angelica Sinensis (RAS) is a common prescribed herbal formula or is added to other Chinese medicine prescriptions for traumatic brain injury (TBI) treatment. However, the underlying mechanisms are unclear. In this study, we aimed to explore the active ingredients and action targets of AR-RAS based on the combined methods of network pharmacology prediction and experimental verification. Furthermore, the corresponding potential mechanisms of “multicomponents, multitargets, and multipathways” were disclosed. Methods. A network pharmacology approach including ADME (absorption, distribution, metabolism, and excretion) filter analysis, target prediction, known therapeutic targets collection, Gene Ontology (GO), pathway enrichment analysis, and network construction was used in this study. Further verification experiments were performed to reveal the therapeutic effects of AR-RAS in a rat model of TBI. Results. The comprehensive systematic approach was to successfully identify 14 bioactive ingredients in AR-RAS, while 33 potential targets hit by these ingredients related to TBI. Based on GO annotation analysis, multiple biological processes were significantly regulated by AR-RAS. In addition, 89 novel signaling pathways (P<0.05) underlying the effects of AR-RAS for TBI treatment were identified by DAVID. The neurotrophin signaling pathway was suggested as the major related pathway targeted by AR-RAS to improve axonal growth. The animal experiment confirmed that AR-RAS significantly induced tissue recovery and improved neurological deficits on the 14th day (P<0.01). Treatment with AR-RAS markedly reduced the protein and mRNA expression level of NogoA in the hippocampus of TBI rats. Conclusion. Our work illuminates the “multicompounds, multitargets, and multipathways” curative action of AR-RAS in the treatment of TBI by network pharmacology. The animal experiment verifies the effects of AR-RAS on neurological function improvement and axonal outgrowth via downregulation of NogoA expression, providing a theoretical basis for further research on treatment of TBI.
Collapse
|
45
|
Salvia miltiorrhiza protects against diabetic nephropathy through metabolome regulation and wnt/β-catenin and TGF-β signaling inhibition. Pharmacol Res 2018; 139:26-40. [PMID: 30395946 DOI: 10.1016/j.phrs.2018.10.030] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/28/2018] [Accepted: 10/30/2018] [Indexed: 12/18/2022]
Abstract
Diabetic nephropathy (DN) is a complication of diabetes that is caused by uncontrolled high blood sugar. It has been reported that Salvia miltiorrhiza (SM) possesses the ability to prevent kidney damage, although the mechanisms remain unclear. The study was to investigate whether and how SM improved DN injury via regulation of metabolome and the molecular mechanisms. In this study, SD rats were fed a high glucose / high fat diet accompanied by 0.5% glucose water. Three weeks later, the rats were given one intraperitoneal injection of 30 mg/kg STZ each day for three days for DN model. The biochemical indicators and metabolomics of plasma, urine and renal tissue were analyzed. Then the western blotting analysis of renal tissue and glomerular mesangial cells were investigated. The results showed that Salvia miltiorrhiza extracts improved the renal injury and regulation of abnormal glycolipid metabolism. The metabolites in serum, urine and renal tissues have been changed significantly. The involved metabolic pathways mainly include phospholipid, arachidonic acid, and pyrimidine metabolisms. Meanwhile, SM inhibited the relative expression levels of wnt4, β-catenin and TGF-β in renal tissue and high-glucose induced glomerular mesangial cells.
Collapse
|
46
|
Chen R, Liao C, Guo Q, Wu L, Zhang L, Wang X. Combined systems pharmacology and fecal metabonomics to study the biomarkers and therapeutic mechanism of type 2 diabetic nephropathy treated with Astragalus and Leech. RSC Adv 2018; 8:27448-27463. [PMID: 35540008 PMCID: PMC9083881 DOI: 10.1039/c8ra04358b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/19/2018] [Indexed: 02/05/2023] Open
Abstract
In our study, systems pharmacology was used to predict the molecular targets of Astragalus and Leech, and explore the therapeutic mechanism of type 2 diabetic nephropathy (T2DN) treated with Astragalus and Leech. Simultaneously, to reveal the systemic metabolic changes and biomarkers associated with T2DN, we performed 1H NMR-based metabonomics and multivariate analysis to analyze fecal samples obtained from model T2DN rats. In addition, ELISA kits and histopathological studies were used to examine biochemical parameters and kidney tissue, respectively. Striking differences in the Pearson's correlation of 22 biomarkers and 9 biochemical parameters were also observed among control, T2DN and treated rats. Results of systems pharmacology analysis revealed that 9 active compounds (3,9-di-O-methylnissolin; (6aR,11aR)-9,10-dimethoxy-6a,11a-dihydro-6H-benzofurano[3,2-c]chromen-3-ol; hirudin; l-isoleucine; phenylalanine; valine; hirudinoidine A-C) and 9 target proteins (l-serine dehydratase; 3-hydroxyacyl-CoA dehydrogenase; tyrosyl-tRNA synthetase; tryptophanyl-tRNA synthetase; branched-chain amino acid aminotransferase; acetyl-CoA C-acetyltransferase; isovaleryl-CoA dehydrogenase; pyruvate dehydrogenase E1 component alpha subunit; hydroxyacylglutathione hydrolase) of Astragalus and Leech were closely associated with the treatment of T2DN. Using fecal metabonomics analysis, 22 biomarkers were eventually found to be closely associated with the occurrence of T2DN. Combined with systems pharmacology and fecal metabonomics, these biomarkers were found to be mainly associated with 6 pathways, involving amino acid metabolism (leucine, valine, isoleucine, alanine, lysine, glutamate, taurine, phenylalanine, tryptophan); energy metabolism (lactate, succinate, creatinine, α-glucose, glycerol); ketone body and fatty acid metabolism (3-hydroxybutyrate, acetate, n-butyrate, propionate); methylamine metabolism (dimethylamine, trimethylamine); and secondary bile acid metabolism and urea cycle (deoxycholate, citrulline). The underlying mechanisms of action included protection of the liver and kidney, enhancement of insulin sensitivity and antioxidant activity, and improvement of mitochondrial function. To the best of our knowledge, this is the first time that systems pharmacology combined with fecal metabonomics has been used to study T2DN. 6 metabolites (n-butyrate, deoxycholate, propionate, tryptophan, taurine and glycerol) associated with T2DN were newly discovered in fecal samples. These 6 metabolites were mainly derived from the intestinal flora, and related to amino acid metabolism, fatty acid metabolism, and secondary bile acid metabolism. We hope the results of this study could be inspirational and helpful for further exploration of T2DN treatment. Meanwhile, our results highlighted that exploring the biomarkers of T2DN and therapeutic mechanisms of Traditional Chinese Medicine (TCM) formulas on T2DN by combining systems pharmacology and fecal metabonomics methods was a promising strategy.
Collapse
Affiliation(s)
- Ruiqun Chen
- School of Basic Courses, Guangdong Pharmaceutical University Guangzhou 510006 P. R. China +86-20-39352186 +86-20-39352195
| | - Chengbin Liao
- School of Basic Courses, Guangdong Pharmaceutical University Guangzhou 510006 P. R. China +86-20-39352186 +86-20-39352195
| | - Qian Guo
- School of Basic Courses, Guangdong Pharmaceutical University Guangzhou 510006 P. R. China +86-20-39352186 +86-20-39352195
| | - Lirong Wu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University Guangzhou 510006 P. R. China
| | - Lei Zhang
- School of Basic Courses, Guangdong Pharmaceutical University Guangzhou 510006 P. R. China +86-20-39352186 +86-20-39352195
| | - Xiufeng Wang
- School of Basic Courses, Guangdong Pharmaceutical University Guangzhou 510006 P. R. China +86-20-39352186 +86-20-39352195
| |
Collapse
|
47
|
Li Y, Li Y, Lu W, Li H, Wang Y, Luo H, Wu Y, Dong W, Bai G, Zhang Y. Integrated Network Pharmacology and Metabolomics Analysis of the Therapeutic Effects of Zi Dian Fang on Immune Thrombocytopenic Purpura. Front Pharmacol 2018; 9:597. [PMID: 29971001 PMCID: PMC6018083 DOI: 10.3389/fphar.2018.00597] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/18/2018] [Indexed: 12/25/2022] Open
Abstract
Current hormone-based treatments for immune thrombocytopenic purpura (ITP) are associated with potentially serious adverse reactions. Zi Dian Fang (ZDF) is a multi-target Traditional Chinese Medicine (TCM) used to treat both the symptoms and root causes of ITP, with fewer side effects than hormone-based treatments. This study analysis of the therapeutic effects of ZDF on ITP from three aspects: platelet proliferation, immunoregulation, and inflammation. After detection of 52 chemical constituents of ZDF by UPLC-Q-TOF/MS, The main targets and pathways affected by ZDF were screened by network pharmacology and verified by Western blot and ELISA. Meanwhile, metabolomics analysis were applied to a mouse model of ITP to identify and screen endogenous terminal metabolites differentially regulated by ZDF. Integrated network pharmacology and metabolomics analysis of the therapeutic effects of ZDF on ITP may be as follows: ZDF counteracts ITP symptoms mainly by inhibiting Ras/MAPKs (Ras/Mitogen-activated protein kinases) pathway, and the expression of upstream protein (Ras) and downstream protein (p-ERK, p-JNK, p-p38) were inhibited, which affects the content of effect index associated with proliferation (Thrombopoietin, TPO; Granulocyte-macrophage colony stimulating factor, GM-CSF), inflammation (Tumor necrosis factor-α, TNF-α; Interleukin-6, IL-6), immune (Interleukin-2, IL-2; Interferon-gamma, IFN-γ; Interleukin-4, IL-4), so that the body’s arginine, Δ12-prostaglandin j2 (Δ12-PGJ2), 9-cis-Retinoic Acid, sphingosine-1-phosphate (S1P), oleic acid amide and other 12 endogenous metabolites significantly changes. Considering the established safety profile, the present study suggests ZDF may be a useful alternative to hormone-based therapies for the treatment of ITP.
Collapse
Affiliation(s)
- Yubo Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yamei Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenliang Lu
- Tasly Institute, Tasly Pharmaceutical Group, Tianjin, China
| | - Hongbin Li
- Tasly Institute, Tasly Pharmaceutical Group, Tianjin, China
| | - Yuming Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Houmin Luo
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuanyuan Wu
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenying Dong
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Gang Bai
- College of Pharmacy, Nankai University, Tianjin, China
| | - Yanjun Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
48
|
Tan YJ, Zhou GS, Guo S, Yan H, Zhang J, Zhu ZH, Shi XQ, Yue SJ, Tang YP, Huang SL, Peng GP, Duan JA. Simultaneous optimization of ultrasonic-assisted extraction of antioxidant and anticoagulation activities of compounds from Leonurus japonicus Houtt. by response surface methodology. RSC Adv 2018; 8:40748-40759. [PMID: 35557879 PMCID: PMC9091479 DOI: 10.1039/c8ra07361a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/16/2018] [Indexed: 11/21/2022] Open
Abstract
Leonurus japonicus Houtt. is a herbaceous annual of the Lamiaceae family with pantropical distribution; it is called motherwort in China. It plays important roles in anticoagulation and antioxidation. This study aimed to explore the optimization of ultrasound-assisted extraction of multiple compounds from motherwort as well as their antioxidant and anticoagulation activities using response surface methodology. Box–Behnken design was employed to optimize three significant influences, namely extraction time, extraction temperature and ethanol concentration. The optimum extraction parameters acquired based on a combination of the yield of the target compounds and their antioxidant and anticoagulation activities were an extraction time of 38.2 min, an extraction temperature of 30.0 °C, an ethanol concentration of 48.9% (v/v), a solid–liquid ratio of 30.0 mL g−1 and an ultrasonic power of 500.0 W. Under the optimal conditions, the maximal yield of the anticoagulation and antioxidant compounds of motherwort was 0.994%; the thrombin time was 19.872 s; prothrombin time was 8.270 s; the activated partial thromboplastin time was 15.535 s; the fibrinogen was 1.420 g L−1; and the 1,1-diphenyl-2-picrylhydrazyl free radical scavenging activity was 1.503 mg mL−1. The optimized conditions model showed a good correlation between the predicted and experimental values. According to the results of our study, the optimization extraction significantly enabled study of the anticoagulation and antioxidant activities of compounds in motherwort; this may contribute to future research on the pharmacological activities of motherwort. Leonurus japonicus Houtt. is a herbaceous annual of the Lamiaceae family with pantropical distribution; it is called motherwort in China.![]()
Collapse
|