1
|
Zhang H, Ding X, Qiu Y, Xie M, Wang H, Li T, Bao H, Huang S, Xiong Y, Tang X. Preventive effect of imperatorin against doxorubicin-induced cardiotoxicity through suppression of NLRP3 inflammasome activation. J Nat Med 2025; 79:95-106. [PMID: 39436583 DOI: 10.1007/s11418-024-01850-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024]
Abstract
Cardiotoxicity is one of the major obstacles to anthracycline chemotherapy. Anthracycline cardiotoxicity is closely associated with inflammation. Imperatorin (IMP), a furocoumarin ingredient extracted from Angelica dahurica, might have potential activity in preventing anthracycline cardiotoxicity due to its anti-cancer, anti-inflammatory, anti-oxidant, cardioprotective properties. This study aims to reveal the effect of IMP on doxorubicin (DOX)-induced cardiotoxicity and its underlying mechanism. We established a rat model of DOX-induced cardiotoxicity by intraperitoneal injection with DOX (1.25 mg/kg twice weekly for 6 weeks), and found that both IMP (25 mg/kg and 12.5 mg/kg) and dexrazoxane 12.5 mg/kg relieved DOX-induced reductions in heart weight, change in cardiac histopathology, and elevated serum levels of LDH, AST and CK-MB. Moreover, DOX upregulated mRNA levels of NLRP3, CASP1, GSDMD, ASC, IL-1β and IL-18, elevated protein expressions of NLRP3, ASC, GSDMD-FL, GSDMD-N, pro‑caspase‑1, caspase‑1 p20, pro‑IL‑1β and IL‑1β in heart tissues, as well as increased serum levels of pro-inflammatory cytokines including IL-1β and IL-18, however both of IMP and dexrazoxane suppressed these alterations. In addition, we carried out neonatal rat cardiomyocytes experiments to confirm the results of the in vivo study. Consistently, pretreatment with IMP 25 µg/mL relieved DOX (1 μg/mL)-induced cardiomyocytes injury, including decreased cell viability and reduced supernatant LDH. IMP inhibited DOX-induced activation of NLRP3 inflammasome in cardiomyocytes. In conclusion, IMP had a protective effect against DOX-induced cardiotoxicity via repressing the activation of NLRP3 inflammasome. These findings suggest that IMP may be a promising alternative or adjunctive drug for the prevention of anthracycline cardiotoxicity.
Collapse
Affiliation(s)
- Hao Zhang
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Xiaoyun Ding
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Yumei Qiu
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Mengdie Xie
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Hu Wang
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Tingting Li
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Huiyun Bao
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Si Huang
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Yinhua Xiong
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Nanchang, 330013, China
| | - Xilan Tang
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China.
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Nanchang, 330013, China.
| |
Collapse
|
2
|
Gao Q, Wu H, Chen M, Gu X, Wu Q, Xie T, Sui X. Active metabolites combination therapies: towards the next paradigm for more efficient and more scientific Chinese medicine. Front Pharmacol 2024; 15:1392196. [PMID: 38698817 PMCID: PMC11063311 DOI: 10.3389/fphar.2024.1392196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Traditional Chinese medicine (TCM) formulae have been studied extensively in various human diseases and have proven to be effective due to their multi-component, multi-target advantage. However, its active metabolites are not clear and the specific mechanisms are not well established, which limits its scientific application. Recently, combination therapies are attracting increasing attention from the scientific community in the past few years and are considered as the next paradigm in drug discovery. Here, we tried to define a new concept of "active metabolites combination therapies (AMCT)" rules to elucidate how the bioactive metabolites from TCMs to produce their synergistic effects in this review. The AMCT rules integrate multidisciplinary technologies like molecular biology, biochemistry, pharmacology, analytical chemistry and pharmacodynamics, etc. Meanwhile, emerging technologies such as multi-omics combined analysis, network analysis, artificial intelligence conduce to better elucidate the mechanisms of these combination therapies in disease treatment, which provides new insights for the development of novel active metabolites combination drugs. AMCT rules will hopefully further guide the development of novel combination drugs that will promote the modernization and international needs of TCM.
Collapse
Affiliation(s)
- Quan Gao
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China
- College of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Hao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China
- College of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Min Chen
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Xidong Gu
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Tian Xie
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China
- College of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Xinbing Sui
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China
- College of Pharmacy, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
3
|
Zhu P, Ren Q, Zhang R, Zhang L, Xia X, Zheng C, Ye T. Exploring the effects of calycosin on anthracycline-induced cardiotoxicity: a network pharmacology, molecular docking, and experimental study. Front Cardiovasc Med 2024; 11:1286620. [PMID: 38576421 PMCID: PMC10991710 DOI: 10.3389/fcvm.2024.1286620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Background Chemotherapy with anthracyclines can cause cardiotoxicity, possibly leading to stopping treatment in some cancer patients. In cardio-oncology research, preventing and minimizing anthracycline-induced cardiotoxicity (AIC) is a hot issue. For the treatment of AIC, calycosin (CA), an isoflavone component in astragali radix (AR), has become a research focus. However, the elaborate mechanisms of calycosin treating AIC remain to be unrevealed. Aim of the study To explore the effects of CA on AIC through multiple dimensions concerning network pharmacology, molecular docking, and experimental evaluations. Methods The study evaluated calycosin's potential targets and mechanisms for treating AIC using network pharmacology and molecular docking. The candidate genes/targets of CA and AIC were screened using the online-available database. Protein-protein interactions (PPI) between the common targets were constructed using the STRING platform, and the results were then visualized using Cytoscape. Molecular docking was used to evaluate the strength of the binding force between CA and the common targets. The possible pharmacological mechanisms of CA were explained by pathway enrichment and GSEA. Subsequently, the candidate targets were identified in vitro experiments. Results Network pharmacology effectively discovered the CA's multitarget intervention in AIC, including TNF, ABCC1, TOP2A, ABCB1, and XDH. CA binds to the ATP-binding cassette subfamily B member 1(ABCB1) had the highest binding energy (-7.5 kcal/mol) according to the molecular docking analysis and was selected and visualized for subsequent analysis. In vitro experiments showed that ABCB1 exhibited significant time-curve changes under different doses of doxorubicin (DOX) compared with DMSO control experiments. The anti-AIC pharmacological mechanism of CA were revealed by highlighting the biological processes of oxidative stress (OR) and inflammation. Conclusions We employed a practicable bioinformatics method to connect network and molecular docking to determine the calycosin's therapeutic mechanism against AIC and identified some bioinformatics results in in vitro experiments. The results presented show that CA may represent an encouraging treatment for AIC.
Collapse
Affiliation(s)
- Peng Zhu
- Department of Hepatobiliary Surgery, Wuhan No.1 Hospital, Wuhan, China
| | - Qianqian Ren
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Ruizhi Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Licai Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xiangwen Xia
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Tianhe Ye
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
4
|
Li W, Cheng X, Zhu G, Hu Y, Wang Y, Niu Y, Li H, Aierken A, Li J, Feng L, Liu G. A review of chemotherapeutic drugs-induced arrhythmia and potential intervention with traditional Chinese medicines. Front Pharmacol 2024; 15:1340855. [PMID: 38572424 PMCID: PMC10987752 DOI: 10.3389/fphar.2024.1340855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Significant advances in chemotherapy drugs have reduced mortality in patients with malignant tumors. However, chemotherapy-related cardiotoxicity increases the morbidity and mortality of patients, and has become the second leading cause of death after tumor recurrence, which has received more and more attention in recent years. Arrhythmia is one of the common types of chemotherapy-induced cardiotoxicity, and has become a new risk related to chemotherapy treatment, which seriously affects the therapeutic outcome in patients. Traditional Chinese medicine has experienced thousands of years of clinical practice in China, and has accumulated a wealth of medical theories and treatment formulas, which has unique advantages in the prevention and treatment of malignant diseases. Traditional Chinese medicine may reduce the arrhythmic toxicity caused by chemotherapy without affecting the anti-cancer effect. This paper mainly discussed the types and pathogenesis of secondary chemotherapeutic drug-induced arrhythmia (CDIA), and summarized the studies on Chinese medicine compounds, Chinese medicine Combination Formula and Chinese medicine injection that may be beneficial in intervention with secondary CDIA including atrial fibrillation, ventricular arrhythmia and sinus bradycardia, in order to provide reference for clinical prevention and treatment of chemotherapy-induced arrhythmias.
Collapse
Affiliation(s)
- Weina Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaozhen Cheng
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guanghui Zhu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Hu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, China
| | - Yunhan Wang
- Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Zhengzhou, Henan, China
| | - Yueyue Niu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongping Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aikeremu Aierken
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ling Feng
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guifang Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Lin H, Wang W, Peng M, Kong Y, Zhang X, Wei X, Shang H. Pharmacological properties of Polygonatum and its active ingredients for the prevention and treatment of cardiovascular diseases. Chin Med 2024; 19:1. [PMID: 38163901 PMCID: PMC10759625 DOI: 10.1186/s13020-023-00871-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
Despite continued advances in prevention and treatment strategies, cardiovascular diseases (CVDs) remain the leading cause of death worldwide, and more effective therapeutic methods are urgently needed. Polygonatum is a traditional Chinese herbal medicine with a variety of pharmacological applications and biological activities, such as antioxidant activity, anti-inflammation, antibacterial effect, immune-enhancing effect, glucose regulation, lipid-lowering and anti-atherosclerotic effects, treatment of diabetes and anticancer effect. There has also been more and more evidence to support the cardioprotective effect of Polygonatum in recent years. However, up to now, there has been a lack of comprehensive studies on the active ingredients and their pharmacotoxicological effects related to cardiovascular diseases. Therefore, the main active components of Polygonatum (including Polysaccharides, Flavonoids, Saponins) and their biological activities were firstly reviewed in this paper. Furthermore, we summarized the pharmacological effects of Polygonatum's active components in preventing and treating CVDs, and its relevant toxicological investigations. Finally, we emphasize the potential of Polygonatum in the prevention and treatment of CVDs.
Collapse
Affiliation(s)
- Hongyuan Lin
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Wenhui Wang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Mengqi Peng
- Weifang Medical University, Weifang, 261000, China
| | - Yifan Kong
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Xiaowei Zhang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xiaohong Wei
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Hongcai Shang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China.
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
6
|
Fu Y, Sun J, Wang Y, Li W. Glucose oxidase and metal catalysts combined tumor synergistic therapy: mechanism, advance and nanodelivery system. J Nanobiotechnology 2023; 21:400. [PMID: 37907972 PMCID: PMC10617118 DOI: 10.1186/s12951-023-02158-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023] Open
Abstract
Cancer has always posed a significant threat to human health, prompting extensive research into new treatment strategies due to the limitations of traditional therapies. Starvation therapy (ST) has garnered considerable attention by targeting the primary energy source, glucose, utilized by cancer cells for proliferation. Glucose oxidase (GOx), a catalyst facilitating glucose consumption, has emerged as a critical therapeutic agent for ST. However, mono ST alone struggles to completely suppress tumor growth, necessitating the development of synergistic therapy approaches. Metal catalysts possess enzyme-like functions and can serve as carriers, capable of combining with GOx to achieve diverse tumor treatments. However, ensuring enzyme activity preservation in normal tissue and activation specifically within tumors presents a crucial challenge. Nanodelivery systems offer the potential to enhance therapy effectiveness by improving the stability of therapeutic agents and enabling controlled release. This review primarily focuses on recent advances in the mechanism of GOx combined with metal catalysts for synergistic tumor therapy. Furthermore, it discusses various nanoparticles (NPs) constructs designed for synergistic therapy in different carrier categories. Finally, this review provides a summary of GOx-metal catalyst-based NPs (G-M) and offers insights into the challenges associated with G-M therapy, delivery design, and oxygen (O2) supply.
Collapse
Affiliation(s)
- Yuhan Fu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
- Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Jialin Sun
- Postdoctoral Research Station, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
- Biological Science and Technology Department, Heilongjiang Minzu College, Harbin, Heilongjiang Province, China
| | - Yanhong Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China.
- Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China.
| | - Weinan Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China.
- Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China.
| |
Collapse
|
7
|
Li TF, Hwang IH, Tsai CH, Hwang SJ, Wu TP, Chen FP. To explore the effects of herbal medicine among cancer patients in Taiwan: A cohort study. J Chin Med Assoc 2023; 86:767-774. [PMID: 37273198 DOI: 10.1097/jcma.0000000000000945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Traditional Chinese medicine (TCM) is widely used by ethnic Chinese communities. TCM is covered by Taiwan's National Health Insurance (NHI) program. We evaluated the efficacy and outcomes of complementary Chinese herbal medicine (CHM) therapy in patients with cancer. METHODS This population-based cohort study was conducted using the data of patients who received a cancer diagnosis between 2005 and 2015 in Taiwan. Eligible patients were divided into standard and complementary CHM therapy groups. The complementary CHM therapy group was further divided into low cumulative dosage (LCD), medium cumulative dosage (MCD), and high cumulative dosage (HCD) subgroups. Overall survival (OS), mortality risk, cancer recurrence, and metastasis were analyzed for all cancers and five major cancers (lung, liver, breast, colorectal, and oral cancers). RESULTS We included 5707 patients with cancer (standard therapy, 4797 [84.1%]; complementary CHM therapy, 910 [15.9%]; LCD, 449 [7.9%]; MCD, 374 [6.6%], and HCD, 87 [1.5%]). For the LCD, MCD, and HCD subgroups, the mortality risk was 0.83, 0.64, and 0.45, and the 11-year OS, 5-year cumulative cancer recurrence, and 5-year cumulative cancer metastasis rates were 6.1 ± 0.2, 6.9 ± 0.2, and 8.2 ± 0.4 years; 39.2%, 31.5%, and 18.8%; and 39.5%, 32.8%, and 16.6%, respectively. The cumulative cancer recurrence and metastasis rates of the standard therapy group were 40.9% and 32.8%, respectively. The cumulative recurrence and metastasis rates of all cancers, lung cancer, and liver cancer and all cancers, colorectal cancer, and breast cancer, respectively, were significantly lower in the HCD subgroup than in the other subgroups and standard therapy group ( p < 0.05). CONCLUSION Patients receiving complementary CHM therapy may have prolonged OS and reduced risks of mortality, recurrence, and metastasis. A dose-response relationship was noted between CHM therapy and mortality risk: increased dosage was associated with improved OS and reduced mortality risk.
Collapse
Affiliation(s)
- Tsai-Feng Li
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - I-Hsuan Hwang
- Center for Quality Control, Cheng Hsin General Hospital, Taipei, Taiwan, ROC
| | - Cheng-Hung Tsai
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Shinn-Jang Hwang
- Family Medicine Division, En Chu Kong Hospital, New Taipei, Taiwan, ROC
| | - Ta-Peng Wu
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Fang-Pey Chen
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
8
|
Luca AC, Curpăn AȘ, Iordache AC, Mîndru DE, Țarcă E, Luca FA, Pădureț IA. Cardiotoxicity of Electronic Cigarettes and Heat-Not-Burn Tobacco Products-A Problem for the Modern Pediatric Cardiologist. Healthcare (Basel) 2023; 11:healthcare11040491. [PMID: 36833024 PMCID: PMC9957306 DOI: 10.3390/healthcare11040491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Electronic nicotine delivery systems (ENDS) have become increasingly popular among adolescents, either as an alternative to conventional cigarettes (CCs) or as a newly acquired recreational habit. Although considered by most users as a safer option for nicotine intake, these devices pose significant health risks, resulting in multisystem damage. Heat-not-burn products, which, unlike ENDS, contain tobacco, are also alternatives to CCs that consumers use based on the idea that their safety profile is superior to that of cigarettes. Recent studies in the USA and EU show that adolescents are particularly prone to using these devices. Pediatric cardiologists, as well as other healthcare professionals, should be aware of the complications that may arise from acute and chronic consumption of these substances, considering the cardiovascular damage they elicit. This article summarized the known data about the impact of ENDS on the cardiovascular system, with emphasis on the pathophysiological and molecular changes that herald the onset of systemic lesions alongside the clinical cardiovascular manifestations in this scenario.
Collapse
Affiliation(s)
- Alina-Costina Luca
- Sfânta Maria’ Emergency Children’s Hospital, 700309 Iași, Romania
- Department of Pediatric Cardiology, Faculty of Medicine, Gr. T. Popa’ University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Alexandrina-Ștefania Curpăn
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Bd. Carol I, 20A, 700505 Iași, Romania
- Correspondence: (A.-Ș.C.); (E.Ț.)
| | - Alin-Constantin Iordache
- Department of Mother and Child Medicine–Pediatric Cardiology, “Grigore T. Popa”, University of Medicine and Pharmacy of Iasi, 16 Universitatii Str., 700115 Iași, Romania
| | - Dana Elena Mîndru
- Department of Pediatric Cardiology, Faculty of Medicine, Gr. T. Popa’ University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Elena Țarcă
- Sfânta Maria’ Emergency Children’s Hospital, 700309 Iași, Romania
- Department of Surgery II—Pediatric Surgery, Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iași, Romania
- Correspondence: (A.-Ș.C.); (E.Ț.)
| | - Florin-Alexandru Luca
- Department BMTM, “Gheorghe Asachi” Technical University of Iasi, 700050 Iaşi, Romania
| | | |
Collapse
|
9
|
Ding X, Zhang Y, Pan P, Long C, Zhang X, Zhuo L, Zhou Q, Liao W, Tan G. Multiple mitochondria-targeted components screened from Sini decoction improved cardiac energetics and mitochondrial dysfunction to attenuate doxorubicin-induced cardiomyopathy. Theranostics 2023; 13:510-530. [PMID: 36632225 PMCID: PMC9830424 DOI: 10.7150/thno.80066] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Rationale: Sini decoction (SND) is an efficient formula against DOX-induced cardiomyopathy (DCM), but the active ingredient combination (AIC) and mechanisms of SND remain unclear. Therefore, the present study aimed to identify the AIC and elucidate the underlying mechanism of AIC on DCM. Methods: The AIC were screened by a novel comprehensive two-dimensional cardiac mitochondrial membrane chromatography (CMMC)-TOFMS analysis system and further validated by cell viability, reactive oxygen species (ROS) generation, ATP level, and mitochondrial membrane potential in DOX-induced H9c2 cell injury model. Then, an integrated model of cardiac mitochondrial metabolomics and proteomics were applied to clarify the underlying mechanism in vitro. Results: The CMMC column lifespan was significantly improved to more than 10 days. Songorine (S), neoline, talatizamine, 8-gingerol (G) and isoliquiritigenin (I), exhibiting stronger retention on the first-dimension CMMC column, were screened to have protective effects against DOX cardiotoxicity in the H9c2 cell model. S, G and I were selected as an AIC from SND according to the bioactivity evaluation and the compatibility theory of SND. The combined in vitro use of S, G and I produced more profound therapeutic effects than any component used individually on increasing ATP levels and mitochondrial membrane potential and suppressing intracellular ROS production. Moreover, SGI attenuated DCM might via regulating mitochondrial energy metabolism and mitochondrial dysfunction. Conclusions: The provided scientific evidence to support that SGI combination from SND could be used as a prebiotic agent for DCM. Importantly, the proposed two-dimensional CMMC-TOFMS analytical system provides a high-throughput screening strategy for mitochondria-targeted compounds from natural products, which could be applied to other subcellular organelle models for drug discovery.
Collapse
Affiliation(s)
- Xin Ding
- School of Pharmacy, Air Force Medical University, Xi'an 710032, China.,School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Ya Zhang
- School of Pharmacy, Air Force Medical University, Xi'an 710032, China
| | - Pengchao Pan
- School of Pharmacy, Naval Medical University, Shanghai 200433, China.,Department of Cardiovascular Medicine, the First Naval Hospital of Southern Theater Command, Zhanjiang 524005, China
| | - Cuiping Long
- School of Pharmacy, Air Force Medical University, Xi'an 710032, China.,School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Xingxing Zhang
- School of Pharmacy, Air Force Medical University, Xi'an 710032, China.,School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Lingxin Zhuo
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qian Zhou
- Department of traditional Chinese medicine, Xijing Hospital, Air Force Medical University, Xi'an 710032, China.,✉ Corresponding authors: E-mail addresses: (Qian Zhou); (Wenting Liao); (Guangguo Tan)
| | - Wenting Liao
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.,✉ Corresponding authors: E-mail addresses: (Qian Zhou); (Wenting Liao); (Guangguo Tan)
| | - Guangguo Tan
- School of Pharmacy, Air Force Medical University, Xi'an 710032, China.,✉ Corresponding authors: E-mail addresses: (Qian Zhou); (Wenting Liao); (Guangguo Tan)
| |
Collapse
|
10
|
Lv XF, Wen RQ, Liu K, Zhao XK, Pan CL, Gao X, Wu X, Zhi XD, Ren CZ, Chen QL, Lu WJ, Bai TY, Li YD. Role and molecular mechanism of traditional Chinese medicine in preventing cardiotoxicity associated with chemoradiotherapy. Front Cardiovasc Med 2022; 9:1047700. [PMID: 36419486 PMCID: PMC9678083 DOI: 10.3389/fcvm.2022.1047700] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/20/2022] [Indexed: 08/12/2023] Open
Abstract
Cardiotoxicity is a serious complication of cancer therapy. It is the second leading cause of morbidity and mortality in cancer survivors and is associated with a variety of factors, including oxidative stress, inflammation, apoptosis, autophagy, endoplasmic reticulum stress, and abnormal myocardial energy metabolism. A number of studies have shown that traditional Chinese medicine (TCM) can mitigate chemoradiotherapy-associated cardiotoxicity via these pathways. Therefore, this study reviews the effects and molecular mechanisms of TCM on chemoradiotherapy-related cardiotoxicity. In this study, we searched PubMed for basic studies on the anti-cardiotoxicity of TCM in the past 5 years and summarized their results. Angelica Sinensis, Astragalus membranaceus Bunge, Danshinone IIA sulfonate sodium (STS), Astragaloside (AS), Resveratrol, Ginsenoside, Quercetin, Danggui Buxue Decoction (DBD), Shengxian decoction (SXT), Compound Danshen Dripping Pill (CDDP), Qishen Huanwu Capsule (QSHWC), Angelica Sinensis and Astragalus membranaceus Bunge Ultrafiltration Extract (AS-AM),Shenmai injection (SMI), Xinmailong (XML), and nearly 60 other herbs, herbal monomers, herbal soups and herbal compound preparations were found to be effective as complementary or alternative treatments. These preparations reduced chemoradiotherapy-induced cardiotoxicity through various pathways such as anti-oxidative stress, anti-inflammation, alleviating endoplasmic reticulum stress, regulation of apoptosis and autophagy, and improvement of myocardial energy metabolism. However, few clinical trials have been conducted on these therapies, and these trials can provide stronger evidence-based support for TCM.
Collapse
Affiliation(s)
- Xin-Fang Lv
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Ruo-Qing Wen
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
| | - Kai Liu
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xin-Ke Zhao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Chen-Liang Pan
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiang Gao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xue Wu
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Lanzhou University Second Hospital, Lanzhou, China
| | - Xiao-Dong Zhi
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Chun-Zhen Ren
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
| | - Qi-Lin Chen
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
| | - Wei-Jie Lu
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
| | - Ting-Yan Bai
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
| | - Ying-Dong Li
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
11
|
The Role of Mitochondrial Quality Control in Anthracycline-Induced Cardiotoxicity: From Bench to Bedside. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3659278. [PMID: 36187332 PMCID: PMC9519345 DOI: 10.1155/2022/3659278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
Cardiotoxicity is the major side effect of anthracyclines (doxorubicin, daunorubicin, epirubicin, and idarubicin), though being the most commonly used chemotherapy drugs and the mainstay of therapy in solid and hematological neoplasms. Advances in the field of cardio-oncology have expanded our understanding of the molecular mechanisms underlying anthracycline-induced cardiotoxicity (AIC). AIC has a complex pathogenesis that includes a variety of aspects such as oxidative stress, autophagy, and inflammation. Emerging evidence has strongly suggested that the loss of mitochondrial quality control (MQC) plays an important role in the progression of AIC. Mitochondria are vital organelles in the cardiomyocytes that serve as the key regulators of reactive oxygen species (ROS) production, energy metabolism, cell death, and calcium buffering. However, as mitochondria are susceptible to damage, the MQC system, including mitochondrial dynamics (fusion/fission), mitophagy, mitochondrial biogenesis, and mitochondrial protein quality control, appears to be crucial in maintaining mitochondrial homeostasis. In this review, we summarize current evidence on the role of MQC in the pathogenesis of AIC and highlight the therapeutic potential of restoring the cardiomyocyte MQC system in the prevention and intervention of AIC.
Collapse
|
12
|
Qu J, Ke F, Yang X, Wang Y, Xu H, Li Q, Bi K. Induction of P-glycoprotein expression by dandelion in tumor and heart tissues: Impact on the anti-tumor activity and cardiotoxicity of doxorubicin. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154275. [PMID: 35760022 DOI: 10.1016/j.phymed.2022.154275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/05/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Previously, we have investigated the anti-tumor activity and mechanism through which dandelion acts against triple-negative breast cancer (TNBC). However, traditional Chinese medicine is mostly accepted as an adjunct therapy during chemotherapy in clinical practice. So far, little is known about the effects of dandelion in conjunction with chemotherapeutic drugs. PURPOSE To investigate the effects of dandelion on the anti-tumor activity and cardiotoxicity of doxorubicin (DOX), and to further explore the molecular mechanisms through which these effects occur. STUDY DESIGN At the beginning of this study, dandelion was observed to alleviate DOX-induced cardiotoxicity and reduce the anti-tumor activity of DOX. Subsequently, we investigated whether the resistance to DOX mediated by P-glycoprotein was involved in the above effects. METHODS The cardioprotective effect of dandelion was investigated on DOX-treated mice by histological analysis, myocardial enzyme assays, and an untargeted metabolomics study based on LC-Q-TOF/MS. TNBC cell lines and 4T1 tumor-bearing mice were employed to investigate the combined anti-tumor activity. Laser scanning confocal microscope and a flow cytometry analysis were employed to measure the intracellular accumulation of DOX. A specific, sensitive, and rapid LC-MS/MS method was developed to detect the efflux of DOX from cells. Expression of P-glycoprotein in mouse tumor and heart tissues was detected via Western blotting analysis. RESULTS Dandelion was found to significantly alleviate DOX-induced cardiotoxicity, as was evidenced by improved cardiomyocyte morphology, decreased LDH and CK-MB release, and adjusted metabolic biomarker levels. However, in vitro and in vivo studies showed that dandelion could reduce the anti-tumor activity of DOX. This counteraction was achieved by activating of the drug efflux transporter P-glycoprotein, thereby promoting the efflux of DOX from cells and reducing the intracellular accumulation of DOX. Moreover, the activation of P-glycoprotein by dandelion in mouse heart tissue was also observed, thus suggesting that the decrease of cardiac DOX accumulation plays an important role in the cardioprotective effect of dandelion. CONCLUSION Dandelion can activate the P-glycoprotein in heart and tumor tissues, which ameliorates DOX-induced cardiotoxicity but attenuates DOX cytotoxicity toward TNBC. Our findings have important implications for the correct clinical use of dandelion.
Collapse
Affiliation(s)
- Jiameng Qu
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Traditional Chinese Material Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fan Ke
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiao Yang
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yue Wang
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huarong Xu
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qing Li
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Kaishun Bi
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
13
|
Current Status and Trends of Research on Anthracycline-Induced Cardiotoxicity from 2002 to 2021: A Twenty-Year Bibliometric and Visualization Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6260243. [PMID: 35993025 PMCID: PMC9388240 DOI: 10.1155/2022/6260243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 07/24/2022] [Indexed: 12/30/2022]
Abstract
Anthracyclines constitute the cornerstone of numerous chemotherapy regimens for various cancers. However, the clinical application of anthracyclines is significantly limited to their dose-dependent cardiotoxicity. A comprehensive understanding of the current status of anthracycline-induced cardiotoxicity is necessary for in-depth research and optimal clinical protocols. Bibliometric analysis is widely applied in depicting development trends and tracking frontiers of a specific field. The present study is aimed at revealing the status and trends of anthracycline-induced cardiotoxicity during the past two decades by employing bibliometric software including R-bibliometric, VOSviewer, and CiteSpace. A total of 3504 publications concerning anthracycline-induced cardiotoxicity from 2002 to 2021 were collected from the Web of Science Core Collection database. Results showed significant growth in annual yields from 90 records in 2002 to 304 papers in 2021. The United States was the most productive country with the strongest collaboration worldwide in the field. Charles University in the Czech Republic was the institution that contributed the most papers, while 7 of the top 10 productive institutions were from the United States. The United States Department of Health and Human Services and the National Institutes of Health are the two agencies that provide financial support for more than 50% of sponsored publications. The research categories of included publications mainly belong to Oncology and Cardiac Cardiovascular Systems. The Journal of Clinical Oncology had a comprehensive impact on this research field with the highest IF value and many publications. Simunek Tomas from Charles University contributed the most publications, while Lipshultz Steven E. from the State University of New York possessed the highest H-index. In addition, the future research frontiers of anthracycline-induced cardiotoxicity might include early detection, pharmacogenomics, molecular mechanism, and cardiooncology. The present bibliometric analysis may provide a valuable reference for researchers and practitioners in future research directions.
Collapse
|
14
|
Jiang Y, Zhao Q, Li L, Huang S, Yi S, Hu Z. Effect of Traditional Chinese Medicine on the Cardiovascular Diseases. Front Pharmacol 2022; 13:806300. [PMID: 35387325 PMCID: PMC8978630 DOI: 10.3389/fphar.2022.806300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/31/2022] [Indexed: 02/03/2023] Open
Abstract
Background: Traditional Chinese medicine (TCM) is the health care system developed with the help of clinical trials that are based ideally on the scientific model of regulation. Objective: This systematic health care system relies on some specific unique theories and practical experiences to treat and cure diseases, thus enhancing the public's health. Review Methodology: The current review covers the available literature from 2000 to 2021. The data was collected from journals research articles, published books, thesis, and electronic databases, search engines such as Google Scholar, Elsevier, EBSCO, PMC, PubMed, ScienceDirect, Willey Online Library, Springer Link, and CNKI) searching key terms, cardiovascular disease, traditional Chinese medicines, natural products, and bioactive compounds. Full-length articles and abstracts were screened for the collection of information included in the paper. Results: Clinical trials on the TCM and basic research carried out on its mechanism and nature have led to the application and development of the perfect design of the research techniques, for example, twofold striking in acupuncture that aid in overcoming the limitations and resistances in integrating and applicability of these experiences and trials into the pre-existing biomedical models. Furthermore, TCM has also been utilized from ancient times to treat heart diseases in Asia, particularly in China, and is now used by people in many other areas. Cardiovascular disease (CVD) is mainly developed by oxidative stress. Hence antioxidants can be beneficial in treating this particular disease. TCM has a wide variety of antioxidant components. Conclusion: The current review article summarizes the underlying therapeutic property of TCM and its mechanism. It also overviews the evidence of the mechanism of TCM action in CVD prevention by controlling oxidative stress and its signaling pathway.
Collapse
Affiliation(s)
- Yang Jiang
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China.,Hunan Academy of Traditional Chinese Medicine Affiliated Hospital, Changsha, China
| | - Qi Zhao
- Hunan Academy of Traditional Chinese Medicine Affiliated Hospital, Changsha, China
| | - Lin Li
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Shumin Huang
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Shuai Yi
- Hunan Academy of Traditional Chinese Medicine Affiliated Hospital, Changsha, China
| | - Zhixi Hu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
15
|
Han Z, Guo L, Yu X, Guo H, Deng X, Yu J, Deng X, Xu F, Zhang Z, Huang Y. Network-driven targeted analysis reveals that Astragali Radix alleviates doxorubicin-induced cardiotoxicity by maintaining fatty acid homeostasis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 287:114967. [PMID: 34995692 DOI: 10.1016/j.jep.2022.114967] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/07/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Astragali Radix (AR) is a popular traditional Chinese medicine that has been used for more than 2000 years. It is a well-known tonic for weak people with chronic diseases, such as heart failure and cerebral ischemia. Previous studies have reported that AR could support the "weak heart" of cancer patients who suffered from doxorubicin (DOX)-induced cardiotoxicity (DIC). However, the underlying mechanism remains unclear. AIM OF THE STUDY This study aimed to uncover the critical pathways and molecular determinants for AR against DIC by fully characterizing the network-based relationship. MATERIALS AND METHODS We integrated ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) profiling, database and literature searching, and the human protein-protein interactome to discover the specific network module associated with AR against DIC. To validate the network-based findings, a low-dose, long-term DIC mouse model and rat cardiomyoblast H9c2 cells were employed. The levels of potential key metabolites and proteins in hearts and cells were quantified by the LC-MS/MS targeted analysis and western blotting, respectively. RESULTS We constructed one of the most comprehensive AR component-target network described to date, which included 730 interactions connecting 64 unique components and 359 unique targets. Relying on the network-based evaluation, we identified fatty acid metabolism as a putative critical pathway and peroxisome proliferator-activated receptors (PPARα and PPARγ) as potential molecular determinants. We then confirmed that DOX caused the accumulation of fatty acids in the mouse failing heart, while AR promoted fatty acid metabolism and preserved heart function. By inhibiting PPARγ in H9c2 cells, we further found that AR could alleviate DIC by activating PPARγ to maintain fatty acid homeostasis. CONCLUSIONS Our findings imply that AR is a promising drug candidate that treats DIC by maintaining fatty acid homeostasis. More importantly, the network-based method developed here could facilitate the mechanism discovery of AR therapy and help catalyze innovation in its clinical application.
Collapse
Affiliation(s)
- Zhaodi Han
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing, 210009, China
| | - Linling Guo
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing, 210009, China; Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xinyue Yu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing, 210009, China; Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Huimin Guo
- Center for Biological Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaoying Deng
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing, 210009, China
| | - Jiayu Yu
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xueyang Deng
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, China
| | - Fengguo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing, 210009, China; Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Zunjian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing, 210009, China.
| | - Yin Huang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing, 210009, China; Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
16
|
Li M, Li H, Liu H, Lai X, Xing W. Efficacy of Chinese Medicine Injection for Cardiotoxic Injury of Anthracycline Chemotherapy Drugs: A Network Meta-Analysis of Randomized Controlled Trials. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5800575. [PMID: 35399632 PMCID: PMC8991398 DOI: 10.1155/2022/5800575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/05/2022] [Indexed: 11/19/2022]
Abstract
Background Chinese medicine injections (CMIs) are widely used in the prevention and treatment of cardiotoxicity caused by anthracycline chemotherapeutic drugs. However, it is uncertain that CMIs are more effective in combating the cardiotoxicity of anthracyclines. The aim of this Network Meta-analysis (NMA) was to compare the treatment effects of various CMIs in order to determine the best CMI for the prevention and treatment of cardiac damage from anthracyclines. Methods The Chinese Journal Full Text Database (CNKI), Wanfang Database, Chinese Science and Technology Journal Full Text Database (VIP), Chinese Biomedical Literature Database (CBM), PubMed, Web of Science, and Cochrane Library databases were searched to screen randomized controlled trials (RCTs) of CMIs against cardiotoxicity of anthracycline-based chemotherapeutic drugs. The search time frame was all from the establishment of the database to October 1, 2021. After independent screening of the literature, extraction of information and evaluation of the risk of bias of the included studies by two evaluators, mesh meta-analysis was performed using RevMan 5.3, Stata 15.1, and ADDIS 1.16.8 software. Results A total of 33 studies including 2783 patients, including 1410 cases in the experimental group and 1373 cases in the control group were included, and six CMIs were extracted, namely, Shenfu injection, Shenmai injection, Shenqi Fuzheng injection, Shengmai injection, Xinmailong injection, and Haungqi injection. The results of the reticulated meta-analysis showed that in terms of ST-T segment (ECG change) change rate, Haungqi injection, Shenfu injection, and Xinmailong injection were superior. In terms of lowering CK-MB, Huangqi Injection and Shenqi Fuzheng injection were superior. In terms of improving Left ventricular ejection fraction (LVEF), Shenfu injection, Huangqi Injection, and Shengmai injection were more effective than other injections. In terms of improving LVEDD, Shengmai injection, Huangqi Injection, and Xinmailong injection have advantages. Conclusion The six CMIs included in this study are effective against cardiotoxicity caused by anthracycline-based chemotherapeutic agents. Huangqi Injection and Shenfu injection are both superior in improving various outcome indicators. There is still a need for larger, high-quality randomized controlled trials (RCTs) to compare the various CMIs in a more refined way.
Collapse
Affiliation(s)
- Mingxuan Li
- Beijing University of Chinese Medicine, Beijing, China
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Hongdian Li
- Beijing University of Chinese Medicine, Beijing, China
| | - Hongxu Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiaolei Lai
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Wenlong Xing
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Curcumol inhibits malignant biological behaviors and TMZ-resistance in glioma cells by inhibiting long noncoding RNA FOXD2-As1-promoted EZH2 activation. Aging (Albany NY) 2021; 13:24101-24116. [PMID: 34739394 PMCID: PMC8610140 DOI: 10.18632/aging.203662] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 10/25/2021] [Indexed: 12/21/2022]
Abstract
Currently, conventional treatment is not sufficient to improve the survival of glioma patients. Hence, adopting novel personalized treatment programs is imperative. Curcumol, a Chinese herbal medicine extract from the roots of Rhizoma Curcumae, has attracted significant interest due to its beneficial pharmacological activities. The current study revealed that curcumol inhibited the proliferation, metastasis, self-renewal ability, and TMZ resistance in glioma cells in vitro and in vivo. Next, the potential molecular mechanisms of curcumol in inhibiting glioma were investigated. We found that the long non-coding RNA (lncRNA) FOXD2-As1 might contribute to the effects of curcumol on glioma cells. Enforced expression of FOXD2-As1 attenuated the curcumol-induced reduction in glioma cell proliferation, metastasis, self-renewal ability, and TMZ resistance. Moreover, the forced expression of FOXD2-As1 reversed the inhibitory effect of curcumol on the binding ability of EZH2 and H3K27me3 modification in the promoter regions of anti-oncogenes. Our results showed for the first time that curcumol is effective in inhibiting malignant biological behaviors and TMZ-resistance of glioma cells by suppressing FOXD2-As1-mediated EZH2 activation. Our study offers the possibility of exploiting curcumol as a promising therapeutic agent for glioma treatment and may provide an option for the clinical application of this natural herbal medicine.
Collapse
|
18
|
Shi Y, Li F, Shen M, Sun C, Hao W, Wu C, Xie Y, Zhang S, Gao H, Yang J, Zhou Z, Gao D, Qin Y, Han X, Liu S. Luteolin Prevents Cardiac Dysfunction and Improves the Chemotherapeutic Efficacy of Doxorubicin in Breast Cancer. Front Cardiovasc Med 2021; 8:750186. [PMID: 34722681 PMCID: PMC8548634 DOI: 10.3389/fcvm.2021.750186] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/16/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Doxorubicin (Dox) is one of the most effective chemotherapy agents used in the treatment of solid tumors and hematological malignancies. However, it causes dose-related cardiotoxicity that may lead to heart failure in patients. Luteolin (Lut) is a common flavonoid that exists in many types of plants. It has been studied for treating various diseases such as hypertension, inflammatory disorders, and cancer. In this study, we evaluated the cardioprotective and anticancer effects of Lut on Dox-induced cardiomyopathy in vitro and in vivo to explore related mechanisms in alleviating dynamin-related protein (Drp1)-mediated mitochondrial apoptosis. Methods: MTT and LDH assay were used to determine the viability and toxicity of cardiomyocytes treated with Dox and Lut. Flow cytometry was used to examine ROS levels, and electron and confocal microscopy was employed to assess the mitochondrial morphology. The level of apoptosis was examined by Hoechst 33258 staining. The protein levels of myocardial fission protein and apoptosis-related protein were examined using Western blot. Transcriptome analysis of the protective effect of Lut against Dox-induced cardiac toxicity in myocardial cells was performed using RNA sequencing technology. The protective effects of Lut against cardiotoxicity mediated by Dox in zebrafish were quantified. The effect of Lut increase the antitumor activity of Dox in breast cancer both in vitro and in vivo were further employed. Results: Lut ameliorated Dox-induced toxicity in H9c2 and AC16 cells. The level of oxidative stress was downregulated by Lut after Dox treatment of myocardial cells. Lut effectively reduced the increased mitochondrial fission post Dox stimulation in cardiomyocytes. Apoptosis, fission protein Drp1, and Ser616 phosphorylation were also increased post Dox and reduced by Lut. In the zebrafish model, Lut significantly preserved the ventricular function of zebrafish after Dox treatment. Moreover, in the mouse model, Lut prevented Dox-induced cardiotoxicity and enhanced the cytotoxicity in triple-negative breast cancer by inhibiting proliferation and metastasis and inducing apoptosis.
Collapse
Affiliation(s)
- Youyang Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feifei Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Man Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenpin Sun
- Department of Breast Surgery (Integrated Traditional and Western Medicine), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Hao
- Department of Breast Surgery (Integrated Traditional and Western Medicine), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunyu Wu
- Department of Breast Surgery (Integrated Traditional and Western Medicine), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Xie
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuai Zhang
- Department of Breast Surgery (Integrated Traditional and Western Medicine), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongzhi Gao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianfeng Yang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhongyan Zhou
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongwen Gao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuenong Qin
- Department of Breast Surgery (Integrated Traditional and Western Medicine), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xianghui Han
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sheng Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
19
|
Effect of traditional Chinese medicine on anthracycline-induced cardiotoxicity in animal models: A systematic review and meta-analysis. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2021. [DOI: 10.1016/j.jtcms.2021.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
20
|
Study on Medication Rules of Traditional Chinese Medicine against Antineoplastic Drug-Induced Cardiotoxicity Based on Network Pharmacology and Data Mining. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7498525. [PMID: 33281914 PMCID: PMC7688357 DOI: 10.1155/2020/7498525] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/16/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022]
Abstract
Methods The targets of antineoplastic drugs with cardiotoxicity were obtained from the National Center for Biotechnology Information (NCBI) database, China national knowledge infrastructure (CNKI) database, and Swiss Target Prediction platform. Then, the cardiotoxicity-related targets were derived from the Gene Cards, Disgenet, OMIM, and DrugBank databases, as well as the drug of current clinical guidelines. The targets both in these two sets were regarded as potential targets to alleviate ADIC. Then, candidate compounds and herbs were matched via Traditional Chinese Medicine Systems Pharmacology (TCMSP) platform. Cytoscape3.7.1 was used to set up the target-compound-herb network. Molecular docking between core targets and compounds was performed with AutodockVina1.1.2. The rules of herbs were summarized by analyzing their property, flavor, and channel tropism. Results Twenty-one potential targets, 332 candidate compounds, and 400 kinds of herbs were obtained. Five core targets including potassium voltage-gated channel subfamily H member 2 (KCNH2), cyclin-dependent kinase 1 (CDK1), matrix metalloproteinase 2 (MMP2), mitogen-activated protein kinase1 (MAPK1), and tumor protein p53 (TP53) and 29 core compounds (beta-sitosterol, quercetin, kaempferol, etc.) were collected. Five core herbs (Yanhusuo, Gouteng, Huangbai, Lianqiao, and Gancao) were identified. Also, the TCM against ADIC were mainly bitter and acrid in taste, warm in property, and distributed to the liver and lung meridians. Conclusion TCM against ADIC has great potential. Our study provides a new method and ideas for clinical applications of integrated Chinese and western medicine in treating ADIC.
Collapse
|
21
|
Possible Susceptibility Genes for Intervention against Chemotherapy-Induced Cardiotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4894625. [PMID: 33110473 PMCID: PMC7578723 DOI: 10.1155/2020/4894625] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/07/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Recent therapeutic advances have significantly improved the short- and long-term survival rates in patients with heart disease and cancer. Survival in cancer patients may, however, be accompanied by disadvantages, namely, increased rates of cardiovascular events. Chemotherapy-related cardiac dysfunction is an important side effect of anticancer therapy. While advances in cancer treatment have increased patient survival, treatments are associated with cardiovascular complications, including heart failure (HF), arrhythmias, cardiac ischemia, valve disease, pericarditis, and fibrosis of the pericardium and myocardium. The molecular mechanisms of cardiotoxicity caused by cancer treatment have not yet been elucidated, and they may be both varied and complex. By identifying the functional genetic variations responsible for this toxicity, we may be able to improve our understanding of the potential mechanisms and pathways of treatment, paving the way for the development of new therapies to target these toxicities. Data from studies on genetic defects and pharmacological interventions have suggested that many molecules, primarily those regulating oxidative stress, inflammation, autophagy, apoptosis, and metabolism, contribute to the pathogenesis of cardiotoxicity induced by cancer treatment. Here, we review the progress of genetic research in illuminating the molecular mechanisms of cancer treatment-mediated cardiotoxicity and provide insights for the research and development of new therapies to treat or even prevent cardiotoxicity in patients undergoing cancer treatment. The current evidence is not clear about the role of pharmacogenomic screening of susceptible genes. Further studies need to done in chemotherapy-induced cardiotoxicity.
Collapse
|
22
|
Zeng H, Xi Y, Li Y, Wang Z, Zhang L, Han Z. Analysis of Astragalus Polysaccharide Intervention in Heat-Stressed Dairy Cows' Serum Metabolomics. Animals (Basel) 2020; 10:ani10040574. [PMID: 32235382 PMCID: PMC7222412 DOI: 10.3390/ani10040574] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/22/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
This experiment was conducted to investigate the effects of astragalus polysaccharides (APS) on serum metabolism of dairy cows under heat stress. Thirty healthy Holstein dairy cows were randomly divided into three groups (10 cows in each group). In the experimental group, 30 mL/d (Treatment I) and 50 mL/d (Treatment II) of APS injection were injected into the neck muscle respectively. Each stage was injected with APS for 4 days (8:00 a.m. every day) and stopped for 3 days. Serum hormone and antioxidant indexes of dairy cows were investigated. Through repeated measurement analysis of variance, the results have shown that cortisol (COR) (F = 6.982, p = 0.026), triiodothyronine (T3) (F = 10.005, p = 0.012) and thyroxine (T4) (F = 22.530, p = 0.002) at different time points were significantly different. COR showed a downward trend, T3 and T4 showed an upward trend. At each time point, different concentrations of APS have significant effects on COR (F = 30.298, p = 0.000 < 0.05), T3 (F = 18.122, p = 0.001), and T4 (F = 44.067, p = 0.000 < 0.05). However, there were no significant differences in serum insulin (INS), glucagon (GC) and heat shock protein 70 (HSP70) between different time points (p > 0.05) and at each time point (p > 0.05). Additionally, the results have also shown that there were also no significant differences in serum Superoxide dismutase (SOD), malondialdehyde (MDA) and lactate dehydrogenase (LDH) between different time points (p > 0.05) and at each time point (p > 0.05). However, the injection of APS had a significant impact on glutathione peroxidase (GSH-Px) (F = 9.421, p = 0.014) at different times, and showed a trend of rising first and then falling. At each time point, APS of different concentrations had no significant effect on GSH-Px (p > 0.05). Furthermore, we used gas chromatography-mass spectrometry (GC-MS) non-targeted metabolomics to determine the potential markers of APS for heat-stressed dairy cows. Twenty metabolites were identified as potential biomarkers for the diagnosis of APS in heat-stressed dairy cows. These substances are involved in protein digestion and absorption, glutathione metabolism, prolactin signaling pathway, aminoacyl-tRNA biosynthesis, pentose and glucuronate interconversions, and so on. Our findings suggest that APS have an effect on the serum hormones of heat-stressed dairy cows, and regulate the metabolism of heat-stressed dairy cows through glucose metabolism and amino acid metabolism pathways.
Collapse
Affiliation(s)
- Hanfang Zeng
- Institute of Dairy Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (Y.L.); (Z.W.); (L.Z.)
| | - Yumeng Xi
- Animal Husbandry Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Yeqing Li
- Institute of Dairy Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (Y.L.); (Z.W.); (L.Z.)
| | - Zedong Wang
- Institute of Dairy Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (Y.L.); (Z.W.); (L.Z.)
| | - Lin Zhang
- Institute of Dairy Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (Y.L.); (Z.W.); (L.Z.)
| | - Zhaoyu Han
- Institute of Dairy Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (Y.L.); (Z.W.); (L.Z.)
- Correspondence: ; Tel.: +13851685522; Fax: +02584395314
| |
Collapse
|
23
|
Granule of BU-XIN RUAN-MAI Attenuates the Patients' Angina Pectoris of Coronary Heart Disease via Regulating miR-542-3p/GABARAP Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1808419. [PMID: 31949464 PMCID: PMC6948311 DOI: 10.1155/2019/1808419] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 12/22/2022]
Abstract
Objective Coronary heart disease (CHD) has been regarded as a serious and common disease in the modern society. This study aims to investigate the effect of Granule of BU-XIN RUAN-MAI (BXRM) on angina pectoris of coronary heart disease and to explore the molecular mechanisms underlying Granule of BU-XIN RUAN-MAI-mediated protective activity against this disease. Methods The effects of Granule of BU-XIN RUAN-MAI on clinical symptoms of patients' angina were indicated by hemorheology indicators including high shear of blood viscosity, low shear of blood viscosity, plasma viscosity, erythrocyte rigidity index, D-D dimer, fibrinogen content, and lipid content. The effects of Granule of BU-XIN RUAN-MAI on isoprenaline-induced myocardial cell injury were determined by conducting H&E staining and by performing ELISA to examine the serum content of MDA, SOD, Na+/K+-ATPase, cAMP, and the content of inflammatory factors in isoprenaline-induced rats. Meanwhile, western blot and real time PCR were used to determine the expression of genes involved in oxidation and energy metabolism, and real time PCR was also used for determination of miR-542-3p expression. Luciferase reporter assay was conducted to test the binding sites of miR-542-3p on GABARAP 3'UTR. The chemical compositions of Granule of BU-XIN RUAN-MAI were determined by liquid LC-QTOF-MS. Results Granule of BU-XIN RUAN-MAI significantly attenuated the clinical symptoms of patients' angina by improving the patients' heart rate and by decreasing the level of hemorheology indicators and also by reducing the serum content of TC, TG, LDL, and elevated HDL content. H&E staining demonstrated that Granule of BU-XIN RUAN-MAI ameliorated the myocardial ischemia in a dose-dependent manner. Besides, Granule of BU-XIN RUAN-MAI downregulated serum MDA content and upregulated the content of SOD, Na+/K+-ATPase, and cAMP in isoprenaline-induced rats. Granule of BU-XIN RUAN-MAI significantly improved oxidation stress by increasing PPARα expression, and it inhibited inflammation by downregulating expression and contents of IL-6, IL-1β, and TNF-α. Then, Granule of BU-XIN RUAN-MAI-containing serum increased the SOD content, and reduced the MDA content in angiotensin II-stimulated HUVEC cells. The granule of BU-XIN RUAN-MAI-containing serum obviously downregulated protein expressions of P40phox, P47phox, and P67phox in plasma membrane, and it significantly increased protein levels of P40phox, P47phox, and P67phox in the cytoplasm of HUVEC cells. Furthermore, GABARAP was reduced in heart tissues of ISO-induced rats and in angiotensin II-stimulated cell lines, and GABARAP was required for the inhibitory activity of Granule of BU-XIN RUAN-MAI on oxidation and inflammation in vivo and in vivo. GABARAP could be upregulated by Granule of BU-XIN RUAN-MAI by inhibiting the expression of miR-542-3p, which may significantly enhance oxidation and inflammation by targeting GABARAP in cardiomyocytes. Moreover, the silencing of GABARAP could obviously reverse the granule of BU-XIN RUAN-MAI-mediated protective activity against coronary heart disease, and interfering GABARAP expression also could partly block the anti-miR-542-3p-controlled oxidation and inflammation in cardiomyocytes. Besides, salidroside, loganin, and polydatin were the main compounds of granules of BU-XIN RUAN-MAI. Conclusion Granule of BU-XIN RUAN-MAI is an excellent prescription for treatment of coronary heart disease by suppressing inflammation and NAPDH-mediated oxidative stress. The miR-542-3p/GABARAP axis is required for Granule of BU-XIN RUAN-MAI, exhibiting its protective activity against the pectoris of coronary heart disease.
Collapse
|
24
|
Duan X, Wang K, Wu J, Zhang D, Liu X, Ni M, Liu S, Meng Z. Comparative efficacy of Chinese herbal injections combined with azithromycin for mycoplasma pneumonia in children: A Bayesian network meta-analysis of randomized controlled trials. J Clin Pharm Ther 2019; 44:675-684. [PMID: 31119782 PMCID: PMC6852301 DOI: 10.1111/jcpt.12855] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 02/06/2023]
Abstract
WHAT IS KNOWN AND OBJECTIVE An increasing macrolide resistance leads to complex clinical treatment schemes in mycoplasma pneumonia in children. Chinese herbal injection (CHI) is widely used to treat it and may provide a new treatment regimen. This study was conducted to systematically evaluate the efficacy of CHIs combined with azithromycin for treating mycoplasma pneumonia in children by Bayesian network meta-analysis. METHODS Randomized controlled trials (RCTs) of CHIs combined with azithromycin for mycoplasma pneumonia in children were searched in electronic databases and related references from initiation to 30 October 2018. Two researchers conducted data extraction and risk of bias assessment. WinBUGS software and STATA software were adopted to analyse the data. RESULTS A total of 167 RCTs were included with 5 CHIs involving 16 144 patients. All CHIs combined with azithromycin had superior effects than azithromycin only among overall outcomes. Yanhuning injection combined with azithromycin ranked highest in four different outcomes and second in two based on surface under the cumulative ranking probabilities (SUCRA). Meanwhile, the results of MD and 95% CIs of concerned outcomes indicated that only Yanhuning injection combined with azithromycin had better response than other CHIs combined with azithromycin. Moreover, cluster analysis results revealed Reduning injection combined with azithromycin was associated with a positive effect on the three group outcomes. Similarly, it was found to be the top three ranking in all outcomes based on SUCRA. WHAT IS NEW AND CONCLUSION Yanhuning injection combined with azithromycin and Reduning injection combined with azithromycin were found to be preferable treatments based on the data of this study.
Collapse
Affiliation(s)
- Xiaojiao Duan
- Department of Clinical Chinese Pharmacy, School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Kaihuan Wang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Dan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Mengwei Ni
- Department of Clinical Chinese Pharmacy, School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Shuyu Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Ziqi Meng
- Department of Clinical Chinese Pharmacy, School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijingChina
| |
Collapse
|
25
|
Zhang X, Zhu Y, Dong S, Zhang A, Lu Y, Li Y, Lv S, Zhang J. Role of oxidative stress in cardiotoxicity of antineoplastic drugs. Life Sci 2019; 232:116526. [PMID: 31170418 DOI: 10.1016/j.lfs.2019.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/27/2019] [Accepted: 06/01/2019] [Indexed: 12/24/2022]
Abstract
Tumors and heart disease are two of the leading causes of human death. With the development of anti-cancer therapy, the survival rate of cancer patients has been significantly improved. But at the same time, the incidence of cardiovascular adverse events caused by cancer treatment has also been considerably increased, such as arrhythmia, left ventricular (LV) systolic and diastolic dysfunction, and even heart failure (HF), etc., which seriously affects the quality of life of cancer patients. More importantly, the occurrence of adverse events may lead to the adjustment or the cessation of anti-cancer treatment, which affects the survival rate of patients. Understanding the mechanism of cardiotoxicity (CTX) induced by antineoplastic drugs is the basis of adequate protection of the heart without impairing the efficacy of antineoplastic therapy. Based on current research, a large amount of evidence has shown that oxidative stress (OS) plays an essential role in CTX induced by antineoplastic drugs and participates in its toxic reaction directly and indirectly. Here, we will review the mechanism of action of OS in cardiac toxicity of antineoplastic drugs, to provide new ideas for researchers, and provide further guidance for clinical prevention and treatment of cardiac toxicity of anti-tumor drugs in the future.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Department of Cardiovascular Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Nankai, Tianjin, China
| | - Yaping Zhu
- Department of Cardiovascular Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Nankai, Tianjin, China
| | - Shaoyang Dong
- Department of Orthopedics of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Hebei Province of Traditional Chinese Medicine, Hebei Institute of Traditional Chinese Medicine, Shijiazhuang, Hebei, China
| | - Ao Zhang
- Epidemiology, College of Global Public Health, New York University, 726 broad way, NY, New York, USA
| | - Yanmin Lu
- Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Nankai, Tianjin, China
| | - Yanyang Li
- Department of Integrated Traditional Chinese and Western Medicine, Tianjin Medical University Cancer Institute and Hospital, Hexi, Tianjin, China
| | - Shichao Lv
- Department of Cardiovascular Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Nankai, Tianjin, China.
| | - Junping Zhang
- Department of Cardiovascular Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Nankai, Tianjin, China.
| |
Collapse
|
26
|
The Role of Traditional Chinese Medicine in the Regulation of Oxidative Stress in Treating Coronary Heart Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3231424. [PMID: 30918578 PMCID: PMC6409025 DOI: 10.1155/2019/3231424] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/19/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023]
Abstract
Oxidative stress has been closely related with coronary artery disease. In coronary heart disease (CHD), an excess of reactive oxygen species (ROS) production generates endothelial cell and smooth muscle functional disorders, leading to a disequilibrium between the antioxidant capacity and prooxidants. ROS also leads to inflammatory signal activation and mitochondria-mediated apoptosis, which can promote and increase the occurrence and development of CHD. There are several kinds of antioxidative and small molecular systems of antioxidants, such as β-carotene, ascorbic acid, α-tocopherol, and reduced glutathione (GSH). Studies have shown that antioxidant treatment was effective and decreased the risk of CHD, but the effect of the treatment varies greatly. Traditional Chinese medicine (TCM) has been utilized for thousands of years in China and is becoming increasingly popular all over the world, especially for the treatments of cardiovascular diseases. This review will concentrate on the evidence of the action mechanism of TCM in preventing CHD by modulating oxidative stress-related signaling pathways.
Collapse
|
27
|
JYYS Granule Mitigates Renal Injury in Clinic and in Spontaneously Hypertensive Rats by Inhibiting NF- κB Signaling-Mediated Microinflammation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:8472963. [PMID: 30598687 PMCID: PMC6287156 DOI: 10.1155/2018/8472963] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/20/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022]
Abstract
Introduction Hypertensive renal damage is a chronic and life-threatening kidney disease all over the world. The traditional Chinese medicine Jiang Ya Yi Shen (JYYS) granule has been a perfect drug for patients with hypertensive renal injury in clinic for 20 years in China. However, the molecular mechanism of JYYS granule remains unknown in treatment of this disease. Methods The clinic data were from this study's patients. The clinical symptoms of patients were indicated by (N-Acetyl-β-D-Glucosaminidase) NAG, (albumin) Alb, and (β2-microglobin) β2-MG content in urinary of patients, and renal artery's hemodynamic parameters including (pulse index) PI, mean velocity of the arterial blood (Vm), minimum velocity of the diastolic stage (Vdmin) and peak velocity of the systolic wave (Vsmax). To further observe the effect of JYYS granule on renal damage, the rats were included in six groups: normal rats (WKY), spontaneously hypertensive rats (SHR), positive drug-treated rats (Benazepril), low dose JYYS (L), middle dose JYYS (M), and high dose JYYS (H). Then, we observed the effect of JYYS on renal function, renal tubules, inflammatory cell infiltration, and small artery thickening, and we explored the potential mechanism of JYYS in treatment of renal injury. Results JYYS significantly improved the clinic symptoms of patients with hypertensive nephropathy by downregulating NAG, Alb, and β2-MG content in urinary of patients and by decreasing renal artery's hemodynamic parameters including PI, Vm, Vdmin, and Vsmax. In SHR, JYYS significantly improved renal function including creatinine clearance rate, urinary albumin/creatinine, β2-MG/creatinine and arteria caudalis pressure in SHR. Secondly, light and electron microscopic examinations told that after administration of JYYS and Benazepril, the mesangial region exhibited no hyperplasia and renal capsule did not expanded, and there no abnormalities were observed in renal tubules, inflammatory cell infiltration and small artery thickening in SHR. Thirdly, JYYS exhibited its protective role by inhibiting nuclear factor kappa beta signaling-mediated micro-inflammation cytokines including interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), intercellular cell adhesion molecule-1 (ICAM-1), and monocyte chemotactic protein 1 (MCP-1) in SHR. Conclusion JYYS is a promising prescription of Chinese medicine for patients with hypertension and hypertensive renal damage.
Collapse
|