1
|
Zhou X, Jia Y, Mao C, Liu S. Small extracellular vesicles: Non-negligible vesicles in tumor progression, diagnosis, and therapy. Cancer Lett 2024; 580:216481. [PMID: 37972701 DOI: 10.1016/j.canlet.2023.216481] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
Small extracellular vesicles (sEVs) such as exosomes are nanoscale membranous particles (<200 nm) that have emerged as crucial targets for liquid biopsy and as promising drug delivery vehicles. They play a significant role in tumor progression as intercellular messengers. They can serve as biomarkers for tumor diagnosis and as drug carriers for cancer treatment. This article reviews recent studies on sEVs in oncology and explores their potential as biomarkers and drug delivery vehicles. Following tumorigenesis, sEVs in the tumor microenvironment (TME) and circulatory system undergo modifications to regulate various events in the TME, including angiogenesis, epithelial-mesenchymal transition (EMT), and tumor immunity, with either pro- or anti-tumor effects. sEVs have been investigated for use as diagnostic and prognostic biomarkers for a variety of tumors, including lung cancer, melanoma, breast cancer, prostate cancer, and hepatocellular carcinoma. sEVs can be used for cancer therapy by packaging drugs or proteins into them through pre- and post-isolation modification techniques. The clinical trials of sEVs as biomarkers and drug carriers are also summarized. Finally, the challenges in the use of sEVs are described and the possible approaches to tackling them are suggested. Overall, sEVs will advance the precision cancer medicine and has shown great potential in clinical applications.
Collapse
Affiliation(s)
- Xinru Zhou
- Department of Laboratory Diagnostics, Changhai Hospital, Navy Military Medical University, Shanghai, China
| | - Yin Jia
- Department of Laboratory Diagnostics, Changhai Hospital, Navy Military Medical University, Shanghai, China
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; School of Materials Science & Engineering, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Shanrong Liu
- Department of Laboratory Diagnostics, Changhai Hospital, Navy Military Medical University, Shanghai, China.
| |
Collapse
|
2
|
Cao JY, Wang YC, Deng XX. Efficacy of β2-adrenergic receptor agonist combined with corticosteroid in the treatment of children with cough variant asthma. World J Clin Cases 2023; 11:7610-7618. [DOI: 10.12998/wjcc.v11.i31.7610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/07/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Cough variant asthma (CVA) is one of the most common respiratory diseases in children, which has a serious impact on the quality of life and daily activities of children. For severe CVA, immunomodulatory drugs are needed.
AIM To evaluate the efficacy of salmeterol combined with budesonide in the treatment of pediatric CVA.
METHODS 130 children with CVA from January 2020 to December 2022 were prospectively selected and randomly divided into an observation group (salmeterol combined with budesonide) and a control group (budesonide combined with a placebo). Compare the clinical efficacy of two groups before and after intervention. The evaluation parameters include cough frequency score, nocturnal cough arousal, and lung function indicators. Serum inflammatory markers, immune function markers and airway anatomical indicators were also measured.
RESULTS After the intervention, the total effective rate of the observation group was significantly higher than that of the control group, and the cough frequency score and the night cough wake rate of the observation group were lower than that of the control group, with a statistically significant difference. In addition, the changes of lung function indicators, serum markers and immune function markers in the observation group were better than those in the control group.
CONCLUSION The clinical efficacy of salmeterol combined with Budesonide in the treatment of CVA is better than that of Budesonide alone.
Collapse
Affiliation(s)
- Jun-Yi Cao
- Department of Pediatrics, The First People's Hospital of Jiangxia District, Wuhan 430200, Hubei Province, China
| | - Ying-Chun Wang
- Department of Pediatrics, The First People's Hospital of Jiangxia District, Wuhan 430200, Hubei Province, China
| | - Xiao-Xia Deng
- Department of Pediatric Respiratory, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, Hubei Province, China
| |
Collapse
|
3
|
Zhang X, Wang X, Hou L, Xu Z, Liu Y, Wang X. Nanoparticles overcome adaptive immune resistance and enhance immunotherapy via targeting tumor microenvironment in lung cancer. Front Pharmacol 2023; 14:1130937. [PMID: 37033636 PMCID: PMC10080031 DOI: 10.3389/fphar.2023.1130937] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/16/2023] [Indexed: 04/11/2023] Open
Abstract
Lung cancer is one of the common malignant cancers worldwide. Immune checkpoint inhibitor (ICI) therapy has improved survival of lung cancer patients. However, ICI therapy leads to adaptive immune resistance and displays resistance to PD-1/PD-L1 blockade in lung cancer, leading to less immune response of lung cancer patients. Tumor microenvironment (TME) is an integral tumor microenvironment, which is involved in immunotherapy resistance. Nanomedicine has been used to enhance the immunotherapy in lung cancer. In this review article, we described the association between TME and immunotherapy in lung cancer. We also highlighted the importance of TME in immunotherapy in lung cancer. Moreover, we discussed how nanoparticles are involved in regulation of TME to improve the efficacy of immunotherapy, including Nanomedicine SGT-53, AZD1080, Nanomodulator NRF2, Cisplatin nanoparticles, Au@PG, DPAICP@ME, SPIO NP@M-P, NBTXR3 nanoparticles, ARAC nanoparticles, Nano-DOX, MS NPs, Nab-paclitaxel, GNPs-hPD-L1 siRNA. Furthermore, we concluded that targeting TME by nanoparticles could be helpful to overcome resistance to PD-1/PD-L1 blockade in lung cancer.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Xuemei Wang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Lijian Hou
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Zheng Xu
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yu’e Liu
- School of Medicine, Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, Tongji University, Shanghai, China
| | - Xueju Wang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, China
- *Correspondence: Xueju Wang,
| |
Collapse
|
4
|
Dahri M, Akbarialiabad H, Jahromi AM, Maleki R. Loading and release of cancer chemotherapy drugs utilizing simultaneous temperature and pH-responsive nanohybrid. BMC Pharmacol Toxicol 2021; 22:41. [PMID: 34261533 PMCID: PMC8278666 DOI: 10.1186/s40360-021-00508-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 06/28/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Recently, the development of nanocarriers and the improvement of their biochemical properties have became of great importance. Single-walled carbon nanotubes (SWCNT) have many applications in drug delivery systems (DDS) as a common carbon-based structure. In the current work, the penetration, co-loading, and co-release of Doxorubicin (DOX) and Paclitaxel (PAX), as two cancer chemotherapy agents, were investigated using a novel modified copolymer with functionalized SWCNT. RESULTS This study proposes a dual-responsive smart carrier that is sensitive to pH and temperature. The carrier consists of functionalized SWNT and Dimethyl acrylamide-trimethyl chitosan (DMAA-TMC) grafting on SWCNT. This suggested carrier was investigated by utilizing molecular simulations. Interaction energies between DOX, PAX, and carrier as well as the affinity of drugs to the nanocarrier were studied. The energy analysis of drug release and adsorption presented that DOX and PAX delivery using this carrier is selective and sensitive at healthy and cancerous conditions. The attraction of DMAA-TMC, as a biodegradable and biocompatible copolymer, with SWCNT showed that degradation mechanism in acidic environment deformed the copolymer. This leads to a smart release mechanism in an acidic cancerous tissue. Additionally, it improves hydrophilicity, optimum nano-particle size, and cell cytotoxicity concerns. CONCLUSIONS The simulation results manifested a significant contribution of DMAA-TMC in the adsorption and release of cancer chemotherapy drugs in normal and neoplastic tissues. The interaction of copolymer also improves the biocompatibility and biodegradability of the SWCNT. Smart drug delivery carrier can be a valuable nanohybrid for loading, transporting, and releasing of cancer chemotherapy drugs.
Collapse
Affiliation(s)
- Mohammad Dahri
- Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hossein Akbarialiabad
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Miri Jahromi
- Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Reza Maleki
- Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
5
|
Daum S, Hagen H, Naismith E, Wolf D, Pircher A. The Role of Anti-angiogenesis in the Treatment Landscape of Non-small Cell Lung Cancer - New Combinational Approaches and Strategies of Neovessel Inhibition. Front Cell Dev Biol 2021; 8:610903. [PMID: 33469537 PMCID: PMC7813779 DOI: 10.3389/fcell.2020.610903] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor progression depends primarily on vascular supply, which is facilitated by angiogenic activity within the malignant tissue. Non-small cell lung cancer (NSCLC) is a highly vascularized tumor, and inhibition of angiogenesis was projected to be a promising therapeutic approach. Over a decade ago, the first anti-angiogenic agents were approved for advanced stage NSCLC patients, however, they only produced a marginal clinical benefit. Explanations why anti-angiogenic therapies only show modest effects include the highly adaptive tumor microenvironment (TME) as well as the less understood characteristics of the tumor vasculature. Today, advanced methods of in-depth characterization of the NSCLC TME by single cell RNA sequencing (scRNA-Seq) and preclinical observations enable a detailed characterization of individual cancer landscapes, allowing new aspects for a more individualized inhibition of angiogenesis to be identified. Furthermore, the tumor vasculature itself is composed of several cellular subtypes, which closely interact with other cellular components of the TME, and show distinct biological functions such as immune regulation, proliferation, and organization of the extracellular matrix. With these new insights, combinational approaches including chemotherapy, anti- angiogenic and immunotherapy can be developed to yield a more target-oriented anti-tumor treatment in NSCLC. Recently, anti-angiogenic agents were also shown to induce the formation of high endothelial venules (HEVs), which are essential for the formation of tertiary lymphoid structures, and key components in triggering anti-tumor immunity. In this review, we will summarize the current knowledge of tumor-angiogenesis and corresponding anti-angiogenic therapies, as well as new aspects concerning characterization of tumor-associated vessels and the resulting new strategies for anti-angiogenic therapies and vessel inhibition in NSCLC. We will further discuss why anti-angiogenic therapies form an interesting backbone strategy for combinational therapies and how anti-angiogenic approaches could be further developed in a more personalized tumor-oriented fashion with focus on NSCLC.
Collapse
Affiliation(s)
- Sophia Daum
- Internal Medicine V, Department of Hematology and Oncology, Medical University Innsbruck, Innsbruck, Austria
| | - Hannes Hagen
- Internal Medicine V, Department of Hematology and Oncology, Medical University Innsbruck, Innsbruck, Austria
| | - Erin Naismith
- Internal Medicine V, Department of Hematology and Oncology, Medical University Innsbruck, Innsbruck, Austria
| | - Dominik Wolf
- Internal Medicine V, Department of Hematology and Oncology, Medical University Innsbruck, Innsbruck, Austria
- Medical Clinic 3, Department of Oncology, Hematology, Immunoncology and Rheumatology, University Hospital Bonn (UKB), Bonn, Germany
| | - Andreas Pircher
- Internal Medicine V, Department of Hematology and Oncology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
6
|
Li Z, Luo G, Hu W, Hua J, Geng S, Chu PK, Zhang J, Wang H, Yu X. Mediated Drug Release from Nanovehicles by Black Phosphorus Quantum Dots for Efficient Therapy of Chronic Obstructive Pulmonary Disease. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhibin Li
- Department Materials and Interfaces Center Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 Guangdong P. R. China
| | - Guanghong Luo
- Department of Radiation Oncology The Second Clinical Medical College of Jinan University Shenzhen Municipal People's Hospital Shenzhen 518055 Guangdong P. R. China
| | - Wei‐Ping Hu
- Department of Pulmonary and Critical Care Medicine Zhongshan Hospital Shanghai Medical College Fudan University Shanghai 200032 P. R. China
| | - Jian‐Lan Hua
- Department of Pulmonary and Critical Care Medicine Zhongshan Hospital Shanghai Medical College Fudan University Shanghai 200032 P. R. China
| | - Shengyong Geng
- Department of Radiation Oncology The Second Clinical Medical College of Jinan University Shenzhen Municipal People's Hospital Shenzhen 518055 Guangdong P. R. China
| | - Paul K. Chu
- Department of Physics Department of Materials Science and Engineering, and Department of Biomedical Engineering City University of Hong Kong Tat Chee Avenue Kowloon, Hong Kong China
| | - Jing Zhang
- Department of Pulmonary and Critical Care Medicine Zhongshan Hospital Shanghai Medical College Fudan University Shanghai 200032 P. R. China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 Guangdong P. R. China
| | - Xue‐Feng Yu
- Department Materials and Interfaces Center Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 Guangdong P. R. China
| |
Collapse
|
7
|
Li Z, Luo G, Hu WP, Hua JL, Geng S, Chu PK, Zhang J, Wang H, Yu XF. Mediated Drug Release from Nanovehicles by Black Phosphorus Quantum Dots for Efficient Therapy of Chronic Obstructive Pulmonary Disease. Angew Chem Int Ed Engl 2020; 59:20568-20576. [PMID: 32666703 DOI: 10.1002/anie.202008379] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/13/2020] [Indexed: 11/07/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is an intractable disease involving a sticky mucus layer and nanoagents with mucus-penetrating capability offer a new way to deliver drugs. However, drug release from nanovehicles requires optimization to enhance the therapeutic effects of COPD therapy. Herein, black phosphorus quantum dots (BPQDs) are combined with PEGylated chitosan nanospheres containing the antibiotic amikacin (termed PEG@CS/BPQDs-AM NPs). As a drug-delivery system, the hydrophilicity of PEG and positive charge of CS facilitate the penetration of nanovehicles through the mucus layer. The nanovehicles then adhere to the mucous membrane. Furthermore, the BPQDs degrade rapidly into nontoxic PO4 3- and acidic H+ , thereby promoting the dissociation of PEGylated CS nanospheres, accelerating the release of AM, decreasing the vitality of biofilms for ease of eradication. Our results reveal that drug delivery mediated by BPQDs is a feasible and desirable strategy for precision medicine and promising for the clinical therapy of COPD.
Collapse
Affiliation(s)
- Zhibin Li
- Department Materials and Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, P. R. China
| | - Guanghong Luo
- Department of Radiation Oncology, The Second Clinical Medical College of Jinan University, Shenzhen Municipal People's Hospital, Shenzhen, 518055, Guangdong, P. R. China
| | - Wei-Ping Hu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Jian-Lan Hua
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Shengyong Geng
- Department of Radiation Oncology, The Second Clinical Medical College of Jinan University, Shenzhen Municipal People's Hospital, Shenzhen, 518055, Guangdong, P. R. China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Jing Zhang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, P. R. China
| | - Xue-Feng Yu
- Department Materials and Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, P. R. China
| |
Collapse
|
8
|
Cell-Penetrating Peptide and Transferrin Co-Modified Liposomes for Targeted Therapy of Glioma. Molecules 2019; 24:molecules24193540. [PMID: 31574945 PMCID: PMC6804123 DOI: 10.3390/molecules24193540] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 12/02/2022] Open
Abstract
Glioma is one of the most aggressive and common malignant brain tumors. Due to the presence of the blood-brain barrier (BBB), the effectiveness of therapeutics is greatly affected. In this work, to develop an efficient anti-glioma drug with targeting and which was able to cross the BBB, cell-penetrating peptides (R8) and transferrin co-modified doxorubicin (DOX)-loaded liposomes (Tf-LPs) were prepared. Tf-LPs possessed a spherical shape and uniform size with 128.64 nm and their ξ-potential was 6.81 mV. Tf-LPs were found to be stable in serum within 48 h. Uptake of Tf-LPs in both U87 and GL261 cells was analyzed by confocal laser scanning microscopy and by flow cytometry. Tf-LPs were efficiently taken up by both U87 and GL261 cells. Moreover, Tf-LPs exhibited sustained-release. The cumulative release of DOX from Tf-LPs reached ~50.0% and showed excellent anti-glioma efficacy. Histology of major organs, including brain, heart, liver, spleen, lungs and kidney, and the bodyweight of mice, all indicated low toxicity of Tf-LPs. In conclusion, Tf-LPs showed great promise as an anti-glioma therapeutic agent.
Collapse
|
9
|
Cai G, Wang S, Zhao L, Sun Y, Yang D, Lee RJ, Zhao M, Zhang H, Zhou Y. Thiophene Derivatives as Anticancer Agents and Their Delivery to Tumor Cells Using Albumin Nanoparticles. Molecules 2019; 24:E192. [PMID: 30621360 PMCID: PMC6337126 DOI: 10.3390/molecules24010192] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/27/2018] [Accepted: 12/29/2018] [Indexed: 01/25/2023] Open
Abstract
A series of thiophene derivatives (TPs) were synthesized and evaluated for cytotoxicity in HepG2 and SMMC-7721 cell lines by MTT assay. TP 5 was identified as a potential anticancer agent based on its ability to inhibit tumor cell growth. Drawbacks of TPs, including poor solubility and high toxicity, were overcome through delivery using self-assembling HSA nanoparticles (NPs). The optimum conditions for TP 5-NPs synthesis obtained by adjusting the temperature and concentration of TP 5. The NPs had an encapsulation efficiency of 99.59% and drug-loading capacity of 3.70%. TP 5 was slowly released from TP 5-NPs in vitro over 120 h. HepG2 and SMMC-7721 cell lines were employed to study cytotoxicity of TP 5-NPs, which exhibited high potency. ROS levels were elevated and mitochondrial membrane potentials reversed when the two cell lines were treated with TP 5-NPs for 12 h. Cellular uptake of fluorescence-labeled TP 5-NPs in vitro was analyzed by flow cytometry and laser confocal scanning microscopy. Fluorescence intensity increased over time, suggesting that TP 5-NPs were efficiently taken up by tumor cells. In conclusion, TP 5-NPs showed great promise as an anticancer therapeutic agent.
Collapse
Affiliation(s)
- Guangsheng Cai
- College of Life Sciences, Jilin University, Changchun 130012, China.
| | - Simiao Wang
- College of Life Sciences, Jilin University, Changchun 130012, China.
| | - Lang Zhao
- College of Chemistry, Jilin University, Changchun 130012, China.
| | - Yating Sun
- College of Life Sciences, Jilin University, Changchun 130012, China.
| | - Dongsheng Yang
- School of Pharmaceutical and Food Sciences, Zhuhai College of Jilin University, Zhuhai 519041, China.
| | - Robert J Lee
- College of Life Sciences, Jilin University, Changchun 130012, China.
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.
| | - Menghui Zhao
- College of Life Sciences, Jilin University, Changchun 130012, China.
| | - Huan Zhang
- College of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yulin Zhou
- College of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|