1
|
Cantoni C, Ghezzi L, Choi J, Cross AH, Piccio L. Targeting miR-223 enhances myeloid-derived suppressor cell suppressive activities in multiple sclerosis patients. Mult Scler Relat Disord 2023; 76:104839. [PMID: 37364375 PMCID: PMC10957070 DOI: 10.1016/j.msard.2023.104839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is an incurable autoimmune inflammatory demyelinating disease of the central nervous system. Several MS medications can modify disease course through effects on adaptive immune cells, while drugs targeting innate immunity are under investigation. Myeloid-derived suppressor cells (MDSCs) which arise during chronic inflammation, are defined by their T-cell immunosuppressive functions. MiR-223 modulates myeloid cell maturation and expansion, including MDSCs. METHODS MDSCs isolated from healthy controls (HC) and people with MS (pwMS) were co-cultured with CD4+ T-cells to study their immunosuppressive activities in vitro. Cytokines and chemokines concentration were evaluated by Luminex assay in the serum of HC, pwMS, and other neuroinflammatory diseases and correlated with MDSC activities. RESULTS MDSC suppressive functions are dysregulated in pwMS compared to HC, which was reversed by glucocorticoids (GC). GC specifically downregulated miR-223 levels in MDSCs and increased the expression of STAT3. In vitro assay showed that miR-223 inhibition enhanced MDSC suppressive activity, STAT3 dependently. By multiple linear regression analysis, we demonstrated that MDSC phosphorylated STAT3 was correlated with serum GM-CSF in HC and pwMS. CONCLUSIONS These results suggest that miR-223 could be a therapeutic target for enhancing MDSC's suppressive activities as an alternative to GC.
Collapse
Affiliation(s)
- Claudia Cantoni
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, 85013, United States.
| | - Laura Ghezzi
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, United States; Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Jasmine Choi
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, United States
| | - Anne H Cross
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, United States
| | - Laura Piccio
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, United States; Charles Perkins Centre, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
2
|
Shi M, Lu Q, Zhao Y, Ding Z, Yu S, Li J, Ji M, Fan H, Hou S. miR-223: a key regulator of pulmonary inflammation. Front Med (Lausanne) 2023; 10:1187557. [PMID: 37465640 PMCID: PMC10350674 DOI: 10.3389/fmed.2023.1187557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
Small noncoding RNAs, known as microRNAs (miRNAs), are vital for the regulation of diverse biological processes. miR-223, an evolutionarily conserved anti-inflammatory miRNA expressed in cells of the myeloid lineage, has been implicated in the regulation of monocyte-macrophage differentiation, proinflammatory responses, and the recruitment of neutrophils. The biological functions of this gene are regulated by its expression levels in cells or tissues. In this review, we first outline the regulatory role of miR-223 in granulocytes, macrophages, endothelial cells, epithelial cells and dendritic cells (DCs). Then, we summarize the possible role of miR-223 in chronic obstructive pulmonary disease (COPD), acute lung injury (ALI), coronavirus disease 2019 (COVID-19) and other pulmonary inflammatory diseases to better understand the molecular regulatory networks in pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Mingyu Shi
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Qianying Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Ziling Ding
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Sifan Yu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Junfeng Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Mengjun Ji
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China
| |
Collapse
|
3
|
Li YX, Jiao P, Wang XP, Wang JP, Feng F, Bao BW, Dong YW, Luoreng ZM, Wei DW. RNA-seq reveals the role of miR-223 in alleviating inflammation of bovine mammary epithelial cells. Res Vet Sci 2023; 159:257-266. [PMID: 37192556 DOI: 10.1016/j.rvsc.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/18/2023]
Abstract
Bovine mammary epithelial cells (bMECs) are involved in the early defense against the invasion of intramammary pathogens and are essential for the health of bovine mammary gland. MicroRNA (MiRNA) is a key factor that regulates cell state and physiological function. In the present study, the transcriptome profiles of miR-223 inhibitor transfection group (miR-223_Inhibitor) and negative control inhibitor transfection group (NC_Inhibitor) within bMECs were detected via the RNA sequencing (RNA-seq) platform. Based on these experiments, the differentially expressed mRNAs (DE-mRNAs) of the miR-223_Inhibitor transfection group were screened, and the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional analyses of DE-mRNAs were performed. The results revealed that compared with the NC_Inhibitor, 224 differentially expressed genes (DEGs) were identified in the miR-223_Inhibitor, including 184 upregulated and 40 downregulated genes. The functional annotation of the above DEGs indicated that some of these genes are involved in the immune response generated by extracellular substance stimulation, regulation of the activity of cytokines and chemokines, and the immune signaling pathways of NF-κB and TNF. Meanwhile, miR-223_inhibitor upregulated the immune key genes IRF1 and NFκBIA, cytokines IL-6 and IL-24, as well as chemokines CXCL3, CXCL5, and CCR6, triggering a signaling cascade response that exacerbated inflammation in bMECs. These results suggested that miR-223 plays an important role in inhibiting the inflammatory response and maintaining the stability of bMECs, and is a potential target for treating mastitis in dairy cows.
Collapse
Affiliation(s)
- Yan-Xia Li
- School of Agriculture, Ningxia University, Yinchuan, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Peng Jiao
- School of Agriculture, Ningxia University, Yinchuan, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Xing-Ping Wang
- School of Agriculture, Ningxia University, Yinchuan, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Jin-Peng Wang
- School of Agriculture, Ningxia University, Yinchuan, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Fen Feng
- School of Agriculture, Ningxia University, Yinchuan, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Bin-Wu Bao
- School of Agriculture, Ningxia University, Yinchuan, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Yi-Wen Dong
- School of Agriculture, Ningxia University, Yinchuan, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Zhuo-Ma Luoreng
- School of Agriculture, Ningxia University, Yinchuan, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China.
| | - Da-Wei Wei
- School of Agriculture, Ningxia University, Yinchuan, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| |
Collapse
|
4
|
Yuan S, Wu Q, Wang Z, Che Y, Zheng S, Chen Y, Zhong X, Shi F. miR-223: An Immune Regulator in Infectious Disorders. Front Immunol 2021; 12:781815. [PMID: 34956210 PMCID: PMC8702553 DOI: 10.3389/fimmu.2021.781815] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are diminutive noncoding RNAs that can influence disease development and progression by post-transcriptionally regulating gene expression. The anti-inflammatory miRNA, miR-223, was first identified as a regulator of myelopoietic differentiation in 2003. This miR-223 exhibits multiple regulatory functions in the immune response, and abnormal expression of miR-223 is shown to be associated with multiple infectious diseases, including viral hepatitis, human immunodeficiency virus type 1 (HIV-1), and tuberculosis (TB) by influencing neutrophil infiltration, macrophage function, dendritic cell (DC) maturation and inflammasome activation. This review summarizes the current understanding of miR-223 physiopathology and highlights the molecular mechanism by which miR-223 regulates immune responses to infectious diseases and how it may be targeted for diagnosis and treatment.
Collapse
Affiliation(s)
- Shun Yuan
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qi Wu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhiwei Wang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanjia Che
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Sihao Zheng
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuanyang Chen
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaohan Zhong
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Feng Shi
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Guo J, Liao M, Wang J. TLR4 signaling in the development of colitis-associated cancer and its possible interplay with microRNA-155. Cell Commun Signal 2021; 19:90. [PMID: 34479599 PMCID: PMC8414775 DOI: 10.1186/s12964-021-00771-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/29/2021] [Indexed: 12/17/2022] Open
Abstract
Ulcerative colitis (UC) has closely been associated with an increased risk of colorectal cancer. However, the exact mechanisms underlying colitis-associated cancer (CAC) development remain unclear. As a classic pattern-recognition receptor, Toll like receptor (TLR)4 is a canonical receptor for lipopolysaccharide of Gram-negative bacteria (including two CAC-associated pathogens Fusobacterium nucleatum and Salmonella), and functions as a key bridge molecule linking oncogenic infection to colonic inflammatory and malignant processes. Accumulating studies verified the overexpression of TLR4 in colitis and CAC, and the over-expressed TLR4 might promote colitis-associated tumorigenesis via facilitating cell proliferation, protecting malignant cells against apoptosis, accelerating invasion and metastasis, as well as contributing to the creation of tumor-favouring cellular microenvironment. In recent years, considerable attention has been focused on the regulation of TLR4 signaling in the context of colitis-associated tumorigenesis. MicroRNA (miR)-155 and TLR4 exhibited a similar dynamic expression change during CAC development and shared similar CAC-promoting properties. The available data demonstrated an interplay between TLR4 and miR-155 in the context of different disorders or cell lines. miR-155 could augment TLR4 signaling through targeting negative regulators SOCS1 and SHIP1; and TLR4 activation would induce miR-155 expression via transcriptional and post-transcriptional mechanisms. This possible TLR4-miR-155 positive feedback loop might result in the synergistic accelerating effect of TLR4 and miR-155 on CAC development.![]() Video abstract
Collapse
Affiliation(s)
- Jie Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China.,New Medicine Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Mengfan Liao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China.,New Medicine Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China. .,New Medicine Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Jiao P, Wang XP, Luoreng ZM, Yang J, Jia L, Ma Y, Wei DW. miR-223: An Effective Regulator of Immune Cell Differentiation and Inflammation. Int J Biol Sci 2021; 17:2308-2322. [PMID: 34239357 PMCID: PMC8241730 DOI: 10.7150/ijbs.59876] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/21/2021] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) play a critical role in regulating various biological processes, such as cell differentiation and immune modulation by binding to their target genes. miR-223 is a miRNA with important functions and has been widely investigated in recent years. Under certain physiological conditions, miR-223 is regulated by different transcription factors, including sirtuin1 (Sirt1), PU.1 and Mef2c, and its biological functions are mediated through changes in its cellular or tissue expression. This review paper summarizes miR-223 biosynthesis and its regulatory role in the differentiation of granulocytes, dendritic cells (DCs) and lymphocytes, macrophage polarization, and endothelial and epithelial inflammation. In addition, it describes the molecular mechanisms of miR-223 in regulating lung inflammation, rheumatoid arthritis, enteritis, neuroinflammation and mastitis to provide insights into the existing molecular regulatory networks and therapies for inflammatory diseases in humans and animals.
Collapse
Affiliation(s)
- Peng Jiao
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Xing-Ping Wang
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Zhuo-Ma Luoreng
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Jian Yang
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Li Jia
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Yun Ma
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Da-Wei Wei
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| |
Collapse
|
7
|
Dailey DD, Hess AM, Bouma GJ, Duval DL. MicroRNA Expression Changes and Integrated Pathways Associated With Poor Outcome in Canine Osteosarcoma. Front Vet Sci 2021; 8:637622. [PMID: 33937369 PMCID: PMC8081964 DOI: 10.3389/fvets.2021.637622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/18/2021] [Indexed: 01/26/2023] Open
Abstract
MicroRNAs (miRNA) are small non-coding RNA molecules involved in post-transcriptional gene regulation. Deregulation of miRNA expression occurs in cancer, and miRNA expression profiles have been associated with diagnosis and prognosis in many cancers. Osteosarcoma (OS), an aggressive primary tumor of bone, affects ~10,000 dogs each year. Though survival has improved with the addition of chemotherapy, up to 80% of canine patients will succumb to metastatic disease. Reliable prognostic markers are lacking for this disease. miRNAs are attractive targets of biomarker discovery efforts due to their increased stability in easily obtained body fluids as well as within fixed tissue. Previous studies in our laboratory demonstrated that dysregulation of genes in aggressive canine OS tumors that participate in miRNA regulatory networks is reportedly disrupted in OS or other cancers. We utilized RT-qPCR in a 384-well-plate system to measure the relative expression of 190 miRNAs in 14 canine tumors from two cohorts of dogs with good or poor outcome (disease-free interval >300 or <100 days, respectively). Differential expression analysis in this subset guided the selection of candidate miRNAs in tumors and serum samples from larger groups of dogs. We ultimately identified a tumor-based three-miR Cox proportional hazards regression model and a serum-based two-miR model, each being able to distinguish patients with good and poor prognosis via Kaplan-Meier analysis with log rank test. Additionally, we integrated miRNA and gene expression data to identify potentially important miRNA-mRNA interactions that are disrupted in canine OS. Integrated analyses of miRNAs in the three-miR predictive model and disrupted genes from previous expression studies suggest the contribution of the primary tumor microenvironment to the metastatic phenotype of aggressive tumors.
Collapse
Affiliation(s)
- Deanna D. Dailey
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, United States
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, United States
| | - Ann M. Hess
- Department of Statistics, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Gerrit J. Bouma
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Dawn L. Duval
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, United States
- Tumor-Host Interactions Research Program, University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
8
|
Zhang Y, Li Y, Wang Q, Su B, Xu H, Sun Y, Sun P, Li R, Peng X, Cai J. Role of RASA1 in cancer: A review and update (Review). Oncol Rep 2020; 44:2386-2396. [PMID: 33125148 PMCID: PMC7610306 DOI: 10.3892/or.2020.7807] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/22/2020] [Indexed: 12/24/2022] Open
Abstract
Ras p21 protein activator 1 (RASA1) is a regulator of Ras GDP and GTP and is involved in numerous physiological processes such as angiogenesis, cell proliferation, and apoptosis. As a result, RASA1 also contributes to pathological processes in vascular diseases and tumour formation. This review focuses on the role of RASA1 in multiple tumours types in the lung, intestines, liver, and breast. Furthermore, we discuss the potential mechanisms of RASA1 and its downstream effects through Ras/RAF/MEK/ERK or Ras/PI3K/AKT signalling. Moreover, miRNAs are capable of regulating RASA1 and could be a novel targeted treatment strategy for tumours.
Collapse
Affiliation(s)
- Yanhua Zhang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Yue Li
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Quanyue Wang
- Qinghai Institute of Health Sciences, Xining, Qinghai 810000, P.R. China
| | - Bo Su
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Hui Xu
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Yang Sun
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Pei Sun
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Rumeng Li
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Xiaochun Peng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Jun Cai
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| |
Collapse
|
9
|
miR-223-3p Inhibits Antigen Endocytosis and Presentation and Promotes the Tolerogenic Potential of Dendritic Cells through Targeting Mannose Receptor Signaling and Rhob. J Immunol Res 2020; 2020:1379458. [PMID: 32656268 PMCID: PMC7320286 DOI: 10.1155/2020/1379458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 04/17/2020] [Indexed: 02/06/2023] Open
Abstract
Background The role of miR-223-3p in dendritic cells (DCs) is unknown. This study is aimed at investigating the effect of miR-223-3p on the antigen uptake and presentation capacities of DCs and the underlying molecular mechanism. Methods FITC-OVA antigen uptake and cell surface markers in bone marrow-derived DCs (BMDCs) were analyzed by flow cytometry. BMDCs were transfected with the miR-223-3p mimic or inhibitor. Cytokine levels were determined by ELISA. CD4+ T cell differentiation was determined by mixed lymphocyte culture assay. Results OVA treatment significantly downregulated miR-223-3p in BMDCs. The miR-223-3p mimic significantly inhibited OVA-induced antigen uptake and surface expression of MHC-II on BMDCs (P < 0.01). The miR-223-3p mimic increased TGF-β1 production in OVA-treated DCs (P < 0.01). Mixed lymphocyte reaction showed that the miR-223-3p mimic significantly promoted Treg cell differentiation. In addition, the miR-223-3p mimic significantly upregulated CD103 in DCs, indicating the promotion of tolerogenic DCs. The miR-223-3p mimic downregulated Rhob protein in OVA-induced DCs. Rhob knockdown significantly suppressed the ability of FITC-OVA endocytosis (P < 0.01) and surface MHC-II molecule expression (P < 0.01) in BMDCs, promoting promoted Treg cell differentiation. Mannose receptor (MR) knockdown significantly upregulated miR-223-3p, downregulated Rhob protein in OVA-treated DCs, inhibited the FITC-OVA endocytosis and surface MHC-II expression in BMDCs, and promoted Treg cell differentiation (all P < 0.01). Conclusion These data suggest that miR-223-3p has an inhibitory effect on the antigen uptake and presentation capacities of BMDCs and promotes Treg cell differentiation, which is, at least partially, through targeting MR signaling and Rhob.
Collapse
|
10
|
MicroRNA-223-3p modulates dendritic cell function and ameliorates experimental autoimmune myocarditis by targeting the NLRP3 inflammasome. Mol Immunol 2019; 117:73-83. [PMID: 31743855 DOI: 10.1016/j.molimm.2019.10.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/15/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022]
Abstract
Autoimmune myocarditis is a cause of dilated cardiomyopathy and heart failure. MicroRNAs regulate many immune processes, but their role in aberrant inflammation during autoimmune myocarditis remains unclear. In this study, we investigated the role of miR-223-3p in experimental autoimmune myocarditis (EAM). We found that miR-223-3p expression was significantly lower in EAM mice than that in normal mice. miR-223-3p inhibited NLRP3 inflammasome expression, promoting the polarization of dendritic cells (DCs) towards a tolerogenic DC phenotype. miR-223-3p effectively induced regulatory T cell (Treg) generation by inhibiting the function of antigen-presenting DCs. Transfer of miR-223-3p-overexpressing DCs protected mice against the development of EAM. Our findings suggest that miR-223-3p is involved in the induction of the tolerogenic DC phenotype and regulates tolerance in autoimmune myocarditis.
Collapse
|