1
|
Kwon TG, Kim YJ, Hong JY, Song JH, Park JY. A review of antidepressant and anxiolytic effects of Soyo-san (Xiaoyao-san) and modified Soyo-san in animal models. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:155387. [PMID: 39515106 DOI: 10.1016/j.phymed.2024.155387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Soyo-san (Xiaoyao-san; SYS), a traditional herbal medicine formula, has been used for treating mood disorders, especially depression and anxiety. Modified SYS (mSYS) is formulated by adding or removing herbs to SYS, and is mainly used in cases of mood disorders with comorbid diseases such as diabetes, digestive disorders, and anorexia. However, there has been no detailed comparative analysis of the differences in efficacy and underlying neurological mechanisms between SYS and mSYS. PURPOSE This review aimed to investigate the present scientific evidence regarding the effects of SYS and mSYS on depression and anxiety in animal models based on behavioral improvements and changes in biomarker levels. METHODS The PubMed, Embase, Scopus, and Medline databases were searched for all depression- and anxiety-model animal studies that used SYS and mSYS. The types of animals, methods for inducing depression or anxiety, publication trends, target diseases, types and proportions of herbs, and significant behavioral and biomolecular changes induced by SYS and mSYS treatment were analyzed. RESULTS A total of 1,120 studies were identified, of which 57 studies were finally included in this review. Behavioral or environmental stress was mainly used to induce depression or anxiety in rodent models. SYS treatment improved body weight, food intake, and depression- and anxiety-like behaviors. The proportions of the herbs in the original SYS formulation were mostly fixed, whereas the types and proportions of herbs used in mSYS formulations were quite diverse. mSYS had a wider range of target diseases than SYS, and it has been used not only for depression and anxiety, but also cancer and stroke. Changes in biomarker levels in the hippocampus of the brain have been studied most extensively for both SYS and mSYS. Both SYS and mSYS are reported to regulate 5-hydroxytryptamine, brain-derived neurotrophic factor, and hypothalamic-pituitary-adrenal axis-related biomolecules in the brain, as well as changes in micro-organisms and metabolite levels in the serum and intestinal environment. CONCLUSIONS SYS and mSYS improved depression- and anxiety-like behaviors by regulating neurotransmission, neuronal survival, and inflammation. Further research is needed to elucidate the clinical value of mSYS through various uses-related in-depth mechanistic studies.
Collapse
Affiliation(s)
- Tae-Gyeong Kwon
- College of Korean Medicine, Daejeon University, Daejeon, 34520, Republic of Korea; Dosol Korean Medicine Hospital, Pyeongtaek, 17854, Republic of Korea
| | - Yu-Jin Kim
- College of Korean Medicine, Daejeon University, Daejeon, 34520, Republic of Korea; Korean Medicine Hospital of Daejeon University, Daejeon, 35235, Republic of Korea
| | - Ja-Young Hong
- College of Korean Medicine, Daejeon University, Daejeon, 34520, Republic of Korea; School of Medicine, Konkuk University, Chungju, 27478, Republic of Korea
| | - Ji-Hye Song
- College of Korean Medicine, Daejeon University, Daejeon, 34520, Republic of Korea; Institute of Bioscience & Integrative Medicine, Daejeon University, Daejeon, 34520, Republic of Korea
| | - Ji-Yeun Park
- College of Korean Medicine, Daejeon University, Daejeon, 34520, Republic of Korea; Institute of Bioscience & Integrative Medicine, Daejeon University, Daejeon, 34520, Republic of Korea.
| |
Collapse
|
2
|
Li Y. Effect of Xiaoyaosan on brain volume and microstructure diffusion changes to exert antidepressant-like effects in mice with chronic social defeat stress. Front Psychiatry 2024; 15:1414295. [PMID: 39371910 PMCID: PMC11450227 DOI: 10.3389/fpsyt.2024.1414295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/23/2024] [Indexed: 10/08/2024] Open
Abstract
Objective Depression is a prevalent mental disorder characterized by persistent negative mood and loss of pleasure. Although there are various treatment modalities available for depression, the rates of response and remission remain low. Xiaoyaosan (XYS), a traditional Chinese herbal formula with a long history of use in treating depression, has shown promising effects. However, the underlying mechanism of its therapeutic action remains elusive. The aim of this study is to investigate the neuroimaging changes in the brain associated with the antidepressant-like effects of XYS. Methods Here, we combined voxel-based morphometry of T2-weighted images and voxel-based analysis on diffusion tensor images to evaluate alterations in brain morphometry and microstructure between chronic social defeat stress (CSDS) model mice and control mice. Additionally, we examined the effect of XYS treatment on structural disruptions in the brains of XYS-treated mice. Furthermore, we explored the therapeutic effect of 18β-glycyrrhetinic acid (18β-GA), which was identified as the primary compound present in the brain following administration of XYS. Significant differences in brain structure were utilized as classification features for distinguishing mice with depression model form the controls using a machine learning method. Results Significant changes in brain volume and diffusion metrics were observed in the CSDS model mice, primarily concentrated in the nucleus accumbens (ACB), primary somatosensory area (SSP), thalamus (TH), hypothalamus (HY), basomedical amygdala nucleus (BMA), caudoputamen (CP), and retrosplenial area (RSP). However, both XYS and 18β-GA treatment prevented disruptions in brain volume and diffusion metrics in certain regions, including bilateral HY, right SSP, right ACB, bilateral CP, and left TH. The classification models based on each type of neuroimaging feature achieved high accuracy levels (gray matter volume: 76.39%, AUC=0.83; white matter volume: 76.39%, AUC=0.92; fractional anisotropy: 82.64%, AUC=0.9; radial diffusivity: 76.39%, AUC=0.82). Among these machine learning analyses, the right ACB, right HY, and right CP were identified as the most important brain regions for classification purposes. Conclusion These findings suggested that XYS can prevent abnormal changes in brain volume and microstructure within TH, SSP, ACB, and CP to exert prophylactic antidepressant-like effects in CSDS model mice. The neuroimaging features within these regions demonstrate excellent performance for classifying CSDS model mice from controls while providing valuable insights into the antidepressant effects of XYS.
Collapse
Affiliation(s)
- Yongxin Li
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional
Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Lv S, Yang N, Lu Y, Zhang G, Zhong X, Cui Y, Huang Y, Teng J, Sai Y. The therapeutic potential of traditional Chinese medicine in depression: focused on the modulation of neuroplasticity. Front Pharmacol 2024; 15:1426769. [PMID: 39253375 PMCID: PMC11381291 DOI: 10.3389/fphar.2024.1426769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024] Open
Abstract
Depression, a mood disorder characterized by a persistent low mood and lack of enjoyment, is considered the leading cause of non-fatal health losses worldwide. Neuroplasticity refers to the brain's ability to adapt to external or internal stimuli, resulting in functional and structural changes. This process plays a crucial role in the development of depression. Traditional Chinese Medicine (TCM) shows significant potential as a complementary and alternative therapy for neurological diseases, including depression. However, there has been no systematic summary of the role of neuroplasticity in the pathological development of depression and TCM Interventions currently. This review systematically summarized recent literature on changes in neuroplasticity in depression and analyzed the regulatory mechanisms of active metabolites in TCM and TCM formulas on neuroplasticity in antidepressant treatment. Additionally, this review discussed the limitations of current research and the application prospects of TCM in regulating neuroplasticity in antidepressant research.
Collapse
Affiliation(s)
- Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ni Yang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xia Zhong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Yaru Cui
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yufei Huang
- Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Teng
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanyan Sai
- University Town Hospital, Afiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Zhang WJ, Guo ZX, Wang YD, Fang SY, Wan CM, Yu XL, Guo XF, Chen YY, Zhou X, Huang JQ, Li XJ, Chen JX, Fan LL. From Perspective of Hippocampal Plasticity: Function of Antidepressant Chinese Medicine Xiaoyaosan. Chin J Integr Med 2024; 30:747-758. [PMID: 38900227 DOI: 10.1007/s11655-024-3908-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2023] [Indexed: 06/21/2024]
Abstract
The hippocampus is one of the most commonly studied brain regions in the context of depression. The volume of the hippocampus is significantly reduced in patients with depression, which severely disrupts hippocampal neuroplasticity. However, antidepressant therapies that target hippocampal neuroplasticity have not been identified as yet. Chinese medicine (CM) can slow the progression of depression, potentially by modulating hippocampal neuroplasticity. Xiaoyaosan (XYS) is a CM formula that has been clinically used for the treatment of depression. It is known to protect Gan (Liver) and Pi (Spleen) function, and may exert its antidepressant effects by regulating hippocampal neuroplasticity. In this review, we have summarized the association between depression and aberrant hippocampal neuroplasticity. Furthermore, we have discussed the researches published in the last 30 years on the effects of XYS on hippocampal neuroplasticity in order to elucidate the possible mechanisms underlying its therapeutic action against depression. The results of this review can aid future research on XYS for the treatment of depression.
Collapse
Affiliation(s)
- Wu-Jing Zhang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Ze-Xuan Guo
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Yi-di Wang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Shao-Yi Fang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Chun-Miao Wan
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiao-Long Yu
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiao-Fang Guo
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Yue-Yue Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Xuan Zhou
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Jun-Qing Huang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiao-Juan Li
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Jia-Xu Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Li-Li Fan
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
5
|
Liu Y, Guo D, Yu B, Zeng T, Jiao FL, Bi YM. The effects and mechanisms of modified Xiaoyaosan on chronic unpredictable mild stress (CUMS)-induced depressive mice based on network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117754. [PMID: 38232859 DOI: 10.1016/j.jep.2024.117754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Clinical research and basic scientific experiments have shown that modified Xiaoyaosan (MXYS) has antidepressant effects, whose system mechanism however has not been thoroughly characterized. AIM OF THE STUDY This research was aimed at evaluating the treatment effects of MXYS on chronic unpredictable mild stress (CUMS)-induced depressive mice and exploring underlying mechanisms. MATERIALS AND METHODS Whether MXYS has effects on depression was investigated via the depressive behaviors of mice, electron microscopy, real-time quantitative polymerase chain reaction (RT-qPCR), Western blot analysis, immunofluorescence (IF) staining and the stereotaxic injection of adeno-associated viruses (AAVs). In addition, network pharmacology was applied to predict relevant molecular targets and possible mechanisms and perform further in vivo validation. RESULTS MXYS is effective in ameliorating the depression-like symptoms of CUMS mice. It can stimulate autophagosome formation, activate the expression of microtubule-associated protein 1 light chain 3 (LC3B), autophagy-related gene 5 (Atg5), Atg7 and neuron-specific nuclear protein (NeuN), and decrease the protein expression sequestosome 1 (SQSTM1/p62). The autophagy-upregulating effect of MXYS was weakened by silencing. The network pharmacology analysis revealed that mitogen-activated protein kinase 1 (MAPK1), MAPK3, serine/threonine-protein kinase (AKT1), proto-oncogene tyrosine-protein kinase (SRC), PI 3 kinase p85 alpha (PIK3R1), catenin (cadherin-associated protein) beta 1 (CTNNB1) and human thrombin activator 1 (HRAS) may be of importance to treat depression by MXYS. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that metabolic and autophagy pathways, pathways in cancer and MAPK, phosphoinositide 3-kinase (PI3K)-Akt and rhoptry-associated protein 1 (Rap1) signaling pathways are involved in the antidepressant effects of MXYS. As suggested by Western blot, the anti-depression mechanism of MXYS is possibly associated with the extracellular signal-regulated protein kinase (ERK)/P38 MAPK signaling pathway. CONCLUSION The findings indicate the possible antidepressant effects of MXYS on CUMS mice via triggering autophagy to alleviate neuronal apoptosis and prompting autophagy, which may involve the ERK/P38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Yuan Liu
- College of Integrated Traditional Chinese and Western Medicine, Jining Medical University, Jining, China
| | - Dong Guo
- College of Integrated Traditional Chinese and Western Medicine, Jining Medical University, Jining, China
| | - Bin Yu
- College of Integrated Traditional Chinese and Western Medicine, Jining Medical University, Jining, China
| | - Ting Zeng
- Department of Neurology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, China
| | - Feng-Li Jiao
- Department of Acupuncture and Moxibustion, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yan-Meng Bi
- College of Integrated Traditional Chinese and Western Medicine, Jining Medical University, Jining, China.
| |
Collapse
|
6
|
Ran S, Peng R, Guo Q, Cui J, Chen G, Wang Z. Bupleurum in Treatment of Depression Disorder: A Comprehensive Review. Pharmaceuticals (Basel) 2024; 17:512. [PMID: 38675471 PMCID: PMC11054835 DOI: 10.3390/ph17040512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The incidence of depression has been steadily rising in recent years, making it one of the most prevalent mental illnesses. As the pursuit of novel antidepressant drugs captivates the pharmaceutical field, the therapeutic efficacy of Traditional Chinese Medicine (TCM) has been widely explored. Chaihu (Bupleurum) has been traditionally used for liver conditions such as hepatitis, liver inflammation, liver fibrosis, and liver cancer. It is believed to have hepatoprotective effects, promoting liver cell regeneration and protecting against liver damage. In addition, Bupleurum has also been used as a Jie Yu (depression-relieving) medicine in China, Japan, Republic of Korea, and other Asian countries for centuries. This review article aims to summarize the research conducted on the antidepressant properties and mechanisms of Bupleurum, as well as discuss the potential of TCM formulas containing Bupleurum. This review highlights various antidepressant ingredients isolated from Bupleurum, including saikosaponin A, saikosaponin D, rutin, puerarin, and quercetin, each with distinct mechanisms of action. Additionally, Chinese herb prescriptions and extracts containing Bupleurum, such as Chaihu Shugansan, Xiaoyaosan, and Sinisan, are also included due to their demonstrated antidepressant effects. This review reveals that these Bupleurum compounds exhibit antidepressant effects through the regulation of neurotransmitter mechanisms (such as 5-HT and DA), the NMDA (N-methyl-D-aspartate) system, brain-derived neurotrophic factor (BDNF), and other intracellular signaling pathways. Collectively, this comprehensive review provides insights into the multiple applications of Bupleurum in the treatment of depression and highlights its potential as an alternative or complementary approach to traditional therapies. However, it is essential to consider the potential adverse effects and clinical restrictions of Bupleurum despite its promising potential. Further research is needed to elucidate its specific mechanisms of action and evaluate its effectiveness in human subjects.
Collapse
Affiliation(s)
| | | | | | | | - Gang Chen
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; (S.R.); (R.P.); (Q.G.); (J.C.)
| | - Ziying Wang
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; (S.R.); (R.P.); (Q.G.); (J.C.)
| |
Collapse
|
7
|
Wang R, Hu X, Liu S, Wang J, Xiong F, Zhang X, Ye W, Wang H. Kaempferol-3-O-sophoroside (PCS-1) contributes to modulation of depressive-like behaviour in C57BL/6J mice by activating AMPK. Br J Pharmacol 2024; 181:1182-1202. [PMID: 37949672 DOI: 10.1111/bph.16283] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Kaempferol-3-O-sophoroside (PCS-1) is the main component in Crocus sativus (Saffron), a herb with mood-enhancing properties. AMP-activated protein kinase (AMPK) is a potential therapeutic target for depression. This study explores the antidepressive-like properties of PCS-1 and its AMPK activation to confirm AMPK as a target for antidepression. EXPERIMENTAL APPROACH Corticosterone (CORT)-induced PC12 cell injury served as an in vitro model to evaluate the neuroprotective effect of PCS-1. Neuro-2a cells and primary neurons were utilized to evaluate the synaptogenesis role of PCS-1. CORT-induced mouse depression model and chronic unpredictable mild stress (CUMS) model were used to assess the antidepressive-like properties of PCS-1 through behavioural tests, magnetic resonance imaging, and biochemical index measurements. Western blot and immunofluorescence assays were used to study the mechanisms of PCS-1. Cellular thermal shift assay was used to confirm the binding target. KEY RESULTS PCS-1 (12.5-50 μM) ameliorated CORT-induced PC12 cell damage, oxidative stress and inflammation. PCS-1 alone promoted an increase in synapses in Neuro-2a cells and primary neurons. Oral administration of PCS-1 (10 and 20 mg·kg-1 ) ameliorated weight loss, dyskinesia, and hippocampal volume reduction induced by CORT and CUMS. PCS-1 bound to AMPK to improve the expression of brain-derived neurotrophic factor (BDNF) and induce autophagy. CONCLUSION AND IMPLICATIONS PCS-1 binds to AMPK to promote BDNF production and autophagy enhancement, ultimately achieving antidepressant effects. This study provides support for the clinical application of saffron petals and provides further evidence for AMPK as a potential target for antidepression.
Collapse
Affiliation(s)
- Rong Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xiaolong Hu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Shumeng Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jingjin Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Fei Xiong
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, Southeast University, Nanjing, People's Republic of China
| | - Xiaoqi Zhang
- Institute of Traditional Chinese Medicine & Natural Products, Jinan University, Guangzhou, People's Republic of China
| | - Wencai Ye
- Institute of Traditional Chinese Medicine & Natural Products, Jinan University, Guangzhou, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
8
|
Du Q, Gao C, Tsoi B, Wu M, Shen J. Niuhuang Qingxin Wan ameliorates depressive-like behaviors and improves hippocampal neurogenesis through modulating TrkB/ERK/CREB signaling pathway in chronic restraint stress or corticosterone challenge mice. Front Pharmacol 2024; 14:1274343. [PMID: 38273824 PMCID: PMC10808638 DOI: 10.3389/fphar.2023.1274343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction: Chronic stress-associated hormonal imbalance impairs hippocampal neurogenesis, contributing to depressive and anxiety behaviors. Targeting neurogenesis is thus a promising antidepressant therapeutic strategy. Niuhuang Qingxin Wan (NHQXW) is an herbal formula for mental disorders in Traditional Chinese Medicine (TCM) practice, but its anti-depressant efficacies and mechanisms remain unverified. Methods: In the present study, we tested the hypothesis that NHQXW could ameliorate depressive-like behaviors and improve hippocampal neurogenesis by modulating the TrkB/ERK/CREB signaling pathway by utilizing two depression mouse models including a chronic restraint stress (CRS) mouse model and a chronic corticosterone (CORT) stress (CCS) induced mouse model. The depression-like mouse models were orally treated with NHQXW whereas fluoxetine was used as the positive control group. We evaluated the effects of NHQXW on depressive- and anxiety-like behaviors and determined the effects of NHQXW on inducing hippocampal neurogenesis. Results: NHQXW treatment significantly ameliorated depressive-like behaviors in those chronic stress mouse models. NHQXW significantly improved hippocampal neurogenesis in the CRS mice and CCS mice. The potential neurogenic mechanism of NHQXW was identified by regulating the expression levels of BDNF, TrkB, p-ERK (T202/T204), p-MEK1/2 (S217/221), and p-CREB (S133) in the hippocampus area of the CCS mice. NHQXW revealed its antidepressant and neurogenic effects that were similar to fluoxetine. Moreover, NHQXW treatment revealed long-term effects on preventing withdrawal-associated rebound symptoms in the CCS mice. Furthermore, in a bioactivity-guided quality control study, liquiritin was identified as one of the bioactive compounds of NHQXW with the bioactivities of neurogenesis-promoting effects. Discussion: Taken together, NHQXW could be a promising TCM formula to attenuate depressive- and anxiety-like behaviors against chronic stress and depression. The underlying anti-depressant mechanisms could be correlated with its neurogenic activities by stimulating the TrkB/ERK/CREB signaling pathway.
Collapse
Affiliation(s)
- Qiaohui Du
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chong Gao
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- The Institute of Brain and Cognitive Sciences, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Bun Tsoi
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Meiling Wu
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jiangang Shen
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
9
|
Meng P, Zhang X, Liu TT, Liu J, Luo Y, Xie MX, Yang H, Fang R, Guo DW, Zhong ZY, Wang YH, Ge JW. A whole transcriptome profiling analysis for antidepressant mechanism of Xiaoyaosan mediated synapse loss via BDNF/trkB/PI3K signal axis in CUMS rats. BMC Complement Med Ther 2023; 23:198. [PMID: 37322430 DOI: 10.1186/s12906-023-04000-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Depression is a neuropsychiatric disease resulting from deteriorations of molecular networks and synaptic injury induced by stress. Traditional Chinese formula Xiaoyaosan (XYS) exert antidepressant effect, which was demonstrated by a great many of clinical and basic investigation. However, the exact mechanism of XYS has not yet been fully elucidated. METHODS In this study, chronic unpredictable mild stress (CUMS) rats were used as a model of depression. Behavioral test and HE staining were used to detect the anti-depressant effects of XYS. Furthermore, whole transcriptome sequencing was employed to establish the microRNA (miRNA), long non-coding RNA (lncRNA), circular RNA (circRNA), and mRNA profiles. The biological functions and potential mechanisms of XYS for depression were gathered from the GO and KEGG pathway. Then, constructed the competing endogenous RNA (ceRNA) networks to illustrate the regulatory relationship between non-coding RNA (ncRNA) and mRNA. Additionally, longest dendrite length, total length of dendrites, number of intersections, and density of dendritic spines were detected by Golgi staining. MAP2, PSD-95, SYN were detected by immunofluorescence respectively. BDNF, TrkB, p-TrkB, PI3K, Akt, p-Akt were measured by Western Blotting. RESULTS The results showed that XYS could increase the locomotor activity and sugar preference, decreased swimming immobility time as well as attenuate hippocampal pathological damage. A total of 753 differentially expressed lncRNAs (DElncRNAs), 28 circRNAs (DEcircRNAs), 101 miRNAs (DEmiRNAs), and 477 mRNAs (DEmRNAs) were identified after the treatment of XYS in whole transcriptome sequencing analysis. Enrichment results revealed that XYS could regulate multiple aspects of depression through different synapse or synaptic associated signal, such as neurotrophin signaling and PI3K/Akt signaling pathways. Then, vivo experiments indicated that XYS could promote length, density, intersections of synapses and also increase the expression of MAP2 in hippocampal CA1, CA3 regions. Meanwhile, XYS could increase the expression of PSD-95, SYN in the CA1, CA3 regions of hippocampal by regulating the BDNF/trkB/PI3K signal axis. CONCLUSION The possible mechanism on synapse of XYS in depression was successfully predicted. BDNF/trkB/PI3K signal axis were the potential mechanism of XYS on synapse loss for its antidepressant. Collectively, our results provided novel information about the molecular basis of XYS in treating depression.
Collapse
Affiliation(s)
- Pan Meng
- Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education Park, Yuelu District, Hunan, Changsha, China
| | - Xi Zhang
- The Second People's Hospital of Hunan Province, Changsha, Hunan, China
| | - Tong-Tong Liu
- Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education Park, Yuelu District, Hunan, Changsha, China
| | - Jian Liu
- First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yan Luo
- Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education Park, Yuelu District, Hunan, Changsha, China
| | - Ming-Xia Xie
- Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education Park, Yuelu District, Hunan, Changsha, China
| | - Hui Yang
- First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Rui Fang
- Hunan Academy of Chinese Medicine, Yuelu District, 58 Lushan Road, Changsha, Hunan, China
| | - Dong-Wei Guo
- The Second People's Hospital of Hunan Province, Changsha, Hunan, China
| | - Zi-Yan Zhong
- Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education Park, Yuelu District, Hunan, Changsha, China
| | - Yu-Hong Wang
- Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education Park, Yuelu District, Hunan, Changsha, China.
| | - Jin-Wen Ge
- Hunan Academy of Chinese Medicine, Yuelu District, 58 Lushan Road, Changsha, Hunan, China.
| |
Collapse
|
10
|
Carmichael O. The Role of fMRI in Drug Development: An Update. ADVANCES IN NEUROBIOLOGY 2023; 30:299-333. [PMID: 36928856 DOI: 10.1007/978-3-031-21054-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Functional magnetic resonance imaging (fMRI) of the brain is a technology that holds great potential for increasing the efficiency of drug development for the central nervous system (CNS). In preclinical studies and both early- and late-phase human trials, fMRI has the potential to improve cross-species translation of drug effects, help to de-risk compounds early in development, and contribute to the portfolio of evidence for a compound's efficacy and mechanism of action. However, to date, the utilization of fMRI in the CNS drug development process has been limited. The purpose of this chapter is to explore this mismatch between potential and utilization. This chapter provides introductory material related to fMRI and drug development, describes what is required of fMRI measurements for them to be useful in a drug development setting, lists current capabilities of fMRI in this setting and challenges faced in its utilization, and ends with directions for future development of capabilities in this arena. This chapter is the 5-year update of material from a previously published workshop summary (Carmichael et al., Drug DiscovToday 23(2):333-348, 2018).
Collapse
Affiliation(s)
- Owen Carmichael
- Pennington Biomedical Research Center, Baton Rouge, LA, USA.
| |
Collapse
|
11
|
Zhang C, Xue P, Zhang H, Tan C, Zhao S, Li X, Sun L, Zheng H, Wang J, Zhang B, Lang W. Gut brain interaction theory reveals gut microbiota mediated neurogenesis and traditional Chinese medicine research strategies. Front Cell Infect Microbiol 2022; 12:1072341. [PMID: 36569198 PMCID: PMC9772886 DOI: 10.3389/fcimb.2022.1072341] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
Adult neurogenesis is the process of differentiation of neural stem cells (NSCs) into neurons and glial cells in certain areas of the adult brain. Defects in neurogenesis can lead to neurodegenerative diseases, mental disorders, and other maladies. This process is directionally regulated by transcription factors, the Wnt and Notch pathway, the extracellular matrix, and various growth factors. External factors like stress, physical exercise, diet, medications, etc., affect neurogenesis and the gut microbiota. The gut microbiota may affect NSCs through vagal, immune and chemical pathways, and other pathways. Traditional Chinese medicine (TCM) has been proven to affect NSCs proliferation and differentiation and can regulate the abundance and metabolites produced by intestinal microorganisms. However, the underlying mechanisms by which these factors regulate neurogenesis through the gut microbiota are not fully understood. In this review, we describe the recent evidence on the role of the gut microbiota in neurogenesis. Moreover, we hypothesize on the characteristics of the microbiota-gut-brain axis based on bacterial phyla, including microbiota's metabolites, and neuronal and immune pathways while providing an outlook on TCM's potential effects on adult neurogenesis by regulating gut microbiota.
Collapse
Affiliation(s)
- Chenxi Zhang
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Peng Xue
- Medical School of Nantong University, Nantong University, Nantong, China
| | - Haiyan Zhang
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Chenxi Tan
- Department of Infection Control, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Shiyao Zhao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Xudong Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lihui Sun
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Huihui Zheng
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Jun Wang
- The Academic Affairs Office, Qiqihar Medical University, Qiqihar, China
| | - Baoling Zhang
- Department of Operating Room, Qiqihar First Hospital, Qiqihar, China
| | - Weiya Lang
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China,*Correspondence: Weiya Lang,
| |
Collapse
|
12
|
Chen J, Lei C, Li X, Wu Q, Liu C, Ma Q, Chen J. Research progress on classical traditional chinese medicine formula xiaoyaosan in the treatment of depression. Front Pharmacol 2022; 13:925514. [PMID: 35991880 PMCID: PMC9386002 DOI: 10.3389/fphar.2022.925514] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Depression is an emotional disorder that is problematic in psychiatry owing to its unclear etiology and unknown pathogenesis. Traditional Chinese medicine formulations such as Xiaoyaosan have been widely used throughout history to treat depression. In this review, we have focused on recent evidences elucidating the links between Xiaoyaosan and the treatment of depression. Data from animal and clinical studies, focusing on the pharmacological mechanisms, clinical applications, and effective materials that form the basis for the treatment of depression are presented and discussed. We found that the antidepressant effects of Xiaoyaosan are related to the effects of monoamine neurotransmitters, regulation of the hypothalamic-pituitary-adrenal axis, neuroplasticity, synaptic plasticity, inflammatory response, neuroprotection, brain-gut axis, regulation of intestinal microbiota, oxidative stress, and autophagy for reducing neuronal apoptosis. This review highlights the current evidence supporting the use of Xiaoyaosan as an antidepressant and provides an overview of the potential mechanisms involved.
Collapse
Affiliation(s)
- Jianbei Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chaofang Lei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaojuan Li
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Qian Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chenyue Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingyu Ma
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jiaxu Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- *Correspondence: Jiaxu Chen,
| |
Collapse
|
13
|
Liu YL, Xu JJ, Han LR, Liu XF, Lin MH, Wang Y, Xiao Z, Huang YK, Ren P, Huang X. Meranzin Hydrate Improves Depression-Like Behaviors and Hypomotility via Ghrelin and Neurocircuitry. Chin J Integr Med 2022; 29:490-499. [PMID: 35881212 DOI: 10.1007/s11655-022-3308-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To investigate whether meranzin hydrate (MH) can alleviate depression-like behavior and hypomotility similar to Chaihu Shugan Powder (CSP), and further explore the potential common mechanisms. METHODS Totally 120 Spraque-Dawley rats were randomly divided into 5-8 groups including sham, vehicle, fluoxetine (20 mg/kg), mosapride (10 mg/kg), CSP (30 g/kg), MH (9.18 mg/kg), [D-Lys3]-GHRP-6 (Dlys, 0.5 mg/kg), and MH+Dlys groups by a random number table, 8 rats in each group. And 32 mice were randomly divided into wild-type, MH (18 mg/kg), growth hormone secretagogue receptor-knockout (GHSR-KO), and GHSR+MH groups, 8 mice in each group. The forced swimming test (FST), open field test (OFT), tail suspension test (TST), gastric emptying (GE) test, and intestinal transit (IT) test were used to assess antidepressant and prokinetic (AP) effects after drug single administration for 30 min with absorbable identification in rats and mice, respectively. The protein expression levels of brain-derived neurotrophic factor (BDNF) and phosphorylated mammalian target of rapamycin (p-mTOR) in the hippocampus of rats were evaluated by Western blot. The differences in functional brain changes were determined via 7.0 T functional magnetic resonance imaging-blood oxygen level-dependent (fMRI-BOLD). RESULTS MH treatment improved depression-like behavior (FST, OFT) and hypomotility (GE, IT) in the acute forced swimming (FS) rats (all P<0.05), and the effects are similar to the parent formula CSP. The ghrelin antagonist [D-Lys3]-GHRP-6 inhibited the effect of MH on FST and GE (P<0.05). Similarly, MH treatment also alleviated depression-like behavior (FST, TST) in the wild-type mice, however, no effects were found in the GHSR KO mice. Additionally, administration of MH significantly stimulated BDNF and p-mTOR protein expressions in the hippocampus (both P<0.01), which were also prevented by [D-Lys3]-GHRP-6 (P<0.01). Besides, 3 main BOLD foci following acute FS rats implicated activity in hippocampus-thalamus-basal ganglia (HTB) circuits. The [D-Lys3]-GHRP-6 synchronously inhibited BOLD HTB foci. As expected, prokinetic mosapride only had effects on the thalamus and basal ganglia, but not on the hippocampus. Within the HTB, the hippocampus is implicated in depression and FD. CONCLUSIONS MH accounts for part of AP effects of parent formula CSP in acute FS rats, mainly via ghrelin-related shared regulation coupled to BOLD signals in brain areas. This novel functionally connection of HTB following acute stress, treatment, and regulation highlights anti-depression unified theory.
Collapse
Affiliation(s)
- Ya-Lin Liu
- Institute of Traditional Chinese Medicine-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jian-Jun Xu
- Institute of Traditional Chinese Medicine-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lin-Ran Han
- Department of Outpatient, Xuzhou Central Hospital, Xuzhou, Shangdong Province, 221000, China
| | - Xiang-Fei Liu
- Institute of Traditional Chinese Medicine-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mu-Hai Lin
- Institute of Traditional Chinese Medicine-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yun Wang
- Institute of Traditional Chinese Medicine-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhe Xiao
- Institute of Traditional Chinese Medicine-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yun-Ke Huang
- Department of Obstetrics and Gynecology, Women's Hospital School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Ping Ren
- Department of Geriatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xi Huang
- Institute of Traditional Chinese Medicine-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
14
|
Ren J, Li C, Wei S, He Y, Huang P, Xu J. Identifying Antidepressant Effects of Brain-Derived Neurotrophic Factor and IDO1 in the Mouse Model Based on RNA-Seq Data. Front Genet 2022; 13:890961. [PMID: 35711916 PMCID: PMC9195421 DOI: 10.3389/fgene.2022.890961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/15/2022] [Indexed: 11/27/2022] Open
Abstract
Deletion of brain-derived neurotrophic factor (BDNF) and upregulation of indoleamine 2,3-dioxygenase 1 (IDO1) are associated with depression severity in animals. The neurotransmitter hypothesis of depression at the transcriptomic level can be tested using BDNF- and IDO1-knockout mouse models and RNA-seq. In this study, BDNF+/−, IDO1−/−, and chronic ultra-mild stress (CUMS)-induced depression mouse models and controls were developed, and the differentially expressed genes were analyzed. Furthermore, the ceRNA package was used to search the lncRNA2Target database for potential lncRNAs. Finally, a protein–protein interaction (PPI) network was constructed using STRINGdb. By comparing the control and CUMS model groups, it was found that pathway enrichment analysis and ceRNA network analysis revealed that most differentially expressed genes (DEGs) were associated with protection of vulnerable neuronal circuits. In addition, we found the enriched pathways were associated with nervous system development and synapse organization when comparing the control and BDNF+/−model groups. When replicating the neurotransmitter disruption features of clinical patients, such comparisons revealed the considerable differences between CUMS and knockdown BDNF models, and the BDNF+/−model may be superior to the classic CUMS model. The data obtained in the present study implicated the potential DEGs and their enriched pathway in three mouse models related to depression and the regulation of the ceRNA network-mediated gene in the progression of depression. Together, our findings may be crucial for uncovering the mechanisms underlying the neurotransmitter hypothesis of depression in animals.
Collapse
Affiliation(s)
- Jing Ren
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Students Affairs Division, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Chenyang Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Songren Wei
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yanjun He
- Emergency Department, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Peng Huang
- Women and Children Medical Research Center, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Jiangping Xu
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Shan C, Li J, Sun P, Zhou R, Xu M, Zhao Q, Ren P, Wen H, Huang X. Identification of absorbed compounds of Xiao Yao San Jia Wei and pharmacokinetic study in depressed rats by force swimming stress. RSC Adv 2022; 12:4455-4468. [PMID: 35425481 PMCID: PMC8981079 DOI: 10.1039/d1ra08778a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/15/2022] [Indexed: 12/23/2022] Open
Abstract
Xiao-Yao-San-Jia-Wei (XYSJW) is a commonly prescribed formulation for depression and anorexia in the Jiang Su Province Hospital of Chinese Medicine. Unfortunately, the proper dosage of this formulation is still unclear due to its limited chemical and pharmacokinetic profiles. Thus, in the present study, a sensitive, precise, and rapid procedure for the identification of absorbed compounds (Cs) in the plasma of depressed rats together with a pharmacokinetic analysis was established with the help of ultra-flow liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UFLC-Q-TOF MS/MS) and ultra-flow liquid chromatography coupled with electrospray ionization triple quadrupole tandem mass spectrometry (UFLC-QQQ MS/MS). Based on the characteristic fragmentation, neutral loss, mass defect filter, relevant literature and reference standards, 225 Cs in the XYSJW extract and 20 Cs in the plasma of the depressed rats were tentatively recognized via UFLC-Q-TOF MS/MS and UFLC-QQQ MS/MS. Then, the 12 major absorbed Cs in the depressed rats after oral XYSJW administration were chosen to further investigate its pharmacokinetic profile by UFLC-QQQ MS/MS. This study provides a systematic approach for the rapid and qualitative analysis of absorbed Cs in depressed rats and investigating the pharmacokinetics of XYSJW. More importantly, our work provides key information on the chemical and pharmacokinetic profiles of XYSJW in vitro and in vivo, which may benefit its therapeutic efficacy and further pharmacological studies involving this formulation. Xiao-Yao-San-Jia-Wei (XYSJW) is a commonly prescribed formulation for depression and anorexia in the Jiang Su Province Hospital of Chinese Medicine.![]()
Collapse
Affiliation(s)
- Chenxiao Shan
- Institute of TCM-related Comorbid Depression, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, Jiangsu, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Jia Li
- Institute of TCM-related Comorbid Depression, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, Jiangsu, China
| | - Po Sun
- Institute of TCM-related Comorbid Depression, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, Jiangsu, China
| | - Runze Zhou
- Institute of TCM-related Comorbid Depression, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, Jiangsu, China
| | - Min Xu
- Institute of TCM-related Comorbid Depression, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, Jiangsu, China
| | - Qiulong Zhao
- Institute of TCM-related Comorbid Depression, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, Jiangsu, China
| | - Ping Ren
- Institute of TCM-related Comorbid Depression, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, Jiangsu, China
| | - Hongmei Wen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Xi Huang
- Institute of TCM-related Comorbid Depression, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, Jiangsu, China
| |
Collapse
|
16
|
Huang P, Wei S, Luo M, Tang Z, Lin Q, Wang X, Luo M, He Y, Wang C, Wei D, Xia C, Xu J. MiR-139-5p has an antidepressant-like effect by targeting phosphodiesterase 4D to activate the cAMP/PKA/CREB signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1594. [PMID: 34790800 PMCID: PMC8576692 DOI: 10.21037/atm-21-5149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/22/2021] [Indexed: 12/14/2022]
Abstract
Background Phosphodiesterase 4D (PDE4D) inhibitor is commonly used to treat depression, but side effects seriously decrease its efficacy. PDE4D was a downstream target mRNA of miR-139-5p. Therefore, we examined the effects of hippocampal miR-139-5p gain- and loss-of-function on depression-like behaviors, the expression level of PDE4D, and hippocampus neurogenesis. Methods Bioinformatic analyses were carried out to to screen differential genes. Quantitative real-time polymerase chain reaction (qRT-PCR) and luciferase reporter assay were used to confirm the relationship between miR-139-5p and PDE4D. MiR-139-5p mimics, miR-139-5p inhibitor, or miR-NC were used to explore the function of miR-139-5p in HT-22 cells. We further explored the role of miR-139-5p in vivo using AAV-injection. Elisa, western blotting, and fluorescence in situ hybridization (FISH) were used to detect the expression of miR-139-5p and PDE4D in CRC tissues. Results Here, we showed that PDE4D messenger RNA (mRNA) was a direct target of microRNA (miR)-139-5p, which was downregulated in a chronic ultra-mild stress (CUMS)-induced depression mouse model. Moreover, in experiments in vitro, miR-139-5p mimic repressed PDE4D expression in HT-22 cells, but promoted phosphorylated cyclic-AMP response element-binding protein (p-CREB) and brain-derived neurotrophic factor (BDNF) expression. Interestingly, adeno-associated virus (AAV)-miR-139-5p downregulated susceptibility to stress-induced depression-like behaviors in mice. AAV-miR-139-5p suppressed PDE4D in mouse hippocampal cells, increasing expression level of cyclic adenosine monophosphate (cAMP), p-CREB, and BDNF, and stimulating mouse hippocampal neurogenesis. Conclusions Our findings suggested that miR-139-5p acted like an antidepressant by targeting PDE4D, thereby regulating the cAMP/protein kinase A (PKA)/CREB/BDNF pathway to improve depression.
Collapse
Affiliation(s)
- Peng Huang
- South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China
| | - Songren Wei
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Meng Luo
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhuohong Tang
- South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China
| | - Qingmei Lin
- South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China
| | - Xing Wang
- South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China
| | - Mi Luo
- South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China
| | - Yanjun He
- South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China
| | - Chuan Wang
- Department of Biliary Surgery, The First People's Hospital of Foshan, Foshan, China
| | - Dezhan Wei
- South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China
| | - Chenglai Xia
- South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiangping Xu
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
17
|
Yan W, Dong Z, Zhao D, Li J, Zeng T, Mo C, Gao L, Lv Z. Xiaoyaosan Exerts Antidepressant Effect by Downregulating RAGE Expression in Cingulate Gyrus of Depressive-Like Mice. Front Pharmacol 2021; 12:703965. [PMID: 34557092 PMCID: PMC8452939 DOI: 10.3389/fphar.2021.703965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/22/2021] [Indexed: 12/27/2022] Open
Abstract
Xiaoyaosan (XYS), as a classic Chinese medicine compound, has been proven to have antidepressant effect in many studies, but its mechanism has not been clarified. In our previous studies, we found that chronic stress can induce depressive-like behavior and lead to emotion-related cingulate gyrus (Cg) dysfunction, as well as the decrease of neurotrophic factors and the increase of inflammatory-related proteins. Therefore, we speculated that XYS may play an antidepressant role by regulating the inflammation-related receptor of advanced glycation protein end product (RAGE) to affect the functional connectivity (FC) signal of the Cg and improve the depressive-like behavior. In order to verify this hypothesis, we analyzed the FC and RAGE expression in the Cg of depressive-like mice induced by chronic unpredictable mild stress (CUMS) and verified it with RAGE knockout mice. At the same time, we detected the effect of XYS on the depressive-like behavior, expression of RAGE, and the FC of the Cg of mice. The results showed that the FC of the Cg of depressive-like mice induced by CUMS was weakened, and the expression of RAGE was upregulated. The antidepressant effect of XYS is similar to that of fluoxetine hydrochloride, which can significantly reduce the depressive-like behavior of mice and inhibit the expression of the RAGE protein and mRNA in the Cg, and increase the FC of the Cg in mice. In conclusion, XYS may play an antidepressant role by downregulating the expression of RAGE in the Cg of depressive-like mice induced by CUMS, thereby affecting the functional signal and improving the depressive-like behavior.
Collapse
Affiliation(s)
- Weixin Yan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhaoyang Dong
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Di Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jun Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ting Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chan Mo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Luo T, Zhang Y, Liu X, Liang Q, Zhu L, Lu H, Li H, Zhang H, Yang C, Wu J, Xu R, Zhang Y, Chen Q. The central nervous system can directly regulate breast cancer progression and blockage by quercetin. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:999. [PMID: 34277799 PMCID: PMC8267261 DOI: 10.21037/atm-21-2558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022]
Abstract
Background Neuroinflammation involving the central nervous system (CNS), such as depression, is associated with a significantly increased risk of cancer and cancer-specific mortality due to breast cancer. It is of great significance to learn about the regulatory process of CNS in breast cancer progression. Methods We established a depressive MMTV-PyVT mouse model. The expression levels of neurotransmitters in the serum of depression animal models were assessed by enzyme-linked immunosorbent assay (ELISA). Changes of the microglia cells in the mice's brains were evaluated by immunofluorescence and reverse transcription-polymerase chain reaction (RT-PCR). Breast cancer progression was assessed by immunohistochemistry (IHC) analysis. To further investigate the mechanism by which ant-depressant drugs disrupt breast cancer progression, protein sequencing and network pharmacology were applied to identify related targets. Furthermore, we used conditioned medium from BV-2 microglia to culture breast cancer cells and treated the cells with quercetin at different concentrations; cell viability was assessed by the MTT assay. Results Our results show a possible regulatory target between neuroinflammation in the CNS and development of breast cancer, along with the reversal effect of quercetin on breast cancer progression. Conclusions Chronic stress may be an indicator of breast cancer and that quercetin could be an effective treatment for breast cancer patients with chronic stress.
Collapse
Affiliation(s)
- Tianyu Luo
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yanmei Zhang
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xiaoyuan Liu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Qianyi Liang
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Ling Zhu
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Hai Lu
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Huachao Li
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Hongyan Zhang
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Chunmin Yang
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jiahua Wu
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Rui Xu
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yuzhu Zhang
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qianjun Chen
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
19
|
Hao W, Wu J, Yuan N, Gong L, Huang J, Ma Q, Zhu H, Gan H, Da X, Deng L, Li X, Chen J. Xiaoyaosan Improves Antibiotic-Induced Depressive-Like and Anxiety-Like Behavior in Mice Through Modulating the Gut Microbiota and Regulating the NLRP3 Inflammasome in the Colon. Front Pharmacol 2021; 12:619103. [PMID: 33935710 PMCID: PMC8087337 DOI: 10.3389/fphar.2021.619103] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/24/2021] [Indexed: 11/15/2022] Open
Abstract
Disturbance of the gut microbiota plays an essential role in mental disorders such as depression and anxiety. Xiaoyaosan, a traditional Chinese medicine formula, has a wide therapeutic spectrum and is used especially in the management of depression and anxiety. In this study, we used an antibiotic-induced microbiome-depleted (AIMD) mouse model to determine the possible relationship between imbalance of the intestinal flora and behavioral abnormalities in rodents. We explored the regulatory effect of Xiaoyaosan on the intestinal flora and attempted to elucidate the potential mechanism of behavioral improvement. We screened NLRP3, ASC, and CASPASE-1 as target genes based on the changes in gut microbiota and explored the effect of Xiaoyaosan on the colonic NLRP3 pathway. After Xiaoyaosan intervention, AIMD mice showed a change in body weight and an improvement in depressive and anxious behaviors. Moreover, the gut flora diversity was significantly improved. Xiaoyaosan increased the abundance of Lachnospiraceae in AIMD mice and decreased that of Bacteroidaceae, the main lipopolysaccharide (LPS)-producing bacteria, resulting in decreased levels of LPS in feces, blood, and colon tissue. Moreover, serum levels of the inflammatory factor, IL-1β, and the levels of NLRP3, ASC, and CASPASE-1 mRNA and DNA in the colon were significantly reduced. Therefore, Xiaoyaosan may alleviate anxiety and depression by modulating the gut microbiota, correcting excessive LPS release, and inhibiting the immoderate activation of the NLRP3 inflammasome in the colon.
Collapse
Affiliation(s)
- Wenzhi Hao
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jiajia Wu
- School of Basic Medical Science, Hubei University of Chinese Medicine, Wuhan, China
| | - Naijun Yuan
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Lian Gong
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Junqing Huang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Qingyu Ma
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Huizheng Zhu
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Hua Gan
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaoli Da
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Lijuan Deng
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaojuan Li
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jiaxu Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.,School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
20
|
Gao L, Gao T, Zeng T, Huang P, Wong NK, Dong Z, Li Y, Deng G, Wu Z, Lv Z. Blockade of Indoleamine 2, 3-dioxygenase 1 ameliorates hippocampal neurogenesis and BOLD-fMRI signals in chronic stress precipitated depression. Aging (Albany NY) 2021; 13:5875-5891. [PMID: 33591947 PMCID: PMC7950278 DOI: 10.18632/aging.202511] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/08/2020] [Indexed: 04/13/2023]
Abstract
Indoleamine 2, 3-dioxygenase 1 (IDO1) has been implicated in the pathogenesis of depression, though its molecular mechanism is still poorly understood. We investigated the molecular mechanism of IDO1 in depression by using the chronic unpredictable mild stress (CUMS) model in Ido1-/- mice and WT mice. The brain blood oxygen level dependent (BOLD) signals in mice were collected by functional magnetic resonance imaging (fMRI) technology. IDO1 inhibitor INCB024360 was intervened in dorsal raphe nucleus (DRN) through stereotactic injection. We found an elevation of serum IDO1 activity and decreased 5-HT in CUMS mice, and the serum IDO1 activity was negatively correlated with 5-HT level. Consistently, IDO1 was increased in hippocampus and DRN regions, accompanied by a reduction of hippocampal BDNF levels in mice with CUMS. Specifically, pharmacological inhibition of IDO1 activity in the DRN alleviated depressive-like behaviour with improving hippocampal BDNF expression and neurogenesis in CUMS mice. Furthermore, ablation of Ido1 exerted stress resistance and decreased the sensitivity of depression in CUMS mice with the stable BOLD signals, BDNF expression and neurogenesis in hippocampus. Thus, IDO1 hyperactivity played crucial roles in modulating 5-HT metabolism and BDNF function thereby impacting outcomes of hippocampal neurogenesis and BOLD signals in depressive disorder.
Collapse
Affiliation(s)
- Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Tingting Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Ting Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Peng Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Foshan Maternal and Child Health Research Institute, Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China
| | - Nai-Kei Wong
- State Key Discipline of Infectious Diseases, Shenzhen Third People’s Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zhaoyang Dong
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yunjia Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Guanghui Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiyong Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Guo X, Rao Y, Mao R, Cui L, Fang Y. Common cellular and molecular mechanisms and interactions between microglial activation and aberrant neuroplasticity in depression. Neuropharmacology 2020; 181:108336. [DOI: 10.1016/j.neuropharm.2020.108336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/11/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
|
22
|
Xiaoyao Pills Attenuate Inflammation and Nerve Injury Induced by Lipopolysaccharide in Hippocampal Neurons In Vitro. Neural Plast 2020; 2020:8841332. [PMID: 33014035 PMCID: PMC7525321 DOI: 10.1155/2020/8841332] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022] Open
Abstract
Lipopolysaccharides (LPS) are proinflammation mediators that can induce the inflammatory model of the hippocampal neuron, and neuroinflammation participates in the pathophysiology of depression. Xiaoyao Pill is a classical Chinese medicine formula that has been used for the treatment of mental disorders such as depression in China since the Song dynasty. We established a hippocampal neuronal cell inflammation model by LPS and investigate the intervention effect and mechanism of Xiaoyao Pills. The expression levels of IL-6, TNF-α, IDO, 5-HT, brain-derived neurotrophic factor, and β-nerve growth factor were detected by enzyme-linked immunosorbent assay. mRNA levels of IL-6, TNF-α, 5-HT1A, IDO-1, brain-derived neurotrophic factor, nerve growth factor, tropomyosin receptor kinase B, tropomyosin receptor kinase A, and cAMP response element-binding protein were detected by reverse transcription-polymerase chain reaction. To further validate, protein expression was determined by western blot and immunofluorescence. Lipopolysaccharide-induced neuroinflammatory state resulted in the release of IL-6, TNF-α, and IDO and a decrease of BDNF, NGF, TrkB, TrkA, CREB, p-CREB, p-CREB/CREB, and SYP and inhibited hippocampal neurogenesis in the hippocampal neuron. Xiaoyao Pills significantly decreased the levels of IL-6, TNF-α, and IDO in cell supernatant and increased the expression of BDNF, NGF, TrkB, TrkA, CREB, p-CREB, p-CREB/CREB, and SYP as well as the average optical density of BrdU/NeuN double-labelled positive cells. Our study shows that lipopolysaccharides induce inflammation and nerve damage in hippocampal neurons, which are closely related to the pathological mechanism of depression. Xiaoyao Pills (XYW) play an important neuroprotective effect, which is related to its inhibition of neuronal inflammation and promoting the recovery of nerve injury. These results provide a pharmacologic basis for the treatment of depression of XYW in clinical application.
Collapse
|
23
|
Liu X, Zhou J, Zhang T, Chen K, Xu M, Wu L, Liu J, Huang Y, Nie B, Shen X, Ren P, Huang X. Meranzin hydrate elicits antidepressant effects and restores reward circuitry. Behav Brain Res 2020; 398:112898. [PMID: 32905810 DOI: 10.1016/j.bbr.2020.112898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 01/17/2023]
Abstract
The burden of depression is enormous, and numerous studies have found that major depressive disorder (MDD) induces cardiovascular disorders (CVD) and functional dyspepsia (FD). Excitingly, meranzin hydrate (MH), an absorbed bioactive compound of Aurantii Fructus Immaturus, reverses psychosocial stress-induced mood disorders, gastrointestinal dysfunction and cardiac disease. Pharmacological methods have repeatedly failed in antidepressant development over the past few decades, but repairing aberrant neural circuits might be a reasonable strategy. This article aimed to explore antidepressant-like effects and potential mechanisms of MH in a rat model of unpredictable chronic mild stress (UCMS). Utilizing blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI), we sought to find reliable neurocircuits or a dominant brain region revealing the multiple effects of MH. The results show that compared with UCMS rats, MH (10 mg/kg/day for 1 week i.g.)-treated rats exhibited decreased depression-like behaviour; increased expression of brain-derived neurotrophic factor (BDNF) in the hippocampal dentate gyrus; and normalized levels of adrenocorticotropic hormone (ACTH), corticosterone (CORT), and acylated ghrelin (AG). Additionally, the UCMS-induced rise in BOLD activation in the reward system was attenuated after MH treatment. A literature search shown that nucleus accumbens (NAc) and hypothalamus of the reward system might reveal multiple effects of MH on MDD-FD-CVD comorbidity. Further research will focus on the role of these two brain regions in treating depression associated with comorbidities.
Collapse
Affiliation(s)
- XiangFei Liu
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China.
| | - JiaLing Zhou
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Tian Zhang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Ken Chen
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Min Xu
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Lei Wu
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Jin Liu
- Department of Traditional Chinese Medicine, Xiamen University, China.
| | - YunKe Huang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China; Master Degree Candidate at Department of Gynaecology and Obstetrics, Fudan University Medical School, China.
| | - BinBin Nie
- Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.
| | - Xu Shen
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, China.
| | - Ping Ren
- Department of Geriatrics, Jiangsu Province Hospital of TCM, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Xi Huang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
24
|
Li JM, Zhao Y, Sun Y, Kong LD. Potential effect of herbal antidepressants on cognitive deficit: Pharmacological activity and possible molecular mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112830. [PMID: 32259666 DOI: 10.1016/j.jep.2020.112830] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cognitive symptom is a "core" symptom of major depressive disorder (MDD) patients with clear deficit in memory, social and occupational function, and may persist during the remitting phase. Therefore, the remission of cognitive symptom has been considered as one of the main objectives in the treatment of MDD. Herbal antidepressants have been used to treat MDD, and there has been great advances in the understanding of the ability of these herbs to improve cognitive deficit linked to brain injury and various diseases including depression, Alzheimer disease, diabetes and age-related disorders. This systematic review summarizes the evidence from preclinical studies and clinical trials of herbal antidepressants with positive effects on cognitive deficit. The potential mechanisms by which herbal antidepressants prevent cognitive deficit are also reviewed. This review will facilitate further research and applications. MATERIALS AND METHODS We conducted an open-ended, English restricted search of MEDLINE (PubMed), Web of Science and Scopus for all available articles published or online before 31 December 2019, using terms pertaining to medical herb/phytomedicine/phytochemical/Chinese medicine and depression/major depressive disorder/antidepressant and/or cognitive impairment/cognitive deficit/cognitive dysfunction. RESULTS 7 prescriptions, more than 30 individual herbs and 50 phytochemicals from China, Japan, Korea and India with positive effects on the depressive state and cognitive deficit are reviewed herein. The evidence from preclinical studies and clinical trials proves that these herbal antidepressants exhibit positive effects on one or more aspects of cognitive defect including spatial, episodic, aversive, and short- and long-term memory. The action mode of the improvement of cognitive deficit by these herbal antidepressants is mediated mainly through two pathways. One pathway is to promote hippocampal neurogenesis through activating brain derived neurotrophic factor-tropomyosin-related kinase B signaling. The other pathway is to prevent neuronal apoptosis through the inhibition of neuro-inflammation and neuro-oxidation. CONCLUSION These herbal antidepressants, having potential therapy for cognitive deficit, may prevent pathological processes of neurodegenerative diseases. Furthermore, these herbal medicines should provide a treasure trove, which will accelerate the development of new antidepressants that can effectively improve cognitive symptom in MDD. Studies on their molecular mechanisms may provide more potential targets and therapeutic approaches for new drug discovery.
Collapse
Affiliation(s)
- Jian-Mei Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Yue Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
25
|
Huang YL, Zeng NX, Chen J, Niu J, Luo WL, Liu P, Yan C, Wu LL. Dynamic changes of behaviors, dentate gyrus neurogenesis and hippocampal miR-124 expression in rats with depression induced by chronic unpredictable mild stress. Neural Regen Res 2020; 15:1150-1159. [PMID: 31823896 PMCID: PMC7034282 DOI: 10.4103/1673-5374.270414] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The depression-like behavior phenotype, neurogenesis in the dentate gyrus and miR-124 expression in the hippocampus are the focus of current research on the pathogenesis of depression and antidepressant therapy. The present study aimed to clarify the dynamic changes of depression-like behavior, dentate gyrus neurogenesis and hippocampal miR-124 expression during depression induced by chronic stress to reveal pathological features at different stages of depression and to further provide insight into depression treatment. Chronic unpredictable mild stress depression models were established by exposing Sprague-Dawley rats to various mild stressors, including white noise, thermal swimming, stroboscopic illumination, soiled cages, pairing with three other stressed animals, cold swimming, tail pinch, restraint and water and food deprivation. Chronic unpredictable mild stress model rats underwent dynamic observation from 1 to 8 weeks and were compared with a control group (normal feeding without any stressors). To observe changes in the depression-like behavior phenotype during chronic unpredictable mild stress-induced depression, a sucrose preference test was used to evaluate the degree of anhedonia. An open-field test was used to evaluate locomotor activity and anxiety status. Compared with the control group, chronic unpredictable mild stress rats lost weight but did not have a depression-like behavioral phenotype at 1–4 weeks. Chronic unpredictable mild stress rats presented decreased sucrose preference and locomotor activity at 5–8 weeks. In addition, chronic unpredictable mild stress rats did not have significant anxiety-like behavior during 1–8 weeks of modeling. To observe neurogenesis dysfunctions and changes in neuronal number in the dentate gyrus during chronic unpredictable mild stress-induced depression, markers (DCX and DCX/BrdU) of neural proliferation and differentiation and the neuronal marker NeuN were assessed by immunofluorescence. Compared with the control group, neurogenesis and the neuronal number in the dentate gyrus did not change from 2 to 6 weeks; however, neural proliferation and differentiation in the dentate gyrus decreased, and the number of neurons decreased until the eighth week in the chronic unpredictable mild stress group. Real-time quantitative reverse transcription polymerase chain reaction assays and fluorescence in situ hybridization were used to measure the expression of hippocampal miR-124 during chronic unpredictable mild stress-induced depression. The results showed that the expression of hippocampal miR-124 was unchanged during the first 4 weeks but increased from 5 to 6 weeks and decreased from 7 to 8 weeks compared with the control group. These findings indicate that during chronic unpredictable mild stress-induced depression, the behavioral phenotype, miR-124 expression in the hippocampus, neurogenesis in the dentate gyrus and neuronal numbers showed dynamic changes, which suggested that various pathological changes occur at different stages of depression. All experimental procedures and protocols were approved by the Experimental Animal Ethics Committee of Guangzhou University of Chinese Medicine of China in March 2015.
Collapse
Affiliation(s)
- Yun-Ling Huang
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Ning-Xi Zeng
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Jie Chen
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Jie Niu
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Wu-Long Luo
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Ping Liu
- Department of Pharmacology, PLA General Hospital, Beijing, China
| | - Can Yan
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Li-Li Wu
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| |
Collapse
|
26
|
Shi B, Luo J, Fang Y, Liu X, Rao Z, Liu R, Zeng N. Xiaoyao Pills Prevent Lipopolysaccharide-Induced Depression by Inhibiting Inflammation and Protecting Nerves. Front Pharmacol 2019; 10:1324. [PMID: 31798446 PMCID: PMC6863983 DOI: 10.3389/fphar.2019.01324] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/15/2019] [Indexed: 12/26/2022] Open
Abstract
Lipopolysaccharides are pro-inflammation mediators that can induce inflammation in the serum, hippocampus, and cortex of animals. And lipopolysaccharide-induced neuroinflammatory state resulted in significant depression-like behaviors, including reduced locomotor activity in the open field test, reduced saccharin preference, added immobility time in tail suspension test and forced swimming test, decreased comb time in the splash test, and increased latency to food in the novelty suppressed feeding test time, and reduced the levels of neurotrophic factors and synaptic proteins, and decreased Nissl bodies. Treatment with Xiaoyao Pills ameliorated the depression-like behavior, decreased the levels of inflammatory indicators, increased those of neurotrophic factors and synaptic proteins, and restored Nissl bodies. Our study suggests that lipopolysaccharides induce inflammation and nerve injury, thereby leading to depression. Xiaoyao Pills could be considered a potential therapeutic candidate for inflammation-induced depression.
Collapse
Affiliation(s)
- Boyu Shi
- Department of Pharmacology, College of Pharmacy, Chengdu University of TCM, Chengdu, China
| | - Jie Luo
- Department of Pharmacology, College of Pharmacy, Chengdu University of TCM, Chengdu, China
| | - Yang Fang
- Department of Pharmacology, College of Pharmacy, Chengdu University of TCM, Chengdu, China
| | - Xiaobo Liu
- Department of Pharmacology, College of Pharmacy, Chengdu University of TCM, Chengdu, China
| | - Zhili Rao
- Department of Pharmacology, College of Pharmacy, Chengdu University of TCM, Chengdu, China
| | - Rong Liu
- Department of Pharmacology, College of Pharmacy, Chengdu University of TCM, Chengdu, China
| | - Nan Zeng
- Department of Pharmacology, College of Pharmacy, Chengdu University of TCM, Chengdu, China
| |
Collapse
|
27
|
Zhang Z, Deng T, Wu M, Zhu A, Zhu G. Botanicals as modulators of depression and mechanisms involved. Chin Med 2019; 14:24. [PMID: 31338119 PMCID: PMC6628492 DOI: 10.1186/s13020-019-0246-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 07/10/2019] [Indexed: 12/11/2022] Open
Abstract
Depression is the most disastrous mood disorder affecting the health of individuals. Conventional treatments with chemical compounds for depression have limitations, while herbal medicine has unique therapeutic effects. This paper introduces the pharmacological basis and biological mechanisms underlying the botanical antidepressants over the past 5 years. Based upon the specific therapeutic targets or mechanisms, we analyzed the pathological roles of monoamine neurotransmitters, the hypothalamic-pituitary-adrenal axis, inflammation, oxidative stress, synaptic plasticity performed in antidepressant of the botanicals. In addition, gut flora and neurogenesis were also preferentially discussed as treatment approaches. Based on the complex pathogenesis of depression, we suggested that mixed use of botanicals, namely prescription would be more suitable for treatment of depression. In addition, neural circuit affected by botanicals or active components should also attract attention as the botanicals have potential to be developed into fast-acting antidepressants. Finally, gut flora might be a new systemic target for the treatment of depression by botanicals. This review would strength botanical medicine as the antidepressant and also provides an overview of the potential mechanisms involved.
Collapse
Affiliation(s)
- Zhengrong Zhang
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road 103, Hefei, 230038 China
| | - Taomei Deng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230038 China
| | - Manli Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230038 China
| | - Aisong Zhu
- College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| | - Guoqi Zhu
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road 103, Hefei, 230038 China
| |
Collapse
|
28
|
Gong W, Zhu S, Chen C, Yin Q, Li X, Du G, Zhou Y, Qin X. The Anti-depression Effect of Angelicae Sinensis Radix Is Related to the Pharmacological Activity of Modulating the Hematological Anomalies. Front Pharmacol 2019; 10:192. [PMID: 30894817 PMCID: PMC6414447 DOI: 10.3389/fphar.2019.00192] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/14/2019] [Indexed: 12/31/2022] Open
Abstract
Angelicae Sinensis Radix (AS), a well-known herb in traditional Chinese medicine (TCM), has been wildly used for replenishing the blood and promoting circulation, in Asia for thousands of years. It has been confirmed that AS also possesses the pharmacological activity of anti-depression. At the same time, recent studies suggested that depression is associated with anemia, and depression could be ameliorated via modulating the blood system. However, it is still unknown whether the anti-depression effect of AS is related to its pharmacological activity of modulating the blood system. In the current study, hematological examination and metabonomic techniques were performed to explore potential anti-depression mechanisms of AS, related to the function of modulating the blood system in a chronic unpredictable mild stress (CUMS) model. The results demonstrated that AS could significantly improve CUMS-induced depressive symptom, hematological anomalies, and hypoxia symptoms. The analysis of metabonomics demonstrated that 26 potential biomarkers in depression could be regulated by the administration of AS. Among them, eight biomarkers participate in the metabolic pathways of amino acid and sphingolipid, and energy metabolism could also be regulated in an anemia model through the administration of AS, as reported in previous literatures. Further results proved that AS modulated energy metabolism in depression through the inhibition of the expression of pyruvate dehydrogenase lipoamide kinase isozyme 1 (PDK-1) and lactate dehydrogenase A (LDHA). These results suggested that the modulation of the blood system was involved in the anti-depression effect of AS. The mechanism may be associated with the promotion of the body’s energy metabolism, the stabilization of cell membranes, the promotion of serum protein synthesis, and the enhancement of immunity.
Collapse
Affiliation(s)
- Wenxia Gong
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Shiwei Zhu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Congcong Chen
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Qicai Yin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Xiao Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Guanhua Du
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuzhi Zhou
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| |
Collapse
|
29
|
Bi Y, Huang P, Dong Z, Gao T, Huang S, Gao L, Lv Z. Modified Xiaoyaosan reverses aberrant brain regional homogeneity to exert antidepressive effects in mice. Neuropathology 2019; 39:85-96. [DOI: 10.1111/neup.12540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Yanmeng Bi
- School of Traditional Chinese MedicineSouthern Medical University Guangzhou China
| | - Peng Huang
- Foshan Maternal and Child Health Research InstituteAffiliated Hospital of Southern Medical University Foshan China
| | - Zhaoyang Dong
- School of NursingGuangzhou University of Chinese Medicine Guangzhou China
| | - Tingting Gao
- School of Traditional Chinese MedicineSouthern Medical University Guangzhou China
| | - Shaohui Huang
- School of Traditional Chinese MedicineSouthern Medical University Guangzhou China
| | - Lei Gao
- School of Traditional Chinese MedicineSouthern Medical University Guangzhou China
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese MedicineSouthern Medical University Guangzhou China
| | - Zhiping Lv
- School of Traditional Chinese MedicineSouthern Medical University Guangzhou China
| |
Collapse
|
30
|
Ma Q, Li X, Yan Z, Jiao H, Wang T, Hou Y, Jiang Y, Liu Y, Chen J. Xiaoyaosan Ameliorates Chronic Immobilization Stress-Induced Depression-Like Behaviors and Anorexia in Rats: The Role of the Nesfatin-1-Oxytocin-Proopiomelanocortin Neural Pathway in the Hypothalamus. Front Psychiatry 2019; 10:910. [PMID: 31920757 PMCID: PMC6914835 DOI: 10.3389/fpsyt.2019.00910] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/18/2019] [Indexed: 12/31/2022] Open
Abstract
Background: Chronic stress is an important risk factor for depression. The nesfatin-1 (NES1)-oxytocin (OT)-proopiomelanocortin (POMC) neural pathway, which is involved in the stress response, was recently shown to have an anorectic effect in the hypothalamus. Our previous study showed that Xiaoyaosan, a well-known antidepressant used in traditional Chinese medicine, effectively relieved appetite loss induced by chronic immobilization stress (CIS). However, whether Xiaoyaosan ameliorates depression-like behaviors and anorexia by regulating the NES1-OT-POMC neural pathway remains unclear. Objective: To investigate whether the antidepressant-like and anti-anorexia effects of Xiaoyaosan are related to the NES1-OT-POMC neural pathway in the hypothalamus. Methods: Rats were randomly divided into control, CIS, Xiaoyaosan treatment, and fluoxetine treatment groups. The rats in the CIS, Xiaoyaosan treatment, and fluoxetine treatment groups were subjected to CIS for 21 consecutive days, during which they were administered distilled water, a Xiaoyaosan decoction [3.854 g/(kg·d)] or fluoxetine [1.76 mg/(kg·d)], respectively, by gavage, and their body weights and food intake were monitored daily. The rats were subsequently subjected to the open field test and sucrose preference test. Then, the expression levels of corticosterone and NES1 in the serum and the expression levels of NES1, OT, POMC, and melanocortin-4 receptor (MC4R) in the hypothalamus were determined by real-time fluorescence quantitative polymerase chain reaction, Western blot analysis, and immunochemistry. Furthermore, immunofluorescence double staining was used to determine whether related proteins in the hypothalamic NES1-OT-POMC neural pathway were co-expressed. Results: Compared to control rats, rats exposed to CIS exhibited gradually less food intake and lower body weights and significantly increased concentrations of NES1 in the serum and paraventricular nucleus. Moreover, the expression levels of POMC, OT, and MC4R in the hypothalamus were significantly higher in the CIS group than those in the control group. However, these changes were reversed by pretreatment with Xiaoyaosan and fluoxetine. Specifically, the expression levels of members of the NES1-OT-POMC neural pathway were lower in the Xiaoyaosan-treated group than in the CIS group. Conclusion: Xiaoyaosan ameliorates CIS-induced depression-like behaviors and anorexia by regulating the NES1-OT-POMC neural pathway in the hypothalamus.
Collapse
Affiliation(s)
- Qingyu Ma
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaojuan Li
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zhiyi Yan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Haiyan Jiao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tingye Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yajing Hou
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Youming Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yueyun Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaxu Chen
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.,School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|