1
|
Wang CL, Yang BW, Wang XY, Chen X, Li WD, Zhai HY, Wu Y, Cui MY, Wu JH, Meng QH, Zhang N. Targeting colorectal cancer with Herba Patriniae and Coix seed: Network pharmacology, molecular docking, and in vitro validation. World J Gastrointest Oncol 2024; 16:3539-3558. [PMID: 39171161 PMCID: PMC11334031 DOI: 10.4251/wjgo.v16.i8.3539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Herba Patriniae and Coix seed (HC) constitute a widely utilized drug combination in the clinical management of colorectal cancer (CRC) that is known for its diuretic, anti-inflammatory, and swelling-reducing properties. Although its efficacy has been demonstrated in a clinical setting, the active compounds and their mechanisms of action in CRC treatment remain to be fully elucidated. AIM To identify the active, CRC-targeting components of HC and to elucidate the mechanisms of action involved. METHODS Active HC components were identified and screened using databases. Targets for each component were predicted. CRC-related targets were obtained from human gene databases. Interaction targets between HC and CRC were identified. A "drug-ingredient-target" network was created to identify the core components and targets involved. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to elucidate the key pathways involved. Molecular docking between core targets and key components was executed. In vitro experiments validated core monomers. RESULTS Nineteen active components of HC were identified, with acacetin as the primary active compound. The predictive analysis identified 454 targets of the active compounds in HC. Intersection mapping with 2685 CRC-related targets yielded 171 intervention targets, including 30 core targets. GO and KEGG analyses indicated that HC may influence the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. Molecular docking showed that acacetin exhibited an optimal interaction with AKT1, identifying PI3K, AKT, and P53 as key genes likely targeted by HC during CRC treatment. Acacetin inhibited HT-29 cell proliferation and migration, as well as promoted apoptosis, in vitro. Western blotting analysis revealed increased p53 and cleaved caspase-3 expression and decreased levels of p-PI3K, p-Akt, and survivin, which likely contributed to CRC apoptosis. CONCLUSION Acacetin, the principal active compound in the HC pair, inhibited the proliferation and migration of HT-29 cells and promoted apoptosis through the PI3K/Akt/p53 signaling pathway.
Collapse
Affiliation(s)
- Cheng-Lei Wang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Bing-Wei Yang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xin-Yan Wang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xue Chen
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Wei-Dong Li
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Department of Scientific Research Management, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Hao-Yu Zhai
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ying Wu
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Mu-Yao Cui
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jia-He Wu
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Qing-Hui Meng
- School of Clinical Medicine Qinghai University, Xining 810000, Qinghai Province, China
| | - Nan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
2
|
Han J, Lai H, Li W, Liao H, Xiao C, Li X, You F, Guo J. Efficacy and safety of traditional plant-based medicines for preventing chronic oxaliplatin-induced peripheral neurotoxicity in patients with colorectal cancer: A systematic review and meta-analysis with core herb contribution. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117735. [PMID: 38211824 DOI: 10.1016/j.jep.2024.117735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/05/2023] [Accepted: 01/07/2024] [Indexed: 01/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional plant-based medicines (TMs) have been widely used to prevent chronic oxaliplatin-induced peripheral neurotoxicity (OIPN). However, the prevention and safety of TMs for chronic OIPN remain ambiguous. Furthermore, diverse TM prescriptions and complicated components limit in-depth research on the mechanisms of TMs. AIM OF THIS STUDY To determine core TMs and potential pharmacological pathways on the basis of a thorough investigation into the preventive benefits and safety of oral TMs for chronic OIPN in colorectal cancer (CRC). METHODS A search of the PubMed, Cochrane, Embase, CNKI, VIP, and Wanfang databases for RCTs reporting on TMs for chronic OIPN was conducted through December 1, 2022. Subgroup analysis, sensitivity analysis and meta-regression were applied to assess the impacts of influencing variables. The assessment of Risk of Bias was relied on Cochrane Risk of Bias tool. The funnel plot, Egger's test, and the Trim and Fill method were applied to identify potential publication bias. Trial sequential analyses (TSA) were carried out by the TSA tool to increase the robustness. The assessment of the quality of evidence was according to the GRADE system. System pharmacology analysis was employed to screen core herbal combinations to elucidate possible mechanisms for preventing chronic OIPN in CRC. RESULTS The pooled effect estimate with robustness increased by TSA analysis demonstrated that oral TMs appeared to significantly decrease the incidence of chronic OIPN (RR = 0.66, 95% CI (0.56, 0.78); P<0.00001), leukocytopenia (RR = 0.65, 95% CI (0.54,0.79); P<0.00001), and nausea and vomiting (RR = 0.72, 95% CI (0.61,0.84); P<0.0001) as well as improve the Objective Response Rate (ORR) (RR = 1.31, 95% CI (1.09,1.56); P = 0.003). The incidence of severe chronic OIPN was revealed a significant reduction, particularly when chemotherapy was administered for periods of time shorter than six months (RR = 0.33, 95% CI (0.15,0.71); P = 0.005; actuation duration<3 months; RR = 0.33, 95% CI (0.17,0.62); P = 0.0007; actuation duration≥3 months, <6 months). The considerable heterogeneity among studies may be attributable to the severity of dysfunction categorized by grade and accumulated dosage. Using core TMs consisting of Astragalus membranaceus (Fisch.) Bunge, Atractylodes Macrocephala Koidz., Poria cocos (Schw.) Wolf, and Codonopsis pilosula (Franch.) Nannf. To regulate nuclear factor-kappa B against inflammation caused by activation of microglia might be an approach to preventing chronic OIPN. CONCLUSIONS TMs appear to be effective and safe in the prevention of chronic OIPN, especially severe chronic OIPN. Additionally, core TMs consisting of Astragalus membranaceus (Fisch.) Bunge, Atractylodes Macrocephala Koidz., Poria cocos (Schw.) Wolf, and Codonopsis pilosula (Franch.) Nannf were presumably responsible for reducing the incidence of chronic OIPN, and the mechanism may be related to relieving inflammation. However, quality-assured trials with long-term follow-up for exploring inflammatory factors and preliminary research on core TMs and pharmacological pathways are needed.
Collapse
Affiliation(s)
- Jierong Han
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shierqiao Road, Jinniu District, Chengdu, Sichuan, 610075, China.
| | - Hengzhou Lai
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shierqiao Road, Jinniu District, Chengdu, Sichuan, 610075, China.
| | - Wenyuan Li
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shierqiao Road, Jinniu District, Chengdu, Sichuan, 610075, China; Evidence-based Traditional Chinese Medicine Center of Sichuan Province, No. 39 Shierqiao Road, Jinniu District, Chengdu, Sichuan, 610075, China.
| | - Huarui Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shierqiao Road, Jinniu District, Chengdu, Sichuan, 610075, China.
| | - Chong Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shierqiao Road, Jinniu District, Chengdu, Sichuan, 610075, China; Cancer Institute of Chengdu University of Traditional Chinese Medicine, No. 39 Shierqiao Road, Jinniu District, Chengdu, Sichuan, 610075, China.
| | - Xueke Li
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shierqiao Road, Jinniu District, Chengdu, Sichuan, 610075, China; Tumor Teaching and Research Office of Chengdu University of Traditional Chinese Medicine, No. 39 Shierqiao Road, Jinniu District, Chengdu, Sichuan, 610075, China.
| | - Fengming You
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shierqiao Road, Jinniu District, Chengdu, Sichuan, 610075, China; Cancer Institute of Chengdu University of Traditional Chinese Medicine, No. 39 Shierqiao Road, Jinniu District, Chengdu, Sichuan, 610075, China.
| | - Jing Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shierqiao Road, Jinniu District, Chengdu, Sichuan, 610075, China.
| |
Collapse
|
3
|
Tao Y, Wang L, Ye X, Qian X, Pan D, Dong X, Jiang Q, Hu P. Huang Qin decoction increases SLC6A4 expression and blocks the NFκB-mediated NLRP3/Caspase1/GSDMD pathway to disrupt colitis-associated carcinogenesis. Funct Integr Genomics 2024; 24:55. [PMID: 38467948 PMCID: PMC10927794 DOI: 10.1007/s10142-024-01334-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/23/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
Huang Qin decoction (HQD) is a traditional Chinese medicine formula for treating colitis, but the effects and molecular mechanism of action of HQD in colitis-associated carcinogenesis (CAC) are still unclear. Therefore, we aimed to determine the beneficial effects of HQD on CAC in mice and to reveal the underlying mechanism involved. AOM/DSS was used to induce CAC in mice, and the effects of HQD on tumorigenesis in mice were examined (with mesalazine serving as a positive control). Mesalazine or HQD treatment alleviated body weight loss and decreased the disease activity index in mice induced by AOM/DSS. Mesalazine or HQD treatment also suppressed the shortening of colon tissue length, the number of tumors, and the infiltration of inflammatory cells. The genes targeted by HQD were predicted and verified, followed by knockout experiments. Elevated SLC6A4 and inhibited serotonin production and inflammation were observed in HQD-treated mice. HQD inhibited the NFκB and NLRP3/caspase1/GSDMD pathways. The therapeutic effect of HQD was diminished in SLC6A4-deficient AOM/DSS mice. Additionally, the downregulation of SLC6A4 mitigated the inhibitory effect of HQD-containing serum on MODE-K cell pyroptosis. Our findings suggest that SLC6A4 is a pivotal regulator of HQD-alleviated CAC via its modulation of the NLRP3/caspase1/GSDMD pathway.
Collapse
Affiliation(s)
- Yili Tao
- Department of Gastroenterology, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, Jiangsu, P.R. China
| | - Lai Wang
- Department of Gastroenterology, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, Jiangsu, P.R. China
| | - Xiaofeng Ye
- Department of Gastroenterology, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, Jiangsu, P.R. China
| | - Xin Qian
- Department of Gastroenterology, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, Jiangsu, P.R. China
| | - Danye Pan
- Department of Gastroenterology, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, Jiangsu, P.R. China
| | - Xiaoyu Dong
- Department of Gastroenterology, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, Jiangsu, P.R. China
| | - Qian Jiang
- Digestive Disease Diagnosis and Treatment Center of Integrated Traditional Chinese and Western Medicine, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, Jiangsu, P.R. China
| | - Po Hu
- Department of Pulmonary Diseases, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, Jiangsu, P.R. China.
| |
Collapse
|
4
|
Han Y, Fan X, Fan L, Wu Y, Zhou Z, Wang G, Guo L, Gao W, Chen Y, Gao Q. Liujunzi decoction exerts potent antitumor activity in oesophageal squamous cell carcinoma by inhibiting miR-34a/STAT3/IL-6R feedback loop, and modifies antitumor immunity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154672. [PMID: 36701994 DOI: 10.1016/j.phymed.2023.154672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/30/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Liujunzi decoction (LJZD), a traditional herbal formula and one of the most commonly used adjuvant medications for the treatment of oesophageal squamous cell carcinoma (ESCC), exerts good antitumor and immunomodulatory activity. However, its specific mechanism of action remains largely unclear. PURPOSE In order to examine the potential primary and adjuvant antitumor mechanisms of LJZD, both in vitro and in vivo. METHODS IL-6 and miR-34a inhibitors were used to activate the miR-34a/STAT3/IL-6R feedback loop to observe the effects of LJZD. A humanised mouse model with a functional human immune system was constructed to evaluate the antitumor efficacy of LJZD in vivo on xenograft tumours, which was compared to that of the positive control drug anti-PD-1 monoclonal antibodies (mAb). Finally, a co-culture system of peripheral blood mononuclear and tumour cells in vitro was used to analyse the cytotoxic activity of LJZD on T cells. RESULTS LJZD significantly interfered with IL-6-induced activation of the miR-34a/STAT3/IL-6R feedback loop in ESCC by restoring the expression of the tumour suppressor miR-34a, and inhibited the proliferation of EC109 oesophageal cancer cells in a dose-dependant manner. Furthermore, LJZD effectively suppressed oesophageal tumour growth in vivo and alleviated organ injury and visceral index. Furthermore, LJZD boosted antitumor immunity by increasing IFN-γ expression and CD8+tumour-infiltrating lymphocytes (TILs) infiltration in the peripheral blood and tumour tissues, respectively, which may be related to a decrease in PD-1, but not PD-L1 expression. Finally, we confirmed that LJZD strengthens the killing ability of T cells by suppressing PD-1 expression in a co-culture system in vitro. CONCLUSION LJZD exerts excellent antitumor effect by interfering with the miR-34a/STAT3/IL-6R feedback loop and augmenting antitumor immune responses. Which provides new insights into mechanisms for LJZD and sheds light on the multifaceted role of phytomedicine in cancer.
Collapse
Affiliation(s)
- Yicun Han
- Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, China; The Tumor Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan Province 450008, China
| | - Xiuqi Fan
- Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, China; The Tumor Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan Province 450008, China
| | - Liyan Fan
- Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, China
| | - Yaosong Wu
- Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, China
| | - Zhexu Zhou
- Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, China
| | - Ge Wang
- The Tumor Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan Province 450008, China
| | - Lanwei Guo
- The Tumor Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan Province 450008, China
| | - Wendong Gao
- Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, China
| | - Yulong Chen
- Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, China.
| | - Qilong Gao
- The Tumor Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan Province 450008, China.
| |
Collapse
|
5
|
Zhang S, Mi Y, Ye T, Lu X, Liu L, Qian J, Fan X. Carbohydrates and ginsenosides in shenmai injection jointly improve hematopoietic function during chemotherapy-induced myelosuppression in mice. Chin Med 2022; 17:124. [DOI: 10.1186/s13020-022-00678-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
Abstract
Background
Shenmai injection (SMI), a traditional Chinese medicine (TCM) injection prepared from Red ginseng and Ophiopogon japonicus, is widely used in clinics to treat chemotherapy-induced myelosuppression. Similar to other TCM injections, SMI contains a high amount of carbohydrates (fructose, sucrose, and maltose) in addition to the bioactive substances, specifically ginsenosides (Rg1, Re, and Rb1). To date, the role of these carbohydrates in the hematopoietic function of SMI remains unclear.
Purpose
We aimed to investigate the hematopoietic effects and potential mechanisms of SMI and its components, focusing on the carbohydrates present in SMI.
Experimental design/methods
First, we evaluated the hematopoietic effect of SMI on 5-fluorouracil (5-FU)-induced myelotoxicity in a tumor-bearing mouse model. Then we prepared mixtures of ginsenosides and carbohydrates according to their proportions in SMI and evaluated their hematopoietic function in mice with 5-FU-induced myelosuppression. Finally, hematopoiesis-related molecular networks were built based on RNA sequencing (RNA-seq) of the bone marrow stromal cells (BMSCs), and the potential mechanisms of carbohydrates and ginsenosides were evaluated.
Results
SMI attenuated 5-FU-induced myelotoxicity in tumor-bearing mice. Both ginsenosides and carbohydrates increased the bone marrow nucleated cell (BMNC) count and improved the bone marrow morphology in myelosuppressive mice; they promoted the proliferation of BMSCs derived from those myelosuppressive mice. Bioinformatics analyses revealed ECM-receptor interaction, Hippo signaling, and Wnt signaling are common pathways regulated by both ginsenosides and carbohydrates; Gstt1, Gstp2, Gsta4 and Oplah in Glutathione metabolism pathway and Cd19, Cd79a, and Cd79b in B cell receptor pathway are uniquely regulated genes related to carbohydrates but not ginsenosides.
Conclusions
Carbohydrates may collaborate with ginsenosides and contribute to the hematopoietic function of SMI. Carbohydrates could be considered as a bioactive component in this TCM injection.
Graphical Abstract
Collapse
|
6
|
Chen SL, Lin WC, Chen YC, Chen JL, Wu YH, Yang SH, Chen HY. The association between mortality and use of Chinese herbal medicine among incident stage IV esophageal cancer patients: A retrospective cohort study with core herbs exploration. Front Pharmacol 2022; 13:1018281. [PMID: 36278218 PMCID: PMC9582778 DOI: 10.3389/fphar.2022.1018281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022] Open
Abstract
Esophageal cancer (EC) remains a leading cause of death worldwide and in Taiwan. The prognosis of advanced-stage EC is notably poor, and the treatment options are limited. Chinese herbal medicine (CHM) has been widely used as a complementary treatment for cancer, yet the long-term effect of CHM in stage IV EC remains unclear. The multi-institutional cohort obtained from the Chang Gung research database (CGRD) was used to study the long-term outcome of CHM use among incident stage IV EC patients from 1 January 2002, to 31 December 2018. All patients were followed up to 5 years or the occurrence of death. The overall survival (OS) and disease-specific survival rates were conducted using Kaplan-Meier estimation. Overlap weighing and landmark analysis were used to eliminate confounding and immortal time biases. Furthermore, we demonstrated the core CHMs for stage IV EC by using the Chinese herbal medicine network (CMN) analysis on prescriptions. Nine hundred eighty-five stage IV EC patients were analyzed, including 74 CHM users and 911 non-CHM users. We found the use of CHM was associated with a higher 5-year overall survival rate than CHM nonusers (the cumulative probability: 19.52% versus 6.04%, log-rank test: p < 0.001, and the p < 0.001 with overlap weighting). In addition, the overall median survival time was about 7 months longer among CHM users. Moreover, the lower 1-, 3-, 5-year disease-specific survival rates were higher among CHM users. Additionally, the risk of all-cause mortality was lower among CHM users when considering accessible demographic covariates (adjusted hazard ratio: 0.59, 95%CI: 0.39, 0.89, p = 0.011). Furthermore, the CMN analysis revealed that CHMs improved health while relieving tumor burden. For example, Hedyotis diffusa Willd . was the core CHM with an anti-cancer effect, while Fritillaria thunbergii Miq and Sevilla maindronide Rochebrune were used together to relieve cancer-related gastrointestinal discomfort. The use of CHM seems safe and possibly beneficial among stage IV EC patients with a higher 5-year OS. Further clinical trials on CHM were guaranteed to explore the role of CHM in managing stage IV EC patients.
Collapse
Affiliation(s)
- Shu-Ling Chen
- Division of Chinese Internal and Pediatric Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan Branch, Taoyuan, Taiwan
| | - Wei-Chun Lin
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
| | - Yu-Chun Chen
- Department of Family Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Hospital and Health Care Administration, National Yang-Ming University, Taipei, Taiwan
| | - Jiun-Liang Chen
- Division of Chinese Internal and Pediatric Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan Branch, Taoyuan, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Hong Wu
- Division of Chinese Internal and Pediatric Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan Branch, Taoyuan, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Sien-Hung Yang
- Division of Chinese Internal and Pediatric Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan Branch, Taoyuan, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsing-Yu Chen
- Division of Chinese Internal and Pediatric Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan Branch, Taoyuan, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
7
|
Li G, Liu L, Yin Y, Wang M, Wang L, Dou J, Wu H, Yang Y, He B. Network pharmacology and experimental verification-based strategy to explore the underlying mechanism of Liu Jun An Wei formula in the treatment of gastrointestinal reactions caused by chemotherapy for colorectal cancer. Front Pharmacol 2022; 13:999115. [PMID: 36204230 PMCID: PMC9530632 DOI: 10.3389/fphar.2022.999115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Liu Jun An Wei formula (LJAW), derived from “Liu Jun Zi Decoction”, is a classical prescription of Tradition Chinese Medicine and has been used for the treatment of gastrointestinal reactions caused by chemotherapy for colorectal cancer (CRC) for many years. Its molecular mechanism remains to be further explored.Objective: To clarify the mechanism of LJAW in attenuating gastrointestinal reactions caused by chemotherapy for CRC.Methods: The 5-fluorouracil (5-FU) induced mouse and intestine organoid models were established to observe the effect of LJAW. The ingredients of LJAW were analyzed and identified by UPLC-Q-TOF-MS technology. Targets of LJAW and chemotherapy-induced gastrointestinal reactions were collected from several databases. “Ingredient-target” network and protein-protein interaction network were constructed based on network pharmacology. Then, gene ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed. Subsequently, molecular docking method was used to verify the interaction between the core ingredients and key targets. The results were validated by both in vivo experiments and organoid experiments. Western Blot was used to analyze the influence of LJAW on key targets including PI3K, AKT1, MAPK1, MAPK14 proteins and their phosphorylated proteins. RT-qPCR and Western Blot were used to detect the mRNA and protein levels of apoptosis-related gene PUMA.Results: Compared with the 5-FU group, the LJAW group had better morphology in mouse small intestine and intestine organoids. In total, 18 core ingredients and 19 key targets were obtained from 97 ingredients and 169 common targets. KEGG analysis showed that the common targets were involved in PI3K/Akt, MAPK, apoptosis and other signal pathways, which are closely related to gastrointestinal injury. Experiments confirmed that LJAW lowered the expressions of phosphorylated proteins including p-PI3K, p-AKT1, p-MAPK1, and p-MAPK14 and reduced the mRNA and protein levels of PUMA.Conclusion: LJAW shows protective effect on 5-FU induced small intestine and intestinal organoids injury. LJAW attenuates gastrointestinal reactions caused by chemotherapy for CRC probably by regulating apoptosis-related genes through PI3K/AKT and MAPK signaling pathways.
Collapse
Affiliation(s)
- Gaobiao Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Liying Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yiran Yin
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengmeng Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lei Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianwei Dou
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Hongwei Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yufei Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yufei Yang, ; Bin He,
| | - Bin He
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yufei Yang, ; Bin He,
| |
Collapse
|
8
|
Plasma Pharmacokinetics and Tissue Distribution of Doxorubicin in Rats following Treatment with Astragali Radix. Pharmaceuticals (Basel) 2022; 15:ph15091104. [PMID: 36145325 PMCID: PMC9505068 DOI: 10.3390/ph15091104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Doxorubicin (DOX) is an essential component in chemotherapy, and Astragali Radix (AR) is a widely used tonic herbal medicine. The combination of DOX and AR offers widespread, well-documented advantages in treating cancer, e.g., reducing the risk of adverse effects. This study mainly aims to uncover the impact of AR on DOX disposition in vivo. Rats received a single intravenous dose of 5 mg/kg DOX following a single-dose co-treatment or multiple-dose pre-treatment of AR (10 g/kg × 1 or × 10). The concentrations of DOX in rat plasma and six tissues, including heart, liver, lung, kidney, spleen, and skeletal muscle, were determined by a fully validated LC-MS/MS method. A network-based approach was further employed to quantify the relationships between enzymes that metabolize and transport DOX and the targets of nine representative AR components in the human protein−protein interactome. We found that short-term (≤10 d) AR administration was ineffective in changing the plasma pharmacokinetics of DOX in terms of the area under the concentration−time curve (AUC, 1303.35 ± 271.74 μg/L*h versus 1208.74 ± 145.35 μg/L*h, p > 0.46), peak concentrations (Cmax, 1351.21 ± 364.86 μg/L versus 1411.01 ± 368.38 μg/L, p > 0.78), and half-life (t1/2, 31.79 ± 5.12 h versus 32.05 ± 6.95 h, p > 0.94), etc. Compared to the isotype control group, DOX concentrations in six tissues slightly decreased under AR pre-administration but only showed statistical significance (p < 0.05) in the liver. Using network analysis, we showed that five of the nine representative AR components were not localized to the vicinity of the DOX disposition-associated module. These findings suggest that AR may mitigate DOX-induced toxicity by affecting drug targets rather than drug disposition.
Collapse
|
9
|
Liu F, Liang Y, Sun R, Yang W, Liang Z, Gu J, Zhao F, Tang D. Astragalus mongholicus Bunge and Curcuma aromatica Salisb. inhibits liver metastasis of colon cancer by regulating EMT via the CXCL8/CXCR2 axis and PI3K/AKT/mTOR signaling pathway. Chin Med 2022; 17:91. [PMID: 35922850 PMCID: PMC9351103 DOI: 10.1186/s13020-022-00641-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND One of the most challenging aspects of colon cancer (CC) prognosis and treatment is liver-tropic metastasis. Astragalus mongholicus Bunge-Curcuma aromatica Salisb. (AC) is a typical medication combination for the therapy of many malignancies. Our previous studies found that AC intervention inhibits liver metastasis of colon cancer (LMCC). Nevertheless, the comprehensive anti-metastasis mechanisms of AC have not been uncovered. METHODS In bioinformatics analysis, RNA-seq data of CC and LMCC patients were collected from TCGA and GEO databases, and differentially expressed genes (DEGs) were identified. The biological processes and signaling pathways involved in DEGs were enriched by GO and KEGG. The protein-protein interaction (PPI) network of DEGs was established and visualized using the Cytocape software, followed by screening Hub genes in the PPI network using Degree value as the criterion. Subsequently, the expression and survival relevance of Hub gene in COAD patients were verified. In the experimental study, the effects of AC on the inhibition of colon cancer growth and liver metastasis were comprehensively evaluated by cellular and animal models. Finally, based on the results of bioinformatics analysis, the possible mechanisms of AC inhibition of colon cancer EMT and liver metastasis were explored by in vivo and in vitro pharmacological experiments. RESULTS In this study, we obtained 2386 DEGs relevant to LMCC from the COAD (colon adenocarcinoma) and GSE38174 datasets. Results of GO gene function and KEGG signaling pathway enrichment analysis suggested that cellular EMT (Epithelial-mesenchymal transition) biological processes, Cytokine-cytokine receptor interaction and PI3K/Akt signaling pathways might be closely related to LMCC mechanism. We then screened for CXCL8, the core hub gene with the highest centrality within the PPI network of DEGs, and discovered that CXCL8 expression was negatively correlated with the prognosis of COAD patients. In vitro and in vivo experimental evidence presented that AC significantly inhibited colon cancer cell proliferation, migration and invasion ability, and suppressed tumor growth and liver metastasis in colon cancer orthotopic transplantation mice models. Concomitantly, AC significantly reduced CXCL8 expression levels in cell supernatants and serum. Moreover, AC reduced the expression and transcription of genes related to the PI3K/AKT pathway while suppressing the EMT process in colon cancer cells and model mice. CONCLUSIONS In summary, our research predicted the potential targets and pathways of LMCC, and experimentally demonstrated that AC might inhibit the growth and liver metastasis in colon cancer by regulating EMT via the CXCL8/CXCR2 axis and PI3K/AKT/mTOR signaling pathway, which may facilitate the discovery of mechanisms and new therapeutic strategies for LMCC.
Collapse
Affiliation(s)
- Fuyan Liu
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Liang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ruolan Sun
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weicheng Yang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhongqing Liang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Junfei Gu
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fan Zhao
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Decai Tang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
10
|
Li Y, Wang H, Liao L, Tang P, He H, Liu L, Yan J, Peng Q. Systemic Analysis of the Anticancer Effects of Sijunzi Decoction on Gastric Cancer Based on Network Pharmacology. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221109418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objective: Sijunzi decoction (SJZD) has been used for alleviating peptic ulcer or gastric discomfort, and treating spleen disorders since the Song Dynasty, but its pharmacological effect on human gastric cancer (GC) is still unclear. In this research, a network pharmacology-based strategy was applied to explore active ingredients, potential targets, and molecular mechanisms of SJZD against GC. Methods: The active compounds and potential targets of SJZD, as well as GC-associated gene targets, were retrieved from publicly available databases. Bioinformatics approaches were used to assess the network interaction, functional regulation, and signaling pathways between SJZD ingredients and GC targets. The anticancer effects of SJZD against GC were verified in vivo by a mouse subcutaneous model. Results: The results of network analysis showed that quercetin was the most active ingredient in SJZD. Several prominent target genes of SJZD were identified, such as AKT1 and STAT3. Gene ontology analysis revealed that the core anti-GC targets of SJZD included transcription factor activity and kinase activity. Pathway enrichment analysis indicated that GC patients could be benefited from SJZD treatment via modulation of signaling pathways related to endocrine system, cancer, and infectious disease. Furthermore, in vivo experiments showed that high-dose SJZD could inhibit GC xenograft tumor growth, reduce GC cell proliferation, induce GC cell apoptosis, and decrease the expression of p-AKT1 and p-STAT3. Conclusions: Taken together, our results suggest that SJZD can serve as an effective adjuvant therapeutic agent for GC patients.
Collapse
Affiliation(s)
- Yuejun Li
- Department of Oncology, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou City, P. R. China
- Department of Oncology, The First Affiliated Hospital of Hunan College of Traditional Chinese Medicine, Zhuzhou City, P. R. China
| | - Hong Wang
- Department of Oncology, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou City, P. R. China
- Department of Oncology, The First Affiliated Hospital of Hunan College of Traditional Chinese Medicine, Zhuzhou City, P. R. China
| | - Linli Liao
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha City, P. R. China
| | - Ping Tang
- Department of Oncology, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou City, P. R. China
- Department of Oncology, The First Affiliated Hospital of Hunan College of Traditional Chinese Medicine, Zhuzhou City, P. R. China
| | - Haihui He
- Department of Oncology, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou City, P. R. China
- Department of Oncology, The First Affiliated Hospital of Hunan College of Traditional Chinese Medicine, Zhuzhou City, P. R. China
| | - Lingzhi Liu
- Department of Oncology, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou City, P. R. China
- Department of Oncology, The First Affiliated Hospital of Hunan College of Traditional Chinese Medicine, Zhuzhou City, P. R. China
| | - Junfeng Yan
- School of Informatics, Hunan University of Chinese Medicine, Changsha City, P. R. China
| | - Qinghua Peng
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha City, P. R. China
| |
Collapse
|
11
|
Wu X, Dai Y, Nie K. Research Progress of Liujunzi Decoction in the Treatment of Tumor-Associated Anorexia. Drug Des Devel Ther 2022; 16:1731-1741. [PMID: 35698654 PMCID: PMC9188393 DOI: 10.2147/dddt.s365292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/26/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Xipei Wu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Yongzhao Dai
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Ke Nie
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Correspondence: Ke Nie, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China, Email ;
| |
Collapse
|
12
|
XIN X, WANG G, HAN R, JIANG Y, LIU C, LIU L, XU Z. Mechanism underlying the effect of Liujunzi decoction on advanced-stage non-small cell lung cancer in patients after first-line chemotherapy. J TRADIT CHIN MED 2022; 42:108-115. [PMID: 35294130 PMCID: PMC10164627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/14/2021] [Indexed: 05/10/2023]
Abstract
OBJECTIVE To further clarify the anticancer mechanisms of Liujunzi decoction and provide possible targets for the treatment of advanced-stage nonsmall cell lung cancer (NSCLC) by re-analyzing differential gene expression profile of peripheral blood mononuclear cells (PBMCs) from Liujunzi decoctiontreated NSCLC patients receiving first-line chemotherapy. METHODS The PBMC gene expression microarray data set GSE61926 was retrieved from a high throughput gene expression database. Differentially expressed genes (DEGs) were screened by paired sample t-test and the multiple ratio method. Gene ontology and Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses were performed using the DAVID database. The protein-protein interaction (PPI) network was constructed using interaction gene library retrieval tools and Cytoscape software. RESULTS A total of 162 DEGs were identified, with 67 upregulated genes and 95 downregulated genes. The functional distribution of Gene Oncology (GO) genes showed that DEGs were mostly concentrated in extracellular regions, calcium ion binding, and transcriptase activity. KEGG pathway analysis showed that cytokine-cytokine receptor interactions were significantly enriched. PPI network analysis screened out the top 10 central protein-coding genes with the highest nodal degree: IL2, PIWIL4, DICER1, PIWIL2, SAA1, XCL1, IL22RA1, ARHGAP11A, DCP1A, and GDNF. Among them, the central protein-coding gene with the highest node degree was IL2. In addition, the central protein-coding genes with high node degrees and high molecular complex detection (MCODE) scores were PIWIL4, DICER1, PIWIL2, and DCP1A, all of which are related to tumor development. CONCLUSIONS One signaling pathway and 10 central protein-coding genes related to anticancer mechanisms were screened by re-analysis of GSE61926 data. IL2, PIWIL4, DICER1, PIWIL2, and DCP1A may have important roles in the mechanism of Liujunzi decoction treatment against NSCLC. Our results suggest that the anticancer mechanism of Liujunzi decoction may be related to gene silencing by RNA and the biological processes of piwi-interacting RNA and other small RNAs.
Collapse
Affiliation(s)
- Xiaoli XIN
- 1 Department of Oncology, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Guodong WANG
- 2 Department of Orthopedics, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 20032, China
| | - Ru HAN
- 1 Department of Oncology, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yi JIANG
- 1 Department of Oncology, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Chang LIU
- 1 Department of Oncology, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lingshuang LIU
- 1 Department of Oncology, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Zhenye XU
- 1 Department of Oncology, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
13
|
Multievaluation Strategy for Liujunzi Decoction: Fingerprint Characterization, Chemometrics Analysis, Network Pharmacology, and Molecular Docking. J CHEM-NY 2022. [DOI: 10.1155/2022/9257614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Liujunzi decoction (LJZD), a traditional tonic formula for treating “qi” deficiency of the spleen and the syndrome of phlegm dampness, can be used to prevent and treat chemotherapy-induced anorexia (CIA). The chemical constituents of LJZD are rather complex; therefore, it is of great significance to establish an effective and economic quality control method to ensure the quality consistency and stability of LJZD. With one chromatographic condition, 13 common peaks detected at 203 nm were selected to establish a fingerprint similarity model and 7 chemical constituents were identified as ephedrine hydrochloride, liquiritin, hesperidin, ginsenoside Rg1, jujuboside A, 6-gingerol, and atractylenolide III. Ten batches of LJZD were divided into two groups by cluster analysis and principal component analysis (PCA), and four main components (ephedrine hydrochloride, hesperidin, ginsenoside Rg1, and jujuboside A) of LJZD were analyzed. Also, the analysis results were combined with network pharmacology and molecular docking technology to further predict how LJZD could prevent and treat CIA. We found that these four main components of LJZD spontaneously combined with four CIA targets (SRC, PIK3R1, MAPK1, and AKT1). In this study, we established the fingerprint of LJZD for the first time, and through a comprehensive multiassessment method, we also successively analyzed the fingerprint and chemometrics.
Collapse
|
14
|
Chen Q, Yin C, Li Y, Yang Z, Tian Z. Pharmacokinetic interaction between peimine and paeoniflorin in rats and its potential mechanism. PHARMACEUTICAL BIOLOGY 2021; 59:129-133. [PMID: 33721550 PMCID: PMC7971317 DOI: 10.1080/13880209.2021.1875013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/07/2020] [Accepted: 01/08/2021] [Indexed: 05/27/2023]
Abstract
CONTEXT Peimine and paeoniflorin can be combined for the treatment of cough in paediatrics. The interaction during the co-administration could dramatically affect the bioavailability of drugs. OBJECTIVE The interaction between peimine and paeoniflorin was investigated in this study. MATERIALS AND METHODS The pharmacokinetics of paeoniflorin (20 mg/kg) with or without the coadministration of peimine (5 mg/kg for 10 days before paeoniflorin) was orally investigated in Sprague-Dawley rats (n = 6). The group without the peimine was set as the control group. The metabolic stability of paeoniflorin was studied in rat liver with microsomes. The effect of peimine on the absorption of paeoniflorin was investigated with Caco-2 cell monolayers. RESULTS The Cmax (244.98 ± 10.95 vs. 139.18 ± 15.14 μg/L) and AUC(0-t) (3295.92 ± 263.02 vs. 139.18 ± 15.14 h·μg/L) of paeoniflorin was increased by peimine. The t1/2 was prolonged from 5.33 ± 1.65 to 14.21 ± 4.97 h and the clearance was decreased from 15.43 ± 1.75 to 4.12 ± 0.57 L/h/kg. Consistently, peimine increased the metabolic stability of paeoniflorin with rat liver microsomes with the increased t1/2 (56.78 ± 2.62 vs. 26.33 ± 3.15 min) and the decreased intrinsic clearance (24.42 ± 3.78 vs. 52.64 ± 4.47 μL/min/mg protein). Moreover, the transportation of paeoniflorin was also inhibited by peimine as the efflux ratio decreased from 3.06 to 1.63. DISCUSSION AND CONCLUSIONS Peimine increased the systemic exposure of paeoniflorin through inhibiting the activity of CYP3A4 and P-gp. These results provide a reference for further in vivo studies in a broader population.
Collapse
Affiliation(s)
- Qiangjun Chen
- Department of Thyroid and Breast Surgery, Weifang Yidu Central Hospital, Weifang, Shandong, 262500, China
| | - Changlong Yin
- Department of Pediatrics, Weifang Yidu Central Hospital, Weifang, China
| | - Yongwei Li
- Department of Pediatrics, Weifang Yidu Central Hospital, Weifang, China
| | - Zhe Yang
- Qingzhou Medical Security Bureau, Weifang, China
| | - Zongying Tian
- Department of Human Anatomy, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
15
|
Liu F, Liu XZ, Yang Q, Han SY, Fan SY. Enhanced Efficacy and Reduced Hepatotoxicity by Combination of Gnaphalium affine Extract and Benzbromarone in the Treatment of Rats with Hyperuricemic Nephropathy. PHARMACEUTICAL FRONTS 2021. [DOI: 10.1055/s-0041-1736234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Simultaneous oral intake of herbal medicine with chemical drugs may result in beneficial pharmacodynamic efficacy, including additive and synergistic effects with reduced toxicity. Gnaphalium affine D. Don (GAD) is a traditional Chinese Medicine that has been used for the management of hyperuricemia and gout. Benzbromarone (BBR) is one of the first-line drugs used for urate-lowering therapy in China but is toxic to the liver. The present study aimed to determine the effects of GAD and BBR, both alone and in co-treatment (with dosing interval of 1 hour), on chronic hyperuricemic nephropathy (HN) and hepatotoxicity in rats. Our data indicated that GAD significantly inhibited the elevation of serum uric acid, blood urea nitrogen, and creatinine levels in chronic HN rats at doses of 450 and 900 mg/kg/day. The rise in serum alanine aminotransferase and aspartate aminotransferase in BBR (or vehicle)-treated HN rats was significantly reduced by pre- (or post)-administration of GAD (450 mg/kg/day). The q-value >1.15 (by Jin method) indicated synergistic effects of co-treatments of BBR (50 mg/kg) with GAD (450 mg/kg). The synergistic beneficial effects were validated by comparison of BBR alone at a dose of clinical usage (4.5 mg/kg/day, in two divided doses) and BBR + GAD at half dose plus half dose (2.25 + 225 mg/kg/day) or half dose plus full dose (2.25 + 450 mg/kg/day). In conclusion, co-treatment with GAD and BBR holds promise for the management of hyperuricemia and gout.
Collapse
Affiliation(s)
- Fei Liu
- State Key Lab. of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
- The Laboratory of Marine Glycodrug Research and Development, Marine Biomedical Research Institute of Qingdao, Qingdao, People's Republic of China
| | - Xi-Zi Liu
- State Key Lab. of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Qian Yang
- State Key Lab. of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Shi-Yi Han
- State Key Lab. of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Si-Yang Fan
- State Key Lab. of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| |
Collapse
|
16
|
The Therapeutic Effect of Traditional LiuJunZi Decoction on Ovalbumin-Induced Asthma in Balb/C Mice. Can Respir J 2021; 2021:6406295. [PMID: 34630778 PMCID: PMC8494547 DOI: 10.1155/2021/6406295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/15/2021] [Indexed: 11/17/2022] Open
Abstract
Aim To investigate the therapeutic effect of LiuJunZi decoction (LJZD) in an experimental model of asthma and uncover its potential mechanism. Materials and Methods The ovalbumin (OVA) was applied to induce asthma in Balb/C mice, and LJZD was orally administrated to asthmatic mice. The lung function and histological lesion were evaluated by airway hyperresponsiveness assay, lung edema assay, and hematoxylin and eosin staining. The amounts of CD4+CD25+Foxp3+ TReg cells were analyzed through combining fluorescent antibody staining with flow cytometry assay. The levels of inflammatory factors and immunoglobulins were detected by enzyme-linked immuno sorbent assay (ELISA). The expression of miR-21 and miR-146a was investigated by real-time PCR. The protein expression of activating protein-1 (AP-1), nuclear factor kappa-B (NF-κB), and NF-κB inhibitor alpha (IκBα) was determined by western blotting. Results LJZD improves OVA-induced asthma in Balb/C mice, which is manifested by decreasing lung edema, Penh levels, lung histological lesion, and inflammatory cell infiltration. LJZD increased the number of CD4+CD25+Foxp3+ TReg cells in blood mononuclear cells from asthmatic mice. Furthermore, LJZD reduced the levels of tumor necrosis factor-α (TNF-α), interleukin- (IL-) 4, IL-6, IgG1, and IgE, but increased interferon gamma (IFN-γ) expression, in serum of asthmatic mice, and also decreased the expression of IL-17a, IL-23, IL-25, and thymic stromal lymphopoietin (Tslp) in lung tissues. In addition, miR-21 and miR-146a expression and phospho (p)-NF-κB, p-IκBα, and AP-1 protein expression were inhibited by LJZD in lung tissues from asthmatic mice. Conclusion LJZD improved OVA-induced asthma in Balb/C mice by inhibiting allergic inflammation and Th2 immunoreaction, which might be associated with the inactivation of the NF-κB signaling pathway.
Collapse
|
17
|
Ren Y, Lv C, Zhang J, Zhang B, Yue B, Luo X, Yu Z, Wang H, Ren J, Wang Z, Dou W. Alantolactone exhibits antiproliferative and apoptosis-promoting properties in colon cancer model via activation of the MAPK-JNK/c-Jun signaling pathway. Mol Cell Biochem 2021; 476:4387-4403. [PMID: 34460036 DOI: 10.1007/s11010-021-04247-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/16/2021] [Indexed: 12/19/2022]
Abstract
Colorectal cancer (CRC) is one of the most common human malignancies in the digestive tract with high mortality. Alantolactone (ATL), as a plant-derived sesquiterpene lactone, has shown a variety of pharmacological activities, such as antibacterial, anti-inflammatory, anti-virus and so on. However, the exact molecular mechanism of ATL in colorectal cancer remains largely unknown. Here, we performed a study to explore the effect and mechanism of ATL on colorectal cancer. The CCK-8 assay, colony formation assay, Wound-healing and Transwell assays were performed to evaluate the cytotoxic effect, antiproliferative effect, anti-migratory and anti-invasive properties of ATL respectively. The xenograft tumor model was established in Balb/c mice to evaluate the anti-tumor effect. The expression levels of proteins involved the MAPK-JNK/c-Jun signaling pathway were measured by Western blot and RT-qPCR both in cells and tumor tissues. The results showed that ATL could inhibit the cells activities of various colon cancer cell lines. Moreover, ATL could induce HCT-116 cells nuclear pyknosis, mitochondrial membrane potential loss, G0/G1 phase arrest, as well as enhance the proportion of apoptosis cells and inhibit colony formation. The migration distance and invasion rate of cells were significantly reduced after treated with ATL. Additionally, in the xenograft model, ATL (50 mg/kg) significantly decreased the tumor tumor volume and weight (p < 0.001). For the anti-colon cancer mechanism, the ATL showed the anti-proliferative and pro-apoptosis effect by activating MAPK-JNK/c-Jun signaling pathway. In conclusion, ATL exhibits anti-proliferation and apoptosis-promoting potential in colon cancer via the activation of MAPK-JNK/c-Jun signaling pathway.
Collapse
Affiliation(s)
- Yijing Ren
- The MOE key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Cheng Lv
- The MOE key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Jing Zhang
- The MOE key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Beibei Zhang
- The MOE key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Bei Yue
- The MOE key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Xiaoping Luo
- Key Laboratory of Cell Engineering in Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi City, 563003, Guizhou Province, China
| | - Zhilun Yu
- The MOE key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Hao Wang
- The MOE key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Junyu Ren
- The MOE key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Zhengtao Wang
- The MOE key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China.
| | - Wei Dou
- The MOE key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China.
| |
Collapse
|
18
|
Wei L, Wen XS, Xian CJ. Chemotherapy-Induced Intestinal Microbiota Dysbiosis Impairs Mucosal Homeostasis by Modulating Toll-like Receptor Signaling Pathways. Int J Mol Sci 2021; 22:ijms22179474. [PMID: 34502383 PMCID: PMC8431669 DOI: 10.3390/ijms22179474] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 02/06/2023] Open
Abstract
Chemotherapy-induced intestinal mucositis, a painful debilitating condition affecting up to 40–100% of patients undergoing chemotherapy, can reduce the patients’ quality of life, add health care costs and even postpone cancer treatment. In recent years, the relationships between intestinal microbiota dysbiosis and mucositis have drawn much attention in mucositis research. Chemotherapy can shape intestinal microbiota, which, in turn, can aggravate the mucositis through toll-like receptor (TLR) signaling pathways, leading to an increased expression of inflammatory mediators and elevated epithelial cell apoptosis but decreased epithelial cell differentiation and mucosal regeneration. This review summarizes relevant studies related to the relationships of mucositis with chemotherapy regimens, microbiota, TLRs, inflammatory mediators, and intestinal homeostasis, aiming to explore how gut microbiota affects the pathogenesis of mucositis and provides potential new strategies for mucositis alleviation and treatment and development of new therapies.
Collapse
Affiliation(s)
- Ling Wei
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China;
| | - Xue-Sen Wen
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China;
- Correspondence: (X.-S.W.); (C.J.X.); Tel.: +86-531-88382028 (X.-S.W.); +61-88302-1944 (C.J.X.)
| | - Cory J. Xian
- UniSA Clinical & Health Science, City West Campus, University of South Australia, Adelaide, SA 5001, Australia
- Correspondence: (X.-S.W.); (C.J.X.); Tel.: +86-531-88382028 (X.-S.W.); +61-88302-1944 (C.J.X.)
| |
Collapse
|
19
|
Berberine Attenuates MPP +-Induced Neuronal Injury by Regulating LINC00943/miR-142-5p/KPNA4/NF-κB Pathway in SK-N-SH Cells. Neurochem Res 2021; 46:3286-3300. [PMID: 34427876 DOI: 10.1007/s11064-021-03431-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/14/2022]
Abstract
Berberine plays a neuro-protective role in neurodegenerative diseases, including Parkinson's disease (PD). Long non-coding RNAs (lncRNAs) play critical roles in PD pathogenesis. The purpose of this study was to investigate whether LINC00943 was involved in the role of berberine in PD. 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) or 1-methyl-4-phenyl pyridine (MPP+) were used to construct PD mouse and cell models, respectively. Cell proliferation was evaluated by Cell Counting Kit-8 (CCK-8) and 5-Ethynyl-2'-deoxyuridine (Edu) assays. Inflammation and cell apoptosis were assessed by enzyme-linked immunosorbent assay (ELISA) and flow cytometry, respectively. Quantitative real-time PCR (qRT-PCR) was employed to test the expression of LINC00943, microRNA (miR)-142-5p, and karyopherin subunit alpha 4 (KPNA4) mRNA. The protein levels of NF-κB pathway-related markers and KPNA4 were measured by western blot. Oxidative stress level was assessed by corresponding kits. The interaction between miR-142-5p and LINC00943 or KPNA4 was determined via dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Berberine inhibited MPP+-induced injury in SK-N-SH cells by promoting cell proliferation and suppressing inflammation, apoptosis, and oxidative injury. LINC00943 and KPNA4 were upregulated and miR-142-5p was downregulated in PD mouse and cell models. LINC00943 (or KPNA4) overexpression or miR-142-5p inhibition abated the neuro-protective role of berberine in PD cell model. Moreover, miR-142-5p was a target of LINC00943, and KPNA4 could specially bind to miR-142-5p. Additionally, berberine inhibited NF-κB pathway by regulating LINC00943/miR-142-5p/KPNA4 axis. Berberine protected SK-N-SH cell from MPP+-induced neuronal damage via regulating LINC00943/miR-142-5p/KPNA4/NF-κB pathway, highlighting novel evidence for the neuro-protective role of berberine in PD.
Collapse
|
20
|
Xiao H, Liu L, Ke S, Zhang Y, Zhang W, Xiong S, Zhang W, Ouyang J. Efficacy of Xiang-Sha-Liu-Jun-Zi on chemotherapy-induced nausea and vomiting: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e25848. [PMID: 34106627 PMCID: PMC8133094 DOI: 10.1097/md.0000000000025848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Cancer is the main cause of death worldwide, and chemotherapy is the basic method of treating cancer. However, chemotherapy-induced nausea and vomiting (CINV) is the most common side effect of chemotherapy, and conventional antiemetics for the treatment of CINV also have side effects. At present, a large number of randomized controlled trials have shown that Xiang-Sha-Liu-Jun-Zi (XSLJZ) can effectively treat CINV, but there is no systematic review. Therefore, this systematic review aims to discuss the effectiveness of XSLJZ in the treatment of CINV. METHODS Search for relevant documents in the Chinese and English databases, and the search time is limited to March 2021. Databases include Embase, Cochrane Library, Web of Science, PubMed, China National Knowledge Infrastructure, Chongqing VIP Information Resource Integration Service Platform, Wanfang Data, Chinese Biomedical Literature, etc. We will search the international clinical trial registration platform and the Chinese clinical trial registration platform to find ongoing and unpublished clinical trials. Randomized controlled trial of the efficacy of XSLJZ in the treatment of CINV were collected. After screening the literature according to the inclusion and exclusion criteria, two researchers independently extracted the data. The effective rate of treatment is the main outcome indicator of this study. The secondary indicators of this study include the incidence of adverse reactions and the improvement rate of quality of life. RevMan 5.3.5 software was used for statistical analysis. Grades of Recommendation, Assessment, Development, and Evaluation system will be used to evaluate the quality evidence for each outcome. RESULTS This study will provide the latest evidence for the treatment of CINV by XSLJZ. CONCLUSION : To evaluate the efficacy of XSLJZ in the treatment of CINV. UNIQUE INPLASY NUMBER INPLASY202140079.
Collapse
Affiliation(s)
- Hang Xiao
- Jiangxi University of Traditional Chinese Medicine
| | - Liangji Liu
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, PR China
| | - Shiwen Ke
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, PR China
| | - Yuqin Zhang
- Jiangxi University of Traditional Chinese Medicine
| | | | | | - Wei Zhang
- Jiangxi University of Traditional Chinese Medicine
| | - Jiaqing Ouyang
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, PR China
| |
Collapse
|
21
|
Wang Q, Ye H, Wang QQ, Li WT, Yu BB, Bai YM, Xu GH. Chinese Herbal Medicine for Chemotherapy-Induced Leukopenia: A Systematic Review and Meta-Analysis of High-Quality Randomized Controlled Trials. Front Pharmacol 2021; 12:573500. [PMID: 34017246 PMCID: PMC8129503 DOI: 10.3389/fphar.2021.573500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/19/2021] [Indexed: 12/24/2022] Open
Abstract
Aim: We conducted a systematic review of high-quality randomized controlled trials (RCTs) to assess the efficacy and safety of Chinese herbal medicine (CHM) for the treatment of chemotherapy-induced leukopenia (CIL). Methods: Eight electronic databases were searched from the date of inception to November 4, 2020 for high-quality RCTs that met the requirements of at least four key domains of the Cochrane risk of bias (RoB) tool. RevMan 5.3 was applied for the meta-analysis. Results: Fourteen RCTs involving 1,053 patients were included. The pooled results showed that CHM + chemotherapy exerted greater beneficial effects on white blood cell (WBC), neutrophil (NEU), hemoglobin (Hb), and platelet (PLT) counts in addition to the Karnofsky performance scale (KPS) score, but showed no significant difference on granulocyte colony-stimulating factor (G-CSF) dosage compared with chemotherapy alone. Placebo (PBO) + chemotherapy and CHM + chemotherapy groups showed no significant differences in terms of reduction of the incidence of neutropenia. CHM + chemotherapy was superior to Western medicine (WM) + chemotherapy in improving the WBC count, KPS, infection amount, G-CSF use rate, and incidence of leukopenia. In addition, no severe adverse events were observed in the 14 RCTs. Conclusion: CHM in combination with chemotherapy could effectively improve the clinical symptoms of CIL when compared with chemotherapy alone or Western medicine + chemotherapy, except when comparing with PBO + chemotherapy. While CHMs were generally safe for clinical use and exerted no severe side effects in the 14 RCTs, high-quality RCTs with larger sample sizes are essential to reduce study heterogeneity.
Collapse
Affiliation(s)
- Qing Wang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Ye
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiu-Qin Wang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China.,Public Teaching Department for Foreign Languages, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei-Tong Li
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bei-Bei Yu
- Public Teaching Department for Foreign Languages, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ya-Mei Bai
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Gui-Hua Xu
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
22
|
Li S, So TH, Tang G, Tan HY, Wang N, Ng BFL, Chan CKW, Yu ECL, Feng Y. Chinese Herbal Medicine for Reducing Chemotherapy-Associated Side-Effects in Breast Cancer Patients: A Systematic Review and Meta-Analysis. Front Oncol 2020; 10:599073. [PMID: 33363030 PMCID: PMC7756083 DOI: 10.3389/fonc.2020.599073] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
Background Chemotherapy usually induces a variety of side-effects in cancer treatment as it cannot tell normal cells apart from cancer cells and kills both. Chinese herbal medicine (CHM) has been regarded as a potential effective intervention for relieving the side-effects of chemotherapy in breast cancer patients. Objective This study aims to conduct a comprehensive systematic review and meta-analysis to evaluate the efficacy of CHM as adjuvant therapy for reducing the chemotherapy-induced side-effects in the treatment of breast cancer. Methods Main electronic databases were searched up to May 2020 for Randomized Controlled Trials (RCTs) evaluating the effect of CHM on breast cancer patients with chemotherapy. The PRISMA statement was adopted in this study and meta-analyses were performed. Results The included studies showed unsatisfied quality. Results based on available literature indicated that the adjunctive use of CHM with chemotherapy may reduce the chemotherapeutic agents-associated adverse events, including nausea and vomiting, diarrhea, alopecia, myelosuppression, and impaired immune function. Conclusion A confident conclusion could not be have due to the lack of large scale and high quality trials.
Collapse
Affiliation(s)
- Sha Li
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Tsz-Him So
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Guoyi Tang
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Hor-Yue Tan
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ning Wang
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | | | - Chris Kam Wa Chan
- Division of Nephrology, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Edwin Chau-Leung Yu
- Hong Kong Association for Integration of Chinese-Western Medicine, Hong Kong, Hong Kong
| | - Yibin Feng
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
23
|
Fan L, Wang X, Huang J, Gan C, Jiang S, Yang X, Yang C, Yao M. Comparison of the pharmacokinetic profiles of 13 phenolic acids and 6 triterpenes in normal and leukopenia rats after oral administration of Sanguisorba officinalis L. extract by LC-MS/MS. J Sep Sci 2020; 43:4103-4122. [PMID: 32909652 DOI: 10.1002/jssc.202000514] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/19/2020] [Accepted: 09/07/2020] [Indexed: 01/26/2023]
Abstract
A selective, accurate, and efficient liquid chromatography-tandem mass spectrometry method was developed for the simultaneous determination of 13 phenolic acids. Additionally, for more comprehensively determining the chemical constituents in Sanguisorba officinalis L. extract, a previously developed method was employed for the simultaneous determination of six triterpenes. Thus, two methods were used to ensure the comprehensiveness and reliability of this study. Based on these methods, the pharmacokinetic profiles of the 13 phenolic acids and 6 triterpenes in normal and leukopenia rats after oral administration of S. officinalis L. extract were compared for the first time in the present study. Quantitative detection of the 13 phenolic acids and 6 triterpenes was performed using the multiple reaction monitoring mode with the electrospray ion source in negative and positive electrospray ionization, respectively. Chromatographic separation was performed on an Agilent Eclipse Plus C18 RRHD column (50 × 2.1 mm, 1.8 µm) using gradient elution with a mobile phase composed of methanol-0.1% aqueous formic acid. The pharmacokinetic results demonstrated that the pharmacokinetic characteristics of the 19 analytes in leukopenia rats differed significantly from those determined in normal rats, which could provide a helpful reference for the clinical application of S. officinalis L. in the prevention and treatment of leucopenia.
Collapse
Affiliation(s)
- Linzi Fan
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Xiaotong Wang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Jing Huang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Chunli Gan
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Shuang Jiang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Xinrong Yang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Chunjuan Yang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Meicun Yao
- Department of Pharmaceutical Analysis and Quality Assessment, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Guangzhou, P. R. China
| |
Collapse
|
24
|
Yue GGL, Chan YY, Liu W, Gao S, Wong CW, Lee JKM, Lau KM, Lau CBS. Effectiveness of Scutellaria barbata water extract on inhibiting colon tumor growth and metastasis in tumor-bearing mice. Phytother Res 2020; 35:361-373. [PMID: 32869911 DOI: 10.1002/ptr.6808] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022]
Abstract
The plant Scutellaria barbata (SB) is commonly used as herbal medicines for treating cancer. The present pre-clinical study aimed to validate the Chinese Pharmacopoeia (CP) recommended dosages of SB water extract (SBW) in treating colon tumors. The content of chemical marker scutellarin in SBW was quantified using UPLC. Mice bearing human HCT116 xenografts or murine colon26 tumors received oral administration of SBW or scutellarin for 4 weeks. Results showed that SBW (615 and 1,230 mg/kg) and scutellarin (7 mg/kg) treatments significantly reduced human xenograft weights by 28.7, 36.9 and 28.8%, respectively. Lung metastasis area could be ameliorated after SBW (615 mg/kg) and scutellarin (7 mg/kg) treatments by 23.4 and 29.5%, respectively. Expressions of colon cancer metastasis-related proteins E-cadherin, Tspan 8 and CXCR4, as well as Src kinase in tumors were first shown to be regulated by SBW. Furthermore, in murine colon26 tumor-bearing mice, SBW (615 mg/kg) and scutellarin (7 mg/kg) treatments reduced the orthotopic tumor burden by 94.7% and lung metastatic tumor burden by 94.1%, respectively. Our findings provided evidences that SBW (at the mouse equivalent dosages to clinical dosages recommended by CP) could exert anti-tumor and anti-metastatic effects in colon cancer animal models.
Collapse
Affiliation(s)
- Grace Gar-Lee Yue
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.,State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Yuk-Yu Chan
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Wenjing Liu
- Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Si Gao
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.,State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Chun-Wai Wong
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.,State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Julia Kin-Ming Lee
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.,State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Kit-Man Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.,State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Clara Bik-San Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.,State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.,Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|
25
|
Su CM, Weng YS, Kuan LY, Chen JH, Hsu FT. Suppression of PKCδ/NF-κB Signaling and Apoptosis Induction through Extrinsic/Intrinsic Pathways Are Associated Magnolol-Inhibited Tumor Progression in Colorectal Cancer In Vitro and In Vivo. Int J Mol Sci 2020; 21:ijms21103527. [PMID: 32429376 PMCID: PMC7278962 DOI: 10.3390/ijms21103527] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022] Open
Abstract
Magnolol is one of the hydroxylated biphenyl compounds from the root and stem bark of Magnolia officinalis, which shown to possess anti-colorectal cancer (CRC) effects. However, the regulatory mechanism of magnolol on apoptosis and NF-κB signaling in human CRC has not been elucidated. Thus, we investigated the inhibitory mechanism of magnolol on human and mouse CRC (HT-29 and CT-26) in vitro and in vivo. Results from reporter gene assay indicated that both magnolol and rottlerin (PKCδ inhibitor) reduced the endogenous NF-κB activity. In addition, indolactam V (PKCδ activator)-induced NF-κB signaling was significantly suppressed with both magnolol and rottlerin treatment. Results from Western blotting also indicated that phosphorylation of PKCδ and NF-κB -related proteins involved in tumor progression were effectively decreased by magnolol treatment. The invasion capacity of CRC cells was also attenuated by both magnolol and rottlerin. Furthermore, magnolol triggered Fas/Fas-L mediated extrinsic apoptosis and mitochondria mediated intrinsic apoptosis were validated by flow cytometry. Most importantly, tumor growth in both HT-29 and CT-26 bearing mice were suppressed by magnolol, but no pathologic change was detected in mice kidney, spleen, and liver. As confirmed by immunohistochemistry (IHC) staining from tumor tissue, PKCδ/NF-κB signaling and downstream proteins expression were decreased, while apoptotic proteins expression was increased in the magnolol treated group. According to these results, we suggest that the induction of apoptosis through extrinsic/intrinsic pathways and the blockage of PKCδ/NF-κB signaling are associated with the magnolol-inhibited progression of CRC.
Collapse
Affiliation(s)
- Chun-Min Su
- Department of Surgery, Show Chwan Memorial Hospital, Changhua 500, Taiwan;
| | - Yueh-Shan Weng
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan;
| | - Lin-Yen Kuan
- Department of Emergency Medicine, Cathay General Hospital, Taipei 106, Taiwan; (L.-Y.K.); (J.-H.C.)
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Jiann-Hwa Chen
- Department of Emergency Medicine, Cathay General Hospital, Taipei 106, Taiwan; (L.-Y.K.); (J.-H.C.)
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan;
- Correspondence: or ; Tel.: +886-4-22053366 (ext. 2532)
| |
Collapse
|
26
|
Tian L, Qian W, Qian Q, Zhang W, Cai X. Gingerol inhibits cisplatin-induced acute and delayed emesis in rats and minks by regulating the central and peripheral 5-HT, SP, and DA systems. J Nat Med 2019; 74:353-370. [PMID: 31768887 PMCID: PMC7044144 DOI: 10.1007/s11418-019-01372-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022]
Abstract
Abstract Gingerol, a biologically active component in ginger, has shown antiemetic properties. Our study aimed to explore the underlying mechanisms of gingerol on protecting rats and minks from chemotherapy-induced nausea and vomiting. The preventive impact of gingerol was evaluated in the pica model of rats and the vomiting model of minks induced by cisplatin at every 6 h continuously for a duration of 72 h. Animals were arbitrarily separated into blank control group, simple gingerol control group, cisplatin control group, cisplatin + metoclopramide group, cisplatin + three different doses gingerol group (low-dose; middle-dose; high-dose). The area postrema as well as ileum damage were assessed using H&E stain. The levels of 5-TH, 5-HT3 receptor, TPH, SERT, SP, NK1 receptor, PPT, NEP, DA, D2R, TH, and DAT were determined using immunohistochemistry or qRT-PCR in rats and minks. All indicators were measured in the area postrema along with ileum. The kaolin intake by rats and the incidence of CINV of minks were significantly decreased after pretreatment with gingerol in a dosage-dependent way for the duration of 0–24-h and 24–72-h. Gingerol markedly decreased the levels of 5-TH, 5-HT3 receptor, TPH, SP, NK1 receptor, PPT, DA, D2R, TH, alleviated area postrema as well as ileum damage, and increased the accumulation of SERT, NEP, DAT in the area postrema along with ileum of rats and minks. Gingerol alleviates cisplatin-induced kaolin intake of rats and emesis of minks possibly by regulating central and peripheral 5-HT system, SP system and DA system. Graphic abstract ![]()
Collapse
Affiliation(s)
- Li Tian
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| | - Weibin Qian
- Postdoctoral Mobile Station, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China.,Department of Lung Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Lixia District, Jinan, Shandong, People's Republic of China
| | - Qiuhai Qian
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| | - Wei Zhang
- Department of Lung Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Lixia District, Jinan, Shandong, People's Republic of China.
| | - Xinrui Cai
- Department of Traditional Chinese Medicine, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, No. 17 Yuxing Road, Central District, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
27
|
The Method of Activating Blood and Dredging Collaterals for Reducing Chemotherapy-Induced Peripheral Neuropathy: A Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1029626. [PMID: 31281395 PMCID: PMC6590582 DOI: 10.1155/2019/1029626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022]
Abstract
Background Chemotherapy-induced peripheral neuropathy (CIPN) remains as a big unsolved challenge for cancer patients and oncologists. However, there is no effective treatment to prevent and cure it. This systematic review and meta-analysis chiefly aimed to assess the effectiveness and safety on the method of activating blood and dredging collaterals in traditional Chinese medicine (TCM) for reducing CIPN. Methods Two authors comprehensively searched all the randomized controlled trials (RCTs) via PubMed, Cochrane, China National Knowledge Infrastructure (CNKI), and Wanfang Database of China Science Periodical Database (CSPD). The Review Manager (RevMan) 5.0 was used to conduct the meta-analysis. Results 20 trials including 1481 participants were analyzed. 15 trials tested the incidence of all-grade CIPN which was significantly lower in intervention arm and 16 trails presented that the result of high-grade CIPN was the same. The total effective rate of the use of Chinese herbs was 77.19% versus 45.79% in the comparator group. Besides, the use of Chinese herbs statistically promoted the sensory nerve conduction velocity (SNCV) and the motor nerve conduction velocity (MNCV). Besides, the quality of life (QoL) in the intervention group was better than the comparator one. Herbs-related adverse events were skin allergy, skin chap, and scald, which could be managed well. Conclusions The work involving studies of the effectiveness and safety on TCM for reducing CIPN proves to be encouraging. Herbs with the function of activating blood and dredging collaterals were found to potentially promote the curative effects as well as making improvements of SNCV and MNCV. However, in the future, more double-blind, multicenter, large-scale RCTs and more comprehensive researches are still required.
Collapse
|