1
|
Wu C, Chen J, Zhang J, Hong H, Jiang J, Ji C, Li C, Xia M, Xu G, Cui Z. Extracellular vesicles loaded with ApoB-100 protein affect the occurrence of coronary heart disease in patients after injury of spinal cord. Int J Biol Macromol 2024; 277:134330. [PMID: 39089550 DOI: 10.1016/j.ijbiomac.2024.134330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Spinal cord injury (SCI) patients have an increased susceptibility to coronary heart disease (CHD) due to dysregulated lipid deposition. We conducted a comprehensive investigation to gain insights into the specific roles of Apolipoprotein B-100 (APOB-100) in the development of CHD in patients suffering from SCI. First, we established an SCI rat model through semitransection. APOB-100 expression in plasma exosomes obtained from patients were determined. Subsequently, we found APOB-100 affected macrophage polarization when treating co-cultured neurons/macrophages lacking Sortilin with extracellular vesicles derived from SCI rats, where APOB-100 co-immunoprecipitated with Sortilin. Moreover, APOB-100 upregulation reduced neuronal cell viability and triggered apoptosis by upregulating Sortilin, leading to a decline in the Basso, Beattie, and Bresnahan (BBB) scale, exacerbation of neuron injury, increased macrophage infiltration, and elevated blood lipid-related indicators in SCI rats, which could be reversed by silencing Sortilin. In conclusion, APOB-100 from post-SCI patients' extracellular vesicles upregulates Sortilin, thereby endangering those patients to CHD.
Collapse
Affiliation(s)
- Chunshuai Wu
- Department of Spine surgery, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Nantong 226000, China; Key Laboratory for Restoration Mechanism and Clinical Translation of Spinal Cord Injury, Nantong 226000, China; Research institute for Spine and spinal cord disease of Nantong University, Nantong 226000, China
| | - Jiajia Chen
- Department of Spine surgery, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Nantong 226000, China
| | - Jinlong Zhang
- Department of Spine surgery, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Nantong 226000, China
| | - Hongxiang Hong
- Department of Spine surgery, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Nantong 226000, China
| | - Jiawei Jiang
- Department of Spine surgery, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Nantong 226000, China
| | - Chunyan Ji
- Department of Spine surgery, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Nantong 226000, China; Key Laboratory for Restoration Mechanism and Clinical Translation of Spinal Cord Injury, Nantong 226000, China; Research institute for Spine and spinal cord disease of Nantong University, Nantong 226000, China
| | - Chaochen Li
- Department of Spine surgery, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Nantong 226000, China; Key Laboratory for Restoration Mechanism and Clinical Translation of Spinal Cord Injury, Nantong 226000, China; Research institute for Spine and spinal cord disease of Nantong University, Nantong 226000, China
| | - Mingjie Xia
- Department of Spine surgery, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Nantong 226000, China
| | - Guanhua Xu
- Department of Spine surgery, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Nantong 226000, China; Key Laboratory for Restoration Mechanism and Clinical Translation of Spinal Cord Injury, Nantong 226000, China; Research institute for Spine and spinal cord disease of Nantong University, Nantong 226000, China.
| | - Zhiming Cui
- Department of Spine surgery, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Nantong 226000, China; Key Laboratory for Restoration Mechanism and Clinical Translation of Spinal Cord Injury, Nantong 226000, China; Research institute for Spine and spinal cord disease of Nantong University, Nantong 226000, China.
| |
Collapse
|
2
|
Coppola T, Daziano G, Legroux I, Béraud-Dufour S, Blondeau N, Lebrun P. Unlocking Therapeutic Synergy: Tailoring Drugs for Comorbidities such as Depression and Diabetes through Identical Molecular Targets in Different Cell Types. Cells 2023; 12:2768. [PMID: 38067196 PMCID: PMC10706795 DOI: 10.3390/cells12232768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Research in the field of pharmacology aims to generate new treatments for pathologies. Nowadays, there are an increased number of chronic disorders that severely and durably handicap many patients. Among the most widespread pathologies, obesity, which is often associated with diabetes, is constantly increasing in incidence, and in parallel, neurodegenerative and mood disorders are increasingly affecting many people. For years, these pathologies have been so frequently observed in the population in a concomitant way that they are considered as comorbidities. In fact, common mechanisms are certainly at work in the etiology of these pathologies. The main purpose of this review is to show the value of anticipating the effect of baseline treatment of a condition on its comorbidity in order to obtain concomitant positive actions. One of the implications would be that by understanding and targeting shared molecular mechanisms underlying these conditions, it may be possible to tailor drugs that address both simultaneously. To this end, we firstly remind readers of the close link existing between depression and diabetes and secondly address the potential benefit of the pleiotropic actions of two major active molecules used to treat central and peripheral disorders, first a serotonin reuptake inhibitor (Prozac ®) and then GLP-1R agonists. In the second part, by discussing the therapeutic potential of new experimental antidepressant molecules, we will support the concept that a better understanding of the intracellular signaling pathways targeted by pharmacological agents could lead to future synergistic treatments targeting solely positive effects for comorbidities.
Collapse
Affiliation(s)
- Thierry Coppola
- CNRS, IPMC, Université Côte d’Azur, Sophia Antipolis, F-06560 Valbonne, France; (G.D.); (I.L.); (S.B.-D.); (N.B.)
| | | | | | | | | | - Patricia Lebrun
- CNRS, IPMC, Université Côte d’Azur, Sophia Antipolis, F-06560 Valbonne, France; (G.D.); (I.L.); (S.B.-D.); (N.B.)
| |
Collapse
|
3
|
Lee H, Joo J, Song J, Kim H, Kim YH, Park HR. Immunological link between periodontitis and type 2 diabetes deciphered by single-cell RNA analysis. Clin Transl Med 2023; 13:e1503. [PMID: 38082425 PMCID: PMC10713875 DOI: 10.1002/ctm2.1503] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/19/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (DM) is a complex metabolic disorder that causes various complications, including periodontitis (PD). Although a bidirectional relationship has been reported between DM and PD, their immunological relationship remains poorly understood. Therefore, this study aimed to compare the immune response in patients with PD alone and in those with both PD and DM (PDDM) to expand our knowledge of the complicated connection between PD and DM. METHODS Peripheral blood mononuclear cells were collected from 11 healthy controls, 10 patients with PD without DM, and six patients with PDDM, followed by analysis using single-cell RNA sequencing. The differences among groups were then compared based on intracellular and intercellular perspectives. RESULTS Compared to the healthy state, classical monocytes exhibited the highest degree of transcriptional change, with elevated levels of pro-inflammatory cytokines in both PD and PDDM. DM diminished the effector function of CD8+ T and natural killer (NK) cells as well as completely modified the differentiation direction of these cells. Interestingly, a prominent pathway, RESISTIN, which is known to increase insulin resistance and susceptibility to diabetes, was found to be activated under both PD and PDDM conditions. In particular, CAP1+ classical monocytes from patients with PD and PDDM showed elevated nuclear factor kappa B-inducing kinase activity. CONCLUSIONS Overall, this study elucidates how the presence of DM contributes to the deterioration of T/NK cell immunity and the immunological basis connecting PD to DM.
Collapse
Affiliation(s)
- Hansong Lee
- Medical Research InstitutePusan National UniversityYangsanRepublic of Korea
| | - Ji‐Young Joo
- Department of PeriodontologySchool of Dentistry, Pusan National UniversityYangsanRepublic of Korea
| | - Jae‐Min Song
- Department of Oral and Maxillofacial SurgerySchool of Dentistry, Pusan National UniversityYangsanRepublic of Korea
| | - Hyun‐Joo Kim
- Department of PeriodontologyDental and Life Science Institute, School of Dentistry, Pusan National UniversityYangsanRepublic of Korea
- Department of Periodontology and Dental Research InstitutePusan National University Dental HospitalYangsanRepublic of Korea
- Periodontal Disease Signaling Network Research CenterSchool of Dentistry, Pusan National UniversityYangsanRepublic of Korea
| | - Yun Hak Kim
- Periodontal Disease Signaling Network Research CenterSchool of Dentistry, Pusan National UniversityYangsanRepublic of Korea
- Department of Biomedical Informatics, School of MedicinePusan National UniversityYangsanRepublic of Korea
- Department of AnatomySchool of Medicine, Pusan National UniversityYangsanRepublic of Korea
| | - Hae Ryoun Park
- Department of Periodontology and Dental Research InstitutePusan National University Dental HospitalYangsanRepublic of Korea
- Periodontal Disease Signaling Network Research CenterSchool of Dentistry, Pusan National UniversityYangsanRepublic of Korea
- Department of Oral PathologyDental and Life Science Institute, Pusan National UniversityYangsanRepublic of Korea
| |
Collapse
|
4
|
Gross J, Knipper M, Mazurek B. Candidate Key Proteins in Tinnitus: A Bioinformatic Study of Synaptic Transmission in Spiral Ganglion Neurons. Cell Mol Neurobiol 2023; 43:4189-4207. [PMID: 37736859 PMCID: PMC10661836 DOI: 10.1007/s10571-023-01405-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 08/24/2023] [Indexed: 09/23/2023]
Abstract
To study key proteins associated with changes in synaptic transmission in the spiral ganglion in tinnitus, we build three gene lists from the GeneCard database: 1. Perception of sound (PoS), 2. Acoustic stimulation (AcouStim), and 3. Tinnitus (Tin). Enrichment analysis by the DAVID database resulted in similar Gene Ontology (GO) terms for cellular components in all gene lists, reflecting synaptic structures known to be involved in auditory processing. The STRING protein-protein interaction (PPI) network and the Cytoscape data analyzer were used to identify the top two high-degree proteins (HDPs) and their high-score interaction proteins (HSIPs) identified by the combined score (CS) of the corresponding edges. The top two protein pairs (key proteins) for the PoS are BDNF-GDNF and OTOF-CACNA1D and for the AcouStim process BDNF-NTRK2 and TH-CALB1. The Tin process showed BDNF and NGF as HDPs, with high-score interactions with NTRK1 and NGFR at a comparable level. Compared to the PoS and AcouStim process, the number of HSIPs of key proteins (CS > 90. percentile) increases strongly in Tin. In the PoS and AcouStim networks, BDNF receptor signaling is the dominant pathway, and in the Tin network, the NGF-signaling pathway is of similar importance. Key proteins and their HSIPs are good indicators of biological processes and of signaling pathways characteristic for the normal hearing on the one hand and tinnitus on the other.
Collapse
Affiliation(s)
- Johann Gross
- Tinnitus Center, Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Leibniz Society of Science Berlin, Berlin, Germany.
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
- Leibniz Society of Science Berlin, Berlin, Germany
| | - Birgit Mazurek
- Tinnitus Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
5
|
Sorvina A, Martini C, Prabhakaran S, Logan JM, S-Y Ung B, Moore C, Johnson IRD, Lazniewska J, Tewari P, Malone V, Brooks RD, Hickey SM, Caruso MC, Klebe S, Karageorgos L, O'Leary JJ, Delahunt B, Samaratunga H, Brooks DA. Appl1, Sortilin and Syndecan-1 immunohistochemistry on intraductal carcinoma of the prostate provides evidence of retrograde spread. Pathology 2023; 55:792-799. [PMID: 37422404 DOI: 10.1016/j.pathol.2023.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/30/2023] [Accepted: 05/02/2023] [Indexed: 07/10/2023]
Abstract
The presence of intraductal carcinoma of the prostate (IDCP) correlates with late-stage disease and poor outcomes for patients with prostatic adenocarcinoma, but the accurate and reliable staging of disease severity remains challenging. Immunohistochemistry (IHC) has been utilised to overcome problems in assessing IDCP morphology, but the current markers have only demonstrated limited utility in characterising the complex biology of this lesion. In a retrospective study of a cohort of patients who had been diagnosed with IDCP, we utilised IHC on radical prostatectomy sections with a biomarker panel of Appl1, Sortilin and Syndecan-1, to interpret different architectural patterns and to explore the theory that IDCP occurs from retrograde spread of high-grade invasive prostatic adenocarcinoma. Cribriform IDCP displayed strong Appl1, Sortilin and Syndecan-1 labelling patterns, while solid IDCP architecture had high intensity Appl1 and Syndecan-1 labelling, but minimal Sortilin labelling. Notably, the expression pattern of the biomarker panel in regions of IDCP was similar to that of adjacent invasive prostatic adenocarcinoma, and also comparable to prostate cancer showing perineural and vascular invasion. The Appl1, Sortilin, and Syndecan-1 biomarker panel in IDCP provides evidence for the model of retrograde spread of invasive prostatic carcinoma into ducts/acini, and supports the inclusion of IDCP into the five-tier Gleason grading system.
Collapse
Affiliation(s)
- Alexandra Sorvina
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Carmela Martini
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia.
| | - Sarita Prabhakaran
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia; Department of Anatomical Pathology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Jessica M Logan
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Benjamin S-Y Ung
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Courtney Moore
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Ian R D Johnson
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Joanna Lazniewska
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Prerna Tewari
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
| | - Victoria Malone
- Department of Pathology, The Coombe Women and Infants University Hospital, Dublin, Ireland
| | - Robert D Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Shane M Hickey
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Maria C Caruso
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Sonja Klebe
- Department of Anatomical Pathology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia; Department of Surgical Pathology, SA Pathology at Flinders Medical Centre, Adelaide, SA, Australia
| | - Litsa Karageorgos
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - John J O'Leary
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
| | - Brett Delahunt
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Hemamali Samaratunga
- Aquesta Uropathology, Brisbane, Qld, Australia; University of Queensland, Brisbane, Qld, Australia
| | - Doug A Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
6
|
Rodríguez FD, Sánchez ML, Coveñas R. Neurotensin and Alcohol Use Disorders: Towards a Pharmacological Treatment. Int J Mol Sci 2023; 24:ijms24108656. [PMID: 37240004 DOI: 10.3390/ijms24108656] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Harmful alcohol use is responsible for a group of disorders collectively named alcohol use disorders (AUDs), according to the DSM-5 classification. The damage induced by alcohol depends on the amount, time, and consumption patterns (continuous and heavy episodic drinking). It affects individual global well-being and social and familial environments with variable impact. Alcohol addiction manifests with different degrees of organ and mental health detriment for the individual, exhibiting two main traits: compulsive drinking and negative emotional states occurring at withdrawal, frequently causing relapse episodes. Numerous individual and living conditions, including the concomitant use of other psychoactive substances, lie in the complexity of AUD. Ethanol and its metabolites directly impact the tissues and may cause local damage or alter the homeostasis of brain neurotransmission, immunity scaffolding, or cell repair biochemical pathways. Brain modulator and neurotransmitter-assembled neurocircuitries govern reward, reinforcement, social interaction, and consumption of alcohol behaviors in an intertwined manner. Experimental evidence supports the participation of neurotensin (NT) in preclinical models of alcohol addiction. For example, NT neurons in the central nucleus of the amygdala projecting to the parabrachial nucleus strengthen alcohol consumption and preference. In addition, the levels of NT in the frontal cortex were found to be lower in rats bred to prefer alcohol to water in a free alcohol-water choice compared to wild-type animals. NT receptors 1 and 2 seem to be involved in alcohol consumption and alcohol effects in several models of knockout mice. This review aims to present an updated picture of the role of NT systems in alcohol addiction and the possible use of nonpeptide ligands modulating the activity of the NT system, applied to experimental animal models of harmful drinking behavior mimicking alcohol addiction leading to health ruin in humans.
Collapse
Affiliation(s)
- Francisco D Rodríguez
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, University of Salamanca, 37008 Salamanca, Spain
- Group GIR-USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37008 Salamanca, Spain
| | - Manuel Lisardo Sánchez
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, C/Pintor Fernando Gallego 1, 37007 Salamanca, Spain
| | - Rafael Coveñas
- Group GIR-USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37008 Salamanca, Spain
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, C/Pintor Fernando Gallego 1, 37007 Salamanca, Spain
| |
Collapse
|
7
|
Li Q, Hu YZ, Gao S, Wang PF, Hu ZL, Dai RP. ProBDNF and its receptors in immune-mediated inflammatory diseases: novel insights into the regulation of metabolism and mitochondria. Front Immunol 2023; 14:1155333. [PMID: 37143663 PMCID: PMC10151479 DOI: 10.3389/fimmu.2023.1155333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/28/2023] [Indexed: 05/06/2023] Open
Abstract
Immune-mediated inflammatory diseases (IMIDs) consist of a common and clinically diverse group of diseases. Despite remarkable progress in the past two decades, no remission is observed in a large number of patients, and no effective treatments have been developed to prevent organ and tissue damage. Brain-derived neurotrophic factor precursor (proBDNF) and receptors, such as p75 neurotrophin receptor (p75NTR) and sortilin, have been proposed to mediate intracellular metabolism and mitochondrial function to regulate the progression of several IMIDs. Here, the regulatory role of proBDNF and its receptors in seven typical IMIDs, including multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, allergic asthma, type I diabetes, vasculitis, and inflammatory bowel diseases, was investigated.
Collapse
Affiliation(s)
- Qiao Li
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Anesthesia Medical Research Center, Central South University, Changsha, Hunan, China
| | - Yue-Zi Hu
- Clinical Laboratory, The Second Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Shan Gao
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Anesthesia Medical Research Center, Central South University, Changsha, Hunan, China
| | - Peng-Fei Wang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Anesthesia Medical Research Center, Central South University, Changsha, Hunan, China
| | - Zhao-Lan Hu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Anesthesia Medical Research Center, Central South University, Changsha, Hunan, China
- *Correspondence: Ru-Ping Dai, ; Zhao-Lan Hu,
| | - Ru-Ping Dai
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Anesthesia Medical Research Center, Central South University, Changsha, Hunan, China
- *Correspondence: Ru-Ping Dai, ; Zhao-Lan Hu,
| |
Collapse
|
8
|
Knockdown of sortilin improves the neurological injury and regional cerebral blood flow in rats after subarachnoid hemorrhage. Neuroreport 2022; 33:697-704. [DOI: 10.1097/wnr.0000000000001833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Bosi E, Marselli L, Suleiman M, Tesi M, De Luca C, Del Guerra S, Cnop M, Eizirik D, Marchetti P. A single-cell human islet interactome atlas identifies disrupted autocrine and paracrine communications in type 2 diabetes. NAR Genom Bioinform 2022; 4:lqac084. [DOI: 10.1093/nargab/lqac084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 10/04/2022] [Accepted: 10/29/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
A sensible control of hormone secretion from pancreatic islets requires concerted inter-cellular communications, but a comprehensive picture of the whole islet interactome is presently missing. Single-cell transcriptomics allows to overcome this and we used here a single-cell dataset from type 2 diabetic (T2D) and non-diabetic (ND) donors to leverage islet interaction networks. The single-cell dataset contains 3046 cells classified in 7 cell types. The interactions across cell types in T2D and ND were obtained and resulting networks analysed to identify high-centrality genes and altered interactions in T2D. The T2D interactome displayed a higher number of interactions (10 787) than ND (9707); 1289 interactions involved beta cells (1147 in ND). High-centrality genes included EGFR, FGFR1 and FGFR2, important for cell survival and proliferation. In conclusion, this analysis represents the first in silico model of the human islet interactome, enabling the identification of signatures potentially relevant for T2D pathophysiology.
Collapse
Affiliation(s)
- Emanuele Bosi
- Department of Experimental and Clinical Medicine, Pancreatic islets laboratory, University of Pisa , Pisa , Italy
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa , Genoa , Italy
| | - Lorella Marselli
- Department of Experimental and Clinical Medicine, Pancreatic islets laboratory, University of Pisa , Pisa , Italy
| | - Mara Suleiman
- Department of Experimental and Clinical Medicine, Pancreatic islets laboratory, University of Pisa , Pisa , Italy
| | - Marta Tesi
- Department of Experimental and Clinical Medicine, Pancreatic islets laboratory, University of Pisa , Pisa , Italy
| | - Carmela De Luca
- Department of Experimental and Clinical Medicine, Pancreatic islets laboratory, University of Pisa , Pisa , Italy
| | - Silvia Del Guerra
- Department of Experimental and Clinical Medicine, Pancreatic islets laboratory, University of Pisa , Pisa , Italy
| | - Miriam Cnop
- ULB Center for Diabetes Research , Université Libre de Bruxelles, Brussels , Belgium
- Division of Endocrinology, Erasmus Hospital , Université Libre de Bruxelles, Brussels , Belgium
| | - Decio L Eizirik
- ULB Center for Diabetes Research , Université Libre de Bruxelles, Brussels , Belgium
| | - Piero Marchetti
- Department of Experimental and Clinical Medicine, Pancreatic islets laboratory, University of Pisa , Pisa , Italy
| |
Collapse
|
10
|
Xu J, Shen CJ, Ooi JD, Tang YS, Xiao Z, Yuan QJ, Zhong Y, Zhou QL. Serum Sortilin Is Associated with Coronary Artery Calcification and Cardiovascular and Cerebrovascular Events in Maintenance Hemodialysis Patients. KIDNEY DISEASES (BASEL, SWITZERLAND) 2021; 7:503-513. [PMID: 34901196 PMCID: PMC8613630 DOI: 10.1159/000517304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/16/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To analyze the role of serum sortilin in coronary artery calcification (CAC) and cardiovascular and cerebrovascular events (CCE) in maintenance hemodialysis (MHD) patients. METHODS One hundred eleven patients with MHD ≥3 months were included in this study. The general data, clinical features, hematological data, and medication history of the patients were recorded. Eighty-five cases were examined by vascular color Doppler ultrasound, cardiac color Doppler ultrasound, lateral lumbar radiography, and coronary artery calcification score. The patients were followed up for a median time of 45 months. The primary endpoint was CCE or death from a vascular event, and the role of sortilin in this process was analyzed. RESULTS Among 85 MHD patients, 51 cases (60.00%) had different degrees of CAC. There were significant differences in diabetes, dialysis time, serum phosphorus, calcium-phosphorus product, medical history of phosphate binders, sortilin, and carotid artery plaque between 4 different degrees of calcification groups (p < 0.05). Logistic regression analysis showed that diabetes (OR = 5.475; 95% CI: 1.794-16.71, p = 0.003), calcium-phosphorus product (OR = 2.953; 95% CI: 1.198-7.279, p = 0.019), and sortilin (OR = 1.475 per 100 pg/mL; 95% CI: 1.170-1.858, p = 0.001) were independent risk factors for CAC. During the follow-up, 28 cases of 111 patients (25.23%) suffered from CCE. There were significant differences in CCE between mild, moderate, and severe CAC groups and noncalcification groups (p < 0.05). Cox regression analysis showed that diabetes mellitus (HR 3.424; 95% CI: 1.348-8.701, p = 0.010), CAC (HR 5.210; 95% CI: 1.093-24.83, p = 0.038), and serum sortilin (HR = 8.588; 95% CI: 1.919-38.43, p = 0.005) were independent risk factors for CCE. Besides, we proposed a cutoff value of 418 pg/mL for serum sortilin level, which was able to predict the occurrence of CCE with 75.0% sensitivity and 71.9% specificity. The area under the curve was 0.778 (95% CI: 0.673-0.883). CONCLUSION Sortilin is newly found to be independently associated with CAC and CCE in MHD patients.
Collapse
Affiliation(s)
- Jie Xu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Chan-Juan Shen
- Department of Hematology, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| | - Joshua D. Ooi
- Centre for Inflammatory Diseases, Monash University, Clayton, Victoria, Australia
| | - Yang-Shuo Tang
- Department of Ultrasonography, Xiangya Hospital, Central South University, Changsha, China
| | - Zhou Xiao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiong-Jing Yuan
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Zhong
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiao-Ling Zhou
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Özalp M, Akbaş H, Kızılırmak R, Albayrak M, Yaman H, Akbaş M, Aran T, Osmanağaoğlu MA. Maternal serum sortilin levels in gestational diabetes mellitus. Gynecol Endocrinol 2021; 37:941-944. [PMID: 34470550 DOI: 10.1080/09513590.2021.1972966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE To evaluate the serum sortilin levels in pregnant women with gestational diabetes mellitus (GDM) and to compare the results with normoglycemic healthy pregnant women and observe the relationship between serum sortilin levels and biochemical parameters. METHODS This case-control study consisted of 55 pregnancies with GDM and 32 healthy singleton pregnancies matched for maternal and gestational age. The maternal serum levels of sortilin were measured with enzyme-linked immunosorbent assay and compared between groups. RESULTS Sortilin levels were significantly higher in GDM group (5.52 ± 3.19 ng/mL versus 3.30 ± 1.47 ng/mL, p < .001). Pairwise comparisons showed that both the diet group and insulin group had significantly higher serum sortilin levels than the control group (p: .022 and p: .002, respectively). Maternal serum sortilin levels were significantly positively correlated with serum insulin levels, homeostasis model assessment of insulin resistance (HOMA-IR) and glycated hemoglobin values (r: 0.277, p: .012, r: 0.306, p: .005, r: 0.267, p: .012, respectively). CONCLUSIONS Serum sortilin levels were significantly higher in women with GDM compared to the control group and were positively correlated with insulin, HOMA-IR and glycated hemoglobin levels. The present results point to the role of sortilin in glucose homeostasis and suggest that it may be a novel marker for GDM.
Collapse
Affiliation(s)
- Miraç Özalp
- Department of Perinatology, Karadeniz Technical University School of Medicine, Trabzon, Turkey
| | - Hümeyra Akbaş
- Department of Perinatology, Karadeniz Technical University School of Medicine, Trabzon, Turkey
| | - Rukiye Kızılırmak
- Department of Perinatology, Karadeniz Technical University School of Medicine, Trabzon, Turkey
| | - Mehmet Albayrak
- Department of Perinatology, Karadeniz Technical University School of Medicine, Trabzon, Turkey
| | - Hüseyin Yaman
- Department of Medical Biochemistry, Karadeniz Technical University School of Medicine, Trabzon, Turkey
| | - Murat Akbaş
- Department of Perinatology, Manisa City Hospital, Manisa, Turkey
| | - Turhan Aran
- Department of Perinatology, Karadeniz Technical University School of Medicine, Trabzon, Turkey
| | | |
Collapse
|
12
|
Nicoli CD, Carson AP, Plante TB, Leann Long D, McClure LA, Schulte J, Cushman M. Pro-Neurotensin/Neuromedin N and Risk of Incident Metabolic Syndrome and Diabetes Mellitus in the REGARDS Cohort. J Clin Endocrinol Metab 2021; 106:e3483-e3494. [PMID: 34013344 PMCID: PMC8372646 DOI: 10.1210/clinem/dgab355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT The peptide neurotensin is implicated in insulin resistance, diabetes mellitus (DM), and cardiovascular disease. OBJECTIVE We studied the association of neurotensin's stable precursor, pro-neurotensin/neuromedin N (pro-NT/NMN) with incident metabolic syndrome (MetS) and DM. METHODS We included 3772 participants from the REasons for Geographic and Racial Differences in Stroke (REGARDS) study who completed the baseline exam (2003-2007), the follow-up exam (2013-2016), and had pro-NT/NMN measured by immunoassay. Weighted logistic regression models were fitted to incident DM, incident MetS, and each MetS component, separately, incorporating demographics, metabolic risk factors, homeostasis model of insulin resistance (HOMA-IR), and diet scores. Incident MetS was defined by 3 or more harmonized criteria at follow-up in those with fewer than 3 at baseline. Incident DM was defined by use of hypoglycemic drugs/insulin, fasting glucose 126 mg/dL or greater, or random glucose 200 mg/dL or greater in those without these at baseline. RESULTS Median (IQR) plasma pro-NT/NMN was 160 pmol/L (118-218 pmol/L). A total of 564 (of 2770 without baseline MetS) participants developed MetS, and 407 (of 3030 without baseline DM) developed DM. Per SD higher log-pro-NT/NMN, the demographic-adjusted odds ratio (OR) and 95% CI of incident MetS was 1.22 (1.11-1.35), 1.16 (1.00-1.35) for incident low high-density lipoprotein (HDL), and 1.25 (1.11-1.40) for incident dysglycemia. The association of pro-NT/NMN with MetS was attenuated in the model adding HOMA-IR (OR per SD log-pro-NT/NMN 1.14; 95% CI, 1.00-1.30). There was no association with incident DM (OR per SD log-pro-NT/NMN 1.06; 95% CI, 0.94-1.19). CONCLUSION Pro-NT/NMN was associated with MetS and 2 components, dysglycemia and low HDL, likely explained by insulin resistance.
Collapse
Affiliation(s)
- Charles D Nicoli
- University of Vermont Larner College of Medicine, Burlington, Vermont 05446, USA
- Correspondence: Charles D. Nicoli, MD, University of Vermont Larner College of Medicine, Laboratory for Clinical Biochemistry Research, 360 S Park Dr, Colchester, VT 05446, USA.
| | - April P Carson
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama 35233, USA
| | - Timothy B Plante
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont 05405, USA
| | - D Leann Long
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama 35233, USA
| | - Leslie A McClure
- Department of Epidemiology & Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | | | - Mary Cushman
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont 05405, USA
- Department of Pathology and Laboratory Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont 05446, USA
| |
Collapse
|
13
|
Møller PL, Rohde PD, Winther S, Breining P, Nissen L, Nykjaer A, Bøttcher M, Nyegaard M, Kjolby M. Sortilin as a Biomarker for Cardiovascular Disease Revisited. Front Cardiovasc Med 2021; 8:652584. [PMID: 33937362 PMCID: PMC8085299 DOI: 10.3389/fcvm.2021.652584] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Genetic variants in the genomic region containing SORT1 (encoding the protein sortilin) are strongly associated with cholesterol levels and the risk of coronary artery disease (CAD). Circulating sortilin has therefore been proposed as a potential biomarker for cardiovascular disease. Multiple studies have reported association between plasma sortilin levels and cardiovascular outcomes. However, the findings are not consistent across studies, and most studies have small sample sizes. The aim of this study was to evaluate sortilin as a biomarker for CAD in a well-characterized cohort with symptoms suggestive of CAD. In total, we enrolled 1,173 patients with suspected stable CAD referred to coronary computed tomography angiography. Sortilin was measured in plasma using two different technologies for quantifying circulating sortilin: a custom-made enzyme-linked immunosorbent assay (ELISA) and OLINK Cardiovascular Panel II. We found a relative poor correlation between the two methods (correlation coefficient = 0.21). In addition, genotyping and whole-genome sequencing were performed on all patients. By whole-genome regression analysis of sortilin levels measured with ELISA and OLINK, two independent cis protein quantitative trait loci (pQTL) on chromosome 1p13.3 were identified, with one of them being a well-established risk locus for CAD. Incorporating rare genetic variants from whole-genome sequence data did not identify any additional pQTLs for plasma sortilin. None of the traditional CAD risk factors, such as sex, age, smoking, and statin use, were associated with plasma sortilin levels. Furthermore, there was no association between circulating sortilin levels and coronary artery calcium score (CACS) or disease severity. Sortilin did not improve discrimination of obstructive CAD, when added to a clinical pretest probability (PTP) model for CAD. Overall, our results indicate that studies using different methodologies for measuring circulating sortilin should be compared with caution. In conclusion, the well-known SORT1 risk locus for CAD is linked to lower sortilin levels in circulation, measured with ELISA; however, the effect sizes are too small for sortilin to be a useful biomarker for CAD in a clinical setting of low- to intermediate-risk chest-pain patients.
Collapse
Affiliation(s)
| | - Palle D. Rohde
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Simon Winther
- Department of Cardiology, Gødstrup Hospital, NIDO, Herning, Denmark
| | - Peter Breining
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- PROMEMO and DANDRITE, Aarhus University, Aarhus, Denmark
| | - Louise Nissen
- Department of Cardiology, Gødstrup Hospital, NIDO, Herning, Denmark
| | - Anders Nykjaer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- PROMEMO and DANDRITE, Aarhus University, Aarhus, Denmark
| | - Morten Bøttcher
- Department of Cardiology, Gødstrup Hospital, NIDO, Herning, Denmark
| | - Mette Nyegaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Mads Kjolby
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- PROMEMO and DANDRITE, Aarhus University, Aarhus, Denmark
- Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
14
|
Daziano G, Blondeau N, Béraud-Dufour S, Abderrahmani A, Rovère C, Heurteaux C, Mazella J, Lebrun P, Coppola T. Sortilin-derived peptides promote pancreatic beta-cell survival through CREB signaling pathway. Pharmacol Res 2021; 167:105539. [PMID: 33737242 DOI: 10.1016/j.phrs.2021.105539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 12/25/2022]
Abstract
Deterioration of insulin secretion and pancreatic beta-cell mass by inflammatory attacks is one of the main pathophysiological features of type 2 diabetes (T2D). Therefore, preserving beta-cell mass and stimulating insulin secretion only in response to glucose for avoiding the hypoglycemia risks, are the most state-of-the-art option for the treatment of T2D. In this study we tested two correlated hypothesis that 1/ the endogenous peptide released from sortilin, known as PE, that stimulates insulin secretion only in response to glucose, protects beta-cells against death induced by cytokines, and 2/ Spadin and Mini-Spadin, two synthetic peptides derived from PE, that mimic the effects of PE in insulin secretion, also provide beneficial effect on beta-cells survival. We show that PE and its derivatives by inducing a rise of intracellular calcium concentration by depolarizing the membrane protect beta-cells against death induced by Interleukin-1β. Using biochemical, confocal imaging and cell biology techniques, we reveal that the protective effects of PE and its derivatives rely on the activation of the CaM-Kinase pathway, and on the phosphorylation and activation of the transcription factor CREB. In addition, Mini-Spadin promotes beta-cell proliferation, suggesting its possible regenerative effect. This study highlights new possible roles of PE in pancreatic beta-cell survival and its derivatives as pharmacological tools against diabetes.
Collapse
Affiliation(s)
- Guillaume Daziano
- Université Côte d'Azur, CNRS, IPMC, Sophia Antipolis, F-06560, France
| | - Nicolas Blondeau
- Université Côte d'Azur, CNRS, IPMC, Sophia Antipolis, F-06560, France
| | | | - Amar Abderrahmani
- Université Lille, CNRS, Centrale Lille, Université Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France
| | - Carole Rovère
- Université Côte d'Azur, CNRS, IPMC, Sophia Antipolis, F-06560, France
| | | | - Jean Mazella
- Université Côte d'Azur, CNRS, IPMC, Sophia Antipolis, F-06560, France
| | - Patricia Lebrun
- Université Côte d'Azur, CNRS, IPMC, Sophia Antipolis, F-06560, France.
| | - Thierry Coppola
- Université Côte d'Azur, CNRS, IPMC, Sophia Antipolis, F-06560, France.
| |
Collapse
|
15
|
Ghaemimanesh F, Mehravar M, Milani S, Poursani EM, Saliminejad K. The multifaceted role of sortilin/neurotensin receptor 3 in human cancer development. J Cell Physiol 2021; 236:6271-6281. [PMID: 33634506 DOI: 10.1002/jcp.30344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/20/2021] [Accepted: 02/12/2021] [Indexed: 12/16/2022]
Abstract
Sortilin (also known as neurotensin receptor 3) is a multitasking protein implicated in numerous pathophysiological processes, including cancer development, cardiovascular impairment, Alzheimer-type dementia, and depression. Although the definitive role of sortilin in human solid and hematological malignancies has been evidenced, few articles reviewed the task. The aim of the current review is to unravel the mechanisms by which sortilin controls oncogenicity and cancer progression; and also to summarize and discuss the original data obtained from international research laboratories on this topic. Questions on how sortilin is involving in the impairment of cell junctions, in exosomes composition and release, as well as in the regulation of epidermal growth factor receptor trafficking are also responded. In addition, we provide a special focus on the regulatory role of sortilin in signal transduction by either neurotrophins or neurotensin in normal and malignant cells. The relevance of sortilin with normal and cancer stem cells is also discussed. The last section provides a general overview of sortilin applications as a diagnostic and prognostic biomarker in the context of cancer detection. Finally, we comment on the future research aspects in which the field of cancer diagnosis, prognosis, and therapy might be developed.
Collapse
Affiliation(s)
- Fatemeh Ghaemimanesh
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Majid Mehravar
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Saeideh Milani
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Ensieh M Poursani
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kioomars Saliminejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
16
|
Identification of Sortilin Alternatively Spliced Variants in Mouse 3T3L1 Adipocytes. Int J Mol Sci 2021; 22:ijms22030983. [PMID: 33498179 PMCID: PMC7863940 DOI: 10.3390/ijms22030983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/06/2021] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus is a metabolic disorder defined by systemic insulin resistance. Insulin resistance in adipocytes, an important regulator of glucose metabolism, results in impaired glucose uptake. The trafficking protein, sortilin, regulates major glucose transporter 4 (Glut4) movement, thereby promoting glucose uptake in adipocytes. Here, we demonstrate the presence of an alternatively spliced sortilin variant (Sort17b), whose levels increase with insulin resistance in mouse 3T3L1 adipocytes. Using a splicing minigene, we show that inclusion of alternative exon 17b results in the expression of Sort17b splice variant. Bioinformatic analysis indicated a novel intrinsic disorder region (IDR) encoded by exon 17b of Sort17b. Root mean square deviation (RMSD) and root mean square fluctuation (RMSF) measurements using molecular dynamics demonstrated increased flexibility of the protein backbone within the IDR. Using protein–protein docking and co-immunoprecipitation assays, we show robust binding of Glut4 to Sort17b. Further, results demonstrate that over-expression of Sort17b correlates with reduced Glut4 translocation and decreased glucose uptake in adipocytes. The study demonstrates that insulin resistance in 3T3L1 adipocytes promotes expression of a novel sortilin splice variant with thus far unknown implications in glucose metabolism. This knowledge may be used to develop therapeutics targeting sortilin variants in the management of type 2 diabetes and metabolic syndrome.
Collapse
|
17
|
Miyakawa S, Sakuma H, Warude D, Asanuma S, Arimura N, Yoshihara T, Tavares D, Hata A, Ida K, Hori Y, Okuzono Y, Yamamoto S, Iida K, Shimizu H, Kondo S, Sato S. Anti-sortilin1 Antibody Up-Regulates Progranulin via Sortilin1 Down-Regulation. Front Neurosci 2020; 14:586107. [PMID: 33384578 PMCID: PMC7770147 DOI: 10.3389/fnins.2020.586107] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
Progranulin (PGRN) haploinsufficiency associated with loss-of-function mutations in the granulin gene causes frontotemporal dementia (FTD). This suggests that increasing PGRN levels could have promising therapeutic implications for patients carrying GRN mutations. In this study, we explored the therapeutic potential of sortilin1 (SORT1), a clearance receptor of PGRN, by generating and characterizing monoclonal antibodies against SORT1. Anti-SORT1 monoclonal antibodies were generated by immunizing Sort1 knockout mice with SORT1 protein. The antibodies were classified into 7 epitope bins based on their competitive binding to the SORT1 protein and further defined by epitope bin-dependent characteristics, including SORT1-PGRN blocking, SORT1 down-regulation, and binding to human and mouse SORT1. We identified a positive correlation between PGRN up-regulation and SORT1 down-regulation. Furthermore, we also characterized K1-67 antibody via SORT1 down-regulation and binding to mouse SORT1 in vivo and confirmed that K1-67 significantly up-regulated PGRN levels in plasma and brain interstitial fluid of mice. These data indicate that SORT1 down-regulation is a key mechanism in increasing PGRN levels via anti-SORT1 antibodies and suggest that SORT1 is a potential target to correct PGRN reduction, such as that in patients with FTD caused by GRN mutation.
Collapse
Affiliation(s)
- Shuuichi Miyakawa
- Immunology Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Hiroyuki Sakuma
- Immunology Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Dnyaneshwar Warude
- Immunology Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Satomi Asanuma
- Immunology Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Naoto Arimura
- Immunology Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Tomoki Yoshihara
- Global Biologics Research, Takeda Pharmaceutical Company Limited, Cambridge, MA, United States
| | - Daniel Tavares
- Global Biologics Research, Takeda Pharmaceutical Company Limited, Cambridge, MA, United States
| | - Akito Hata
- Global Biologics Research, Takeda Pharmaceutical Company Limited, Cambridge, MA, United States
| | - Koh Ida
- Global Biologics Research, Takeda Pharmaceutical Company Limited, Cambridge, MA, United States
| | - Yuri Hori
- Immunology Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Yuumi Okuzono
- Immunology Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Syunsuke Yamamoto
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Koichi Iida
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Hisao Shimizu
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Shinichi Kondo
- Immunology Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Shuji Sato
- Immunology Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| |
Collapse
|
18
|
Al-Yozbaki M, Acha-Sagredo A, George A, Liloglou T, Wilson CM. Balancing neurotrophin pathway and sortilin function: Its role in human disease. Biochim Biophys Acta Rev Cancer 2020; 1874:188429. [DOI: 10.1016/j.bbcan.2020.188429] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/12/2020] [Accepted: 09/02/2020] [Indexed: 01/03/2023]
|
19
|
Gonçalves NP, Yan Y, Ulrichsen M, Venø MT, Poulsen ET, Enghild JJ, Kjems J, Vægter CB. Modulation of Small RNA Signatures in Schwann-Cell-Derived Extracellular Vesicles by the p75 Neurotrophin Receptor and Sortilin. Biomedicines 2020; 8:E450. [PMID: 33114403 PMCID: PMC7694014 DOI: 10.3390/biomedicines8110450] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Schwann cells (SCs) are the main glial cells of the peripheral nervous system (PNS) and are known to be involved in various pathophysiological processes, such as diabetic neuropathy and nerve regeneration, through neurotrophin signaling. Such glial trophic support to axons, as well as neuronal survival/death signaling, has previously been linked to the p75 neurotrophin receptor (p75NTR) and its co-receptor Sortilin. Recently, SC-derived extracellular vesicles (EVs) were shown to be important for axon growth and nerve regeneration, but cargo of these glial cell-derived EVs has not yet been well-characterized. In this study, we aimed to characterize signatures of small RNAs in EVs derived from wild-type (WT) SCs and define differentially expressed small RNAs in EVs derived from SCs with genetic deletions of p75NTR (Ngfr-/-) or Sortilin (Sort1-/-). Using RNA sequencing, we identified a total of 366 miRNAs in EVs derived from WT SCs of which the most highly expressed are linked to the regulation of axonogenesis, axon guidance and axon extension, suggesting an involvement of SC EVs in axonal homeostasis. Signaling of SC EVs to non-neuronal cells was also suggested by the presence of several miRNAs important for regulation of the endothelial cell apoptotic process. Ablated p75NTR or sortilin expression in SCs translated into a set of differentially regulated tRNAs and miRNAs, with impact in autophagy and several cellular signaling pathways such as the phosphatidylinositol signaling system. With this work, we identified the global expression profile of small RNAs present in SC-derived EVs and provided evidence for a regulatory function of these vesicles on the homeostasis of other cell types of the PNS. Differentially identified miRNAs can pave the way to a better understanding of p75NTR and sortilin roles regarding PNS homeostasis and disease.
Collapse
Affiliation(s)
- Nádia P. Gonçalves
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (M.U.); (C.B.V.)
| | - Yan Yan
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, 8000 Aarhus, Denmark; (Y.Y.); (M.T.V.); (J.K.)
- Omiics ApS, 8000 Aarhus, Denmark
| | - Maj Ulrichsen
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (M.U.); (C.B.V.)
| | - Morten T. Venø
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, 8000 Aarhus, Denmark; (Y.Y.); (M.T.V.); (J.K.)
- Omiics ApS, 8000 Aarhus, Denmark
| | - Ebbe T. Poulsen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (E.T.P.); (J.J.E.)
| | - Jan J. Enghild
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (E.T.P.); (J.J.E.)
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, 8000 Aarhus, Denmark; (Y.Y.); (M.T.V.); (J.K.)
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (E.T.P.); (J.J.E.)
| | - Christian B. Vægter
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (M.U.); (C.B.V.)
| |
Collapse
|
20
|
Gao F, Griffin N, Faulkner S, Li X, King SJ, Jobling P, Denham JW, Jiang CC, Hondermarck H. The Membrane Protein Sortilin Can Be Targeted to Inhibit Pancreatic Cancer Cell Invasion. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1931-1942. [PMID: 32526166 DOI: 10.1016/j.ajpath.2020.05.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/03/2020] [Accepted: 05/26/2020] [Indexed: 12/16/2022]
Abstract
Pancreatic cancer has a dismal prognosis, and there is no targeted therapy against this malignancy. The neuronal membrane protein sortilin is emerging as a regulator of cancer cell development, but its expression and impact in pancreatic cancer are unknown. This study found that sortilin expression was higher in pancreatic cell lines versus normal pancreatic ductal epithelial cells, as shown by Western blot analysis and mass spectrometry. The increased sortilin level in pancreatic cancer cells was confirmed by immunohistochemistry in a series of 99 human pancreatic adenocarcinomas versus 48 normal pancreatic tissues (P = 0.0014). Sortilin inhibition by siRNA and the pharmacologic inhibitor AF38469 strongly reduced the adhesion and invasion of pancreatic cancer cells without affecting cell survival and viability. Sortilin inhibition also decreased the phosphorylation of the focal adhesion kinase in Tyr925. Together, these data show that sortilin contributes to pancreatic cancer invasion and could eventually be targeted in therapy.
Collapse
Affiliation(s)
- Fangfang Gao
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, Australia; Hunter Medical Research Institute, University of Newcastle, New Lambton, New South Wales, Australia
| | - Nathan Griffin
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, Australia; Hunter Medical Research Institute, University of Newcastle, New Lambton, New South Wales, Australia
| | - Sam Faulkner
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, Australia; Hunter Medical Research Institute, University of Newcastle, New Lambton, New South Wales, Australia
| | - Xiang Li
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, Australia; Hunter Medical Research Institute, University of Newcastle, New Lambton, New South Wales, Australia
| | - Simon J King
- Hunter Medical Research Institute, University of Newcastle, New Lambton, New South Wales, Australia
| | - Phillip Jobling
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, Australia; Hunter Medical Research Institute, University of Newcastle, New Lambton, New South Wales, Australia
| | - Jim W Denham
- Hunter Medical Research Institute, University of Newcastle, New Lambton, New South Wales, Australia
| | - Chen Chen Jiang
- School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, Australia; Hunter Medical Research Institute, University of Newcastle, New Lambton, New South Wales, Australia
| | - Hubert Hondermarck
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, Australia; Hunter Medical Research Institute, University of Newcastle, New Lambton, New South Wales, Australia.
| |
Collapse
|