1
|
Sagan B, Czerny B, Stasiłowicz-Krzemień A, Szulc P, Skomra U, Karpiński TM, Lisiecka J, Kamiński A, Kryszak A, Zimak-Krótkopad O, Cielecka-Piontek J. Anticholinesterase Activity and Bioactive Compound Profiling of Six Hop ( Humulus lupulus L.) Varieties. Foods 2024; 13:4155. [PMID: 39767097 PMCID: PMC11675283 DOI: 10.3390/foods13244155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Hops (Humulus lupulus L.) are widely recognized for their use in brewing, but they also possess significant pharmacological properties due to their rich bioactive compounds, with many varieties exhibiting diverse characteristics. This study investigates the chemical composition and biological activities of extracts from six hop varieties, focusing on quantifying xanthohumol and lupulone using High-Performance Liquid Chromatography (HPLC) and Total Phenolic Content (TPC) analysis. The hop varieties demonstrated significant variability in bioactive compound concentrations, with Aurora showing the highest xanthohumol (0.665 mg/g) and Zwiegniowski the highest lupulone (9.228 mg/g). TPC analysis revealed Aurora also had the highest phenolic content (22.47 mg GAE/g). Antioxidant activities were evaluated using DPPH, ABTS, CUPRAC, and FRAP assays, with Aurora and Oregon Fuggle displaying the most potent capacities. Aurora, in particular, showed the highest activity across multiple assays, including significant acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and tyrosinase inhibition, with IC50 values of 24.39 mg/mL, 20.38 mg/mL, and 9.37 mg/mL, respectively. The chelating activity was also assessed, with Apolon demonstrating the strongest metal ion binding capacity (IC50 = 1.04 mg/mL). Additionally, Aurora exhibited the most effective hyaluronidase inhibition (IC50 = 10.27 mg/mL), highlighting its potential for anti-inflammatory applications. The results underscore the influence of genetic and environmental factors on the bioactive compound profiles of hop varieties and their biological activity offering promising avenues for pharmaceutical and nutraceutical applications. However, further studies are needed to fully understand the potential interactions between hop cones components.
Collapse
Affiliation(s)
- Bartłomiej Sagan
- Department of Neurosurgery and Pediatric Neurosurgery, Pomeranian Medical University Hospital No. 1 in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Bogusław Czerny
- Department of General Pharmacology and Pharmacoeconomics, Pomeranian Medical University in Szczecin, Żołnierska 48, 70-204 Szczecin, Poland
| | - Anna Stasiłowicz-Krzemień
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.); (J.C.-P.)
| | - Piotr Szulc
- Department of Agronomy, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland;
| | - Urszula Skomra
- Institute of Soil Science and Plant Cultivation State Research Institute, Department of Biotechnology and Plant Breeding, Czartoryskich 8 Str., 24-100 Puławy, Poland;
| | - Tomasz M. Karpiński
- Department of Medical Microbiology, Poznań University of Medical Sciences, Rokietnicka 10, 60-806 Poznań, Poland;
| | - Jolanta Lisiecka
- Department of Vegetable Crops, Faculty of Agronomy, Horticulture and Bioengineering, Poznan University of Life Sciences, Dabrowskiego 159, 60-594 Poznan, Poland;
| | - Adam Kamiński
- Department of Orthopedics and Traumatology, Pomeranian Medical University Hospital No. 1, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Aleksandra Kryszak
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland; (A.K.); (O.Z.-K.)
| | - Oskar Zimak-Krótkopad
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland; (A.K.); (O.Z.-K.)
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.); (J.C.-P.)
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland; (A.K.); (O.Z.-K.)
| |
Collapse
|
2
|
Laurent AJ, Bindslev N, Vukojević V, Terenius L. Iso-α-acids in Nonalcoholic and Alcoholic Beer Stimulate Growth of Neuron-like SH-SY5Y Cells and Neuroepithelial Stem Cells. ACS BIO & MED CHEM AU 2021; 1:11-20. [PMID: 37101982 PMCID: PMC10125168 DOI: 10.1021/acsbiomedchemau.1c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With the increasing popularity of nonalcoholic beer, the association between beer drinking and alcohol intake is lost. In the present study, we show that nonalcoholic beer can stimulate the expansion of neuron-like cell lines and neuroepithelial stem cells in culture, yielding an effect comparable to that of alcoholic beer. One ingredient in beer is hops, which is derived from the flower of hop plants. The female flower contains humulones, which are transformed into iso-α-acids during wort boiling and give beer its bitter taste. In this study, we tested the effects of these iso-α-acids and/or alcohol on the proliferation of neuron-like cells and neuroepithelial stem cells in culture. Iso-α-acids enhanced cell expansion, showing a bimodal dose-response curve with peaks around 2-30 nM and 2-5 μM, of which nanomolar concentrations are relevant in beer drinking. The more lipophilic trans-iso-α-acids, found to a greater extent in beer foam, are even more potent. Our results indicate that iso-α-acids, acting via peroxisome proliferator-activated receptors could be responsible for the observed effects. Altogether, our results indicate that nonalcoholic beer with ingredients such as iso-α-acids stimulate the proliferation of neuroepithelial stem cells.
Collapse
Affiliation(s)
- Agneta J. Laurent
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Niels Bindslev
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Vladana Vukojević
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Lars Terenius
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| |
Collapse
|
3
|
Redox and Anti-Inflammatory Properties from Hop Components in Beer-Related to Neuroprotection. Nutrients 2021; 13:nu13062000. [PMID: 34200665 PMCID: PMC8226943 DOI: 10.3390/nu13062000] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
Beer is a fermented beverage widely consumed worldwide with high nutritional and biological value due to its bioactive components. It has been described that both alcoholic and non-alcoholic beer have several nutrients derived from their ingredients including vitamins, minerals, proteins, carbohydrates, and antioxidants that make beer a potential functional supplement. Some of these compounds possess redox, anti-inflammatory and anticarcinogenic properties making the benefits of moderate beer consumption an attractive way to improve human health. Specifically, the hop cones used for beer brewing provide essential oils, bitter acids and flavonoids that are potent antioxidants and immune response modulators. This review focuses on the redox and anti-inflammatory properties of hop derivatives and summarizes the current knowledge of their neuroprotective effects.
Collapse
|
4
|
Ano Y, Ohya R, Yamazaki T, Takahashi C, Taniguchi Y, Kondo K, Takashima A, Uchida K, Nakayama H. Hop bitter acids containing a β-carbonyl moiety prevent inflammation-induced cognitive decline via the vagus nerve and noradrenergic system. Sci Rep 2020; 10:20028. [PMID: 33208787 PMCID: PMC7674441 DOI: 10.1038/s41598-020-77034-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/03/2020] [Indexed: 12/19/2022] Open
Abstract
The prevention of age-related cognitive decline and dementia is becoming a high priority because of the rapid growth of aging populations. We have previously shown that hop bitter acids such as iso-α-acids (IAAs) and matured hop bitter acids (MHBAs) activate the vagus nerve and improve memory impairment. Moreover, supplements with MHBAs were shown to improve memory retrieval in older adults. However, the underlying mechanisms have not been entirely elucidated. We aimed to investigate the effects of MHBAs and the common β-tricarbonyl moiety on memory impairment induced by the activation of microglia and the loss of the noradrenergic system. MHBAs and a model compound with β-tricarbonyl moiety were administered to LPS-inoculated mice and 5 × FAD Alzheimer’s disease (AD) model mice, following the evaluation in behavioral tests and microglial activation. To evaluate the association of noradrenaline with MHBAs effects, mice treated with N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4), a noradrenergic neurotoxin that selectively damages noradrenergic projections from the locus coeruleus, were subjected to the behavioral evaluation. MHBAs reduced brain inflammation and improved LPS-induced memory impairment. A model compound possessing the β-tricarbonyl moiety improved the LPS-induced memory impairment and neuronal loss via the vagus nerve. Additionally, the protective effects of MHBAs on memory impairment were attenuated by noradrenaline depletion using DSP-4. MHBAs suppressed the activation of microglia and improved the memory impairment in 5 × FAD mice, which was also attenuated by noradrenaline depletion. Treatment with MHBAs increased cholecystokinin production from the intestinal cells. Generally, cholecystokinin activates the vagal nerve, which stimulate the noradrenergic neuron in the locus ceruleus. Taken together, our results reveal that food ingredients such as hop bitter acids with a β-tricarbonyl moiety suppress microglial activation and improve memory impairment induced by inflammation or AD pathology via the activation of the gut-brain axis and noradrenergic system. Supplements with hop bitter acids, including MHBAs, might be a novel approach for the prevention of cognitive decline and dementia.
Collapse
Affiliation(s)
- Yasuhisa Ano
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo, 113-8657, Japan. .,Kirin Central Research Institute, Kirin Holdings Company Ltd, 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa, 236-0004, Japan.
| | - Rena Ohya
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo, 113-8657, Japan.,Kirin Central Research Institute, Kirin Holdings Company Ltd, 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa, 236-0004, Japan
| | - Takahiro Yamazaki
- Kirin Central Research Institute, Kirin Holdings Company Ltd, 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa, 236-0004, Japan
| | - Chika Takahashi
- Kirin Central Research Institute, Kirin Holdings Company Ltd, 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa, 236-0004, Japan
| | - Yoshimasa Taniguchi
- Kirin Central Research Institute, Kirin Holdings Company Ltd, 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa, 236-0004, Japan
| | - Keiji Kondo
- Kirin Central Research Institute, Kirin Holdings Company Ltd, 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa, 236-0004, Japan
| | | | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo, 113-8657, Japan
| | - Hiroyuki Nakayama
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo, 113-8657, Japan
| |
Collapse
|
5
|
Ayabe T, Fukuda T, Ano Y. Improving Effects of Hop-Derived Bitter Acids in Beer on Cognitive Functions: A New Strategy for Vagus Nerve Stimulation. Biomolecules 2020; 10:E131. [PMID: 31940997 PMCID: PMC7022854 DOI: 10.3390/biom10010131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/22/2022] Open
Abstract
Dementia and cognitive decline are global public health problems. Moderate consumption of alcoholic beverages reduces the risk of dementia and cognitive decline. For instance, resveratrol, a polyphenolic compound found in red wine, has been well studied and reported to prevent dementia and cognitive decline. However, the effects of specific beer constituents on cognitive function have not been investigated in as much detail. In the present review, we discuss the latest reports on the effects and underlying mechanisms of hop-derived bitter acids found in beer. Iso-α-acids (IAAs), the main bitter components of beer, enhance hippocampus-dependent memory and prefrontal cortex-associated cognitive function via dopamine neurotransmission activation. Matured hop bitter acids (MHBAs), oxidized components with β-carbonyl moieties derived from aged hops, also enhance memory functions via norepinephrine neurotransmission-mediated mechanisms. Furthermore, the effects of both IAAs and MHBAs are attenuated by vagotomy, suggesting that these bitter acids enhance cognitive function via vagus nerve stimulation. Moreover, supplementation with IAAs attenuates neuroinflammation and cognitive impairments in various rodent models of neurodegeneration including Alzheimer's disease. Daily supplementation with hop-derived bitter acids (e.g., 35 mg/day of MHBAs) may be a safe and effective strategy to stimulate the vagus nerve and thus enhance cognitive function.
Collapse
Affiliation(s)
- Tatsuhiro Ayabe
- Research Laboratories for Health Science & Food Technologies, Kirin Company Ltd., 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa 236-0004, Japan; (T.F.); (Y.A.)
| | | | | |
Collapse
|
6
|
Kita M, Yoshida S, Kondo K, Yamakawa Y, Ano Y. Effects of iso-α-acids, the hop-derived bitter components in beer, on the MRI-based Brain Healthcare Quotient in healthy middle-aged to older adults. Neuropsychopharmacol Rep 2019; 39:273-278. [PMID: 31587526 PMCID: PMC7292307 DOI: 10.1002/npr2.12077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/24/2022] Open
Abstract
Aim Neurological disorders are a major public health issue worldwide and are often associated with structural changes in the brain. We have previously demonstrated that iso‐α‐acids (IAAs), the hop‐derived bitter components in beer, improve memory impairment in aged and Alzheimer's disease mouse models. In this study, we evaluated the effects of IAA intake on the brain structure in healthy middle‐aged to older adults. This study was conducted under the Impulsing Paradigm Change through Disruptive Technologies Program (ImPACT) study launched by the Cabinet office of Japan. Method This study employed an open‐labeled, single‐arm, before and after design. Healthy middle‐aged to older adults consumed a beverage containing IAAs (3 mg/190 mL) for 4 weeks.Recently developed magnetic resonance imaging‐based brain health indicators were used to evaluate the following brain conditions: the Brain Healthcare Quotient (BHQ) based on gray matter volume (GM‐BHQ) and white matter fractional anisotropy (FA‐BHQ). Results In total, 25 subjects were recruited, and GM‐BHQ and FA‐BHQ were measured before and after intervention. In all subjects, no significant differences in GM‐BHQ and FA‐BHQ were observed. In subjects aged ≥ 60 years (mean 54.5; standard deviation 3.9) (n = 8), GM‐BHQ was significantly increased 4 weeks after intervention compared with that before intervention. Conclusion Intake of beverages containing IAAs might affect brain aging, particularly in healthy older adults, which may prevent the development of neurological disorders. Future studies employing more robust designs can elucidate the effects of IAAs on GM‐BHQ and cognitive functions. This is the first clinical trial evaluating the effects of intake of bitter component of beer, iso‐alpha‐acid, on brain structure. The brain structure before and after intervention was measured by recently developed magnetic resonance imaging‐based method. The gray matter volume of older adults was improved by the intake of iso‐alpha‐acid.![]()
Collapse
Affiliation(s)
- Masahiro Kita
- Research Laboratories for Health Science & Food Technologies, Kirin Company Limited, Yokohama, Japan
| | - Satoshi Yoshida
- Research Laboratories for Health Science & Food Technologies, Kirin Company Limited, Yokohama, Japan
| | - Keiji Kondo
- Research Laboratories for Health Science & Food Technologies, Kirin Company Limited, Yokohama, Japan
| | - Yoshinori Yamakawa
- ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan), Tokyo, Japan
| | - Yasuhisa Ano
- Research Laboratories for Health Science & Food Technologies, Kirin Company Limited, Yokohama, Japan
| |
Collapse
|
7
|
Sánchez-Muniz FJ, Macho-González A, Garcimartín A, Santos-López JA, Benedí J, Bastida S, González-Muñoz MJ. The Nutritional Components of Beer and Its Relationship with Neurodegeneration and Alzheimer's Disease. Nutrients 2019; 11:nu11071558. [PMID: 31295866 PMCID: PMC6682961 DOI: 10.3390/nu11071558] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 02/07/2023] Open
Abstract
The prevalence of degenerative diseases has risen in western countries. Growing evidence suggests that demenia and other cognition affectations are associated with ambient factors including specific nutrients, food ingredients or specific dietary patterns. Mediterranean diet adherence has been associated with various health benefits and decreased risk of many diseases, including neurodegenerative disorders. Beer, as part of this protective diet, contains compounds such as silicon and hops that could play a major role in preventing brain disorders. In this review, different topics regarding Mediterranean diet, beer and the consumption of their main compounds and their relation to neurological health have been addressed. Taking into account published results from our group and other studies, the hypothesis linking aluminum intoxication with dementia and/or Alzheimer’s disease and the potential role of regular beer has also been considered. Beer, in spite of its alcohol content, may have some health benefits; nonetheless, its consumption is not adequate for all subjects. Thus, this review analyzed some promising results of non-alcoholic beer on several mechanisms engaged in neurodegeneration such as inflammation, oxidation, and cholinesterase activity, and their contribution to the behavioral modifications induced by aluminum intoxication. The review ends by giving conclusions and suggesting future topics of research related to moderate beer consumption and/or the consumption of its major compounds as a potential instrument for protecting against neurodegenerative disease progression and the need to develop nutrigenetic and nutrigenomic studies in aged people and animal models.
Collapse
Affiliation(s)
- Francisco José Sánchez-Muniz
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia. Universidad Complutense de Madrid, 28040 Madrid, Spain.
- AFUSAN Research Group. Universidad Complutense de Madrid and Instituto de Investigación Sanitaria from Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain.
| | - Adrián Macho-González
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia. Universidad Complutense de Madrid, 28040 Madrid, Spain
- AFUSAN Research Group. Universidad Complutense de Madrid and Instituto de Investigación Sanitaria from Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Alba Garcimartín
- AFUSAN Research Group. Universidad Complutense de Madrid and Instituto de Investigación Sanitaria from Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia. Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jorge Arturo Santos-López
- AFUSAN Research Group. Universidad Complutense de Madrid and Instituto de Investigación Sanitaria from Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia. Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Juana Benedí
- AFUSAN Research Group. Universidad Complutense de Madrid and Instituto de Investigación Sanitaria from Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia. Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Sara Bastida
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia. Universidad Complutense de Madrid, 28040 Madrid, Spain
- AFUSAN Research Group. Universidad Complutense de Madrid and Instituto de Investigación Sanitaria from Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - María José González-Muñoz
- AFUSAN Research Group. Universidad Complutense de Madrid and Instituto de Investigación Sanitaria from Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Departamento de Ciencias Biomédicas, Unidad Docente de Toxicología, Facultad de Farmacia, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
| |
Collapse
|
8
|
Ano Y, Yoshino Y, Uchida K, Nakayama H. Preventive Effects of Tryptophan-Methionine Dipeptide on Neural Inflammation and Alzheimer's Pathology. Int J Mol Sci 2019; 20:ijms20133206. [PMID: 31261895 PMCID: PMC6651344 DOI: 10.3390/ijms20133206] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 12/11/2022] Open
Abstract
Preventive approaches for age-related memory decline and dementia have become a high priority in the aging society because of the lack of therapeutic approaches. Recent epidemiological studies have reported that fermented dairy products can help prevent dementia. Previously, we identified tryptophan-tyrosine (WY) and tryptophan-methionine (WM) peptides as the suppressants of activation of the primary microglia and showed that WY peptide consumption suppresses inflammation in the brains of Alzheimer's disease model mice. However, the effects of the WM peptide on inflammation in the brain and Alzheimer's pathology have not been investigated. Here, we evaluated the effect of WM peptide consumption on Alzheimer's disease model (5×FAD) mice. In 5×FAD mice, intake of WM peptide suppressed the production of inflammatory cytokines, activation of microglia, and infiltration of activated microglia around β amyloid (Aβ) depositions. WM peptide intake reduced Aβ deposition in the cortex and hippocampus and then improved the object recognition memory. Taken together with previous reports, the current findings indicate that ingestion of tryptophan-related peptides or food material rich in tryptophan-related peptides, thereby regulating microglial activity, represents a potential preventive approach for cognitive decline and dementia related to inflammation.
Collapse
Affiliation(s)
- Yasuhisa Ano
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo 113-8657, Japan.
- Research Laboratories for Health Science & Food Technologies, Kirin Holdings Co. Ltd., Kanagawa 236-0004, Japan.
| | - Yuka Yoshino
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo 113-8657, Japan
| | - Kazuyuki Uchida
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo 113-8657, Japan
| | - Hiroyuki Nakayama
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|