1
|
Zhu W, Zhang H, Yuan C, Liao Z, Zeng X, Yang Z, Zhou C, Shi Q, Tang D. Association between daily consumption of spicy food and bone mineral density in middle-aged and older adults: a cross-sectional study. Food Funct 2024; 15:7509-7517. [PMID: 38919039 DOI: 10.1039/d4fo01893a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Background: Many studies have reported the effects of spicy food on human health, but no studies have been conducted on the impact of long-term spicy food consumption on bone mineral density (BMD). This study aimed to investigate the impact of daily consumption of spicy food on BMD in the population aged 50 years and older. Methods: This cross-sectional study was conducted from 2020 to 2022 in Jiangxi Province, China. This study investigated the differences in BMD between non-consumers and daily spicy food consumers in adults aged 50-85 years. A multiple linear regression model was used to investigate the association between spicy food consumption and BMD of the total lumbar spine (LS), femoral neck (FN), and total hip, as well as biochemical markers of bone metabolism (BMBM) levels. Results: The results showed that daily consumption of spicy food was negatively associated with total LS BMD (β = -0.013, P = 0.015). Subgroup analyses showed this negative association was more pronounced among smokers and drinkers compared to non-smokers (β: -0.006 vs. -0.042; P for interaction <0.05) and non-drinkers (β: -0.004 vs. -0.037; P for interaction <0.05). In addition, according to the daily frequency of spicy food consumption, the daily spicy food consumers were categorized into one meal per day, two meals per day, and three meals per day groups. Further analysis revealed that the negative association between spicy food and total LS BMD was progressively stronger as the frequency of daily consumption of spicy food increased (P for trend <0.05). For BMBM, daily consumption of spicy food was positively associated with serum PINP levels and negatively associated with serum Ca and serum Mg levels. Conclusions: Our study suggested that daily consumption of spicy food was associated with lower LS BMD in middle-aged and older Chinese adults, and this association was more pronounced in the smoking and drinking populations. The adverse effects of spicy food on LS BMD become progressively stronger with increasing frequency of daily consumption of spicy food. In addition, daily consumption of spicy food was associated with higher PINP levels and lower serum Ca and Mg levels.
Collapse
Affiliation(s)
- Wenhao Zhu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haitao Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunchun Yuan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhangyu Liao
- Ganzhou Nankang District Hospital of Traditional Chinese Medicine, Ganzhou, China
| | - Xianhui Zeng
- Ganzhou Nankang District Hospital of Traditional Chinese Medicine, Ganzhou, China
| | - Zhiwu Yang
- Ganzhou Nankang District Hospital of Traditional Chinese Medicine, Ganzhou, China
| | - Chenghong Zhou
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhejiang, China
| | - Qi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Dezhi Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Long Z, Xiang W, He Q, Xiao W, Wei H, Li H, Guo H, Chen Y, Yuan M, Yuan X, Zeng L, Yang K, Deng Y, Huang Z. Efficacy and safety of dietary polyphenols in rheumatoid arthritis: A systematic review and meta-analysis of 47 randomized controlled trials. Front Immunol 2023; 14:1024120. [PMID: 37033930 PMCID: PMC10073448 DOI: 10.3389/fimmu.2023.1024120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/27/2023] [Indexed: 04/11/2023] Open
Abstract
Objective To evaluate safety and efficacy of dietary polyphenols in the treatment of rheumatoid arthritis (RA). Methods CNKI, Pubmed, Cochrane library, Embase were searched to collect randomized controlled trials (RCTs) of dietary polyphenols in the treatment of RA. The databases were searched from the time of their establishment to November 8nd, 2022. After 2 reviewers independently screened the literature, extracted data, and assessed the risk of bias of the included studies, Meta-analysis was performed using RevMan5.4 software. Results A total of 49 records (47 RCTs) were finally included, involving 3852 participants and 15 types of dietary polyphenols (Cinnamon extract, Cranberry extract, Crocus sativus L. extract, Curcumin, Garlic extract, Ginger extract, Hesperidin, Olive oil, Pomegranate extract, Puerarin, Quercetin, Resveratrol, Sesamin, Tea polyphenols, Total glucosides of paeony). Pomegranate extract, Resveratrol, Garlic extract, Puerarin, Hesperidin, Ginger extract, Cinnamon extract, Sesamin only involve in 1 RCT. Cranberry extract, Crocus sativus L. extract, Olive oil, Quercetin, Tea polyphenols involve in 2 RCTs. Total glucosides of paeony and Curcumin involve in more than 3 RCTs. These RCTs showed that these dietary polyphenols could improve disease activity score for 28 joints (DAS28), inflammation levels or oxidative stress levels in RA. The addition of dietary polyphenols did not increase adverse events. Conclusion Dietary polyphenols may improve DAS28, reduce C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR), and improve oxidative stress, etc. However, more RCTs are needed to verify or modify the efficacy and safety of dietary polyphenols. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42022315645.
Collapse
Affiliation(s)
- Zhiyong Long
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Wang Xiang
- The First People's Hospital of Changde City, Changde, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Wei Xiao
- The First People's Hospital of Changde City, Changde, China
| | - Huagen Wei
- Dental Materials Science, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hao Li
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hua Guo
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuling Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mengxia Yuan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou University Medical College, Shantou, China
| | - Xiao Yuan
- Hunan University of Chinese Medicine, Changsha, China
| | - Liuting Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kailin Yang
- Hunan University of Chinese Medicine, Changsha, China
| | | | - Zhen Huang
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| |
Collapse
|
3
|
Guo W, Jin P, Li R, Huang L, Liu Z, Li H, Zhou T, Fang B, Xia L. Dynamic network biomarker identifies cdkn1a-mediated bone mineralization in the triggering phase of osteoporosis. Exp Mol Med 2023; 55:81-94. [PMID: 36599933 PMCID: PMC9898265 DOI: 10.1038/s12276-022-00915-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/17/2022] [Accepted: 11/02/2022] [Indexed: 01/06/2023] Open
Abstract
The identification of predictive markers to determine the triggering phase prior to the onset of osteoporosis is essential to mitigate further irrevocable deterioration. To determine the early warning signs before osteoporosis, we used the dynamic network biomarker (DNB) approach to analyze time-series gene expression data in a zebrafish osteoporosis model, which revealed that cyclin-dependent kinase inhibitor 1 A (cdkn1a) is a core DNB. We found that cdkn1a negatively regulates osteogenesis, as evidenced by loss-of-function and gain-of-function studies. Specifically, CRISPR/Cas9-mediated cdkn1a knockout in zebrafish significantly altered skeletal development and increased bone mineralization, whereas inducible cdkn1a expression significantly contributed to osteoclast differentiation. We also found several mechanistic clues that cdkn1a participates in osteoclast differentiation by regulating its upstream signaling cascades. To summarize, in this study, we provided new insights into the dynamic nature of osteoporosis and identified cdkn1a as an early-warning signal of osteoporosis onset.
Collapse
Affiliation(s)
- Weiming Guo
- grid.16821.3c0000 0004 0368 8293Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200001 China
| | - Peng Jin
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001 China
| | - Ruomei Li
- grid.16821.3c0000 0004 0368 8293Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200001 China
| | - Lu Huang
- grid.16821.3c0000 0004 0368 8293Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001 China
| | - Zhen Liu
- grid.16821.3c0000 0004 0368 8293Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200001 China
| | - Hairui Li
- grid.16821.3c0000 0004 0368 8293Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200001 China
| | - Ting Zhou
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200001, China.
| | - Bing Fang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200001, China.
| | - Lunguo Xia
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200001, China.
| |
Collapse
|
4
|
Xie B, Zhou H, Liu H, Liao S, Zhou C, Xu D. Salidroside alleviates dexamethasone-induced inhibition of bone formation via transforming growth factor-beta/Smad2/3 signaling pathway. Phytother Res 2022; 37:1938-1950. [PMID: 36567454 DOI: 10.1002/ptr.7711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/16/2022] [Accepted: 11/26/2022] [Indexed: 12/27/2022]
Abstract
Glucocorticoid-induced osteoporosis is the third epidemic osteoporosis following postmenopausal and senileosteoporosis. According to one study, salidroside made ovariectomized rats' bones strong. Salidroside's potential for treating glucocorticoid-induced osteoporosis remains unproven. This study aimed to investigate the protective effect and mechanism of salidroside on dexamethasone-induced osteogenic differentiation and bone formation in MC3T3-E1 cells and zebrafish. The study proved that salindroside had no harmful impact on MC3T3E1 cells. Salidroside significantly relieved dexamethasone-induced inhibition of ALP (alkaline phosphatase) activity and mineralization in MC3T3-E1 cells, and promoted osteogenic differentiation of cells. Salidroside increased the expression of osteopontin (OPN), runt-related transcription factor 2 (Runx2), osterix (Osx), transforming growth factor-beta (TGF-β) proteins and promoted the phosphorylation of Smad2/3 in MC3T3-E1 cells treated with dexamethasone. In addition, the effect of salidroside in relieving dexamethasone-induced inhibition of osteogenic differentiation in MC3T3-E1 cells can be blocked by TGF-β receptor type I/II inhibitor (LY2109761). At the same time, we found that salidroside significantly alleviated the inhibition of dexamethasone-induced bone formation in zebrafish and promoted the mineralization of zebrafish skulls. LY2109761 reversed the protective impact of salidroside on dexamethasone-mediated bone impairment in zebrafish. These findings suggested that salidroside alleviated dexamethasone-induced inhibition of osteogenic differentiation and bone formation via TGF-β/Smad2/3 signaling pathway.
Collapse
Affiliation(s)
- Baocheng Xie
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, People's Republic of China.,Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, People's Republic of China
| | - Huan Zhou
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, People's Republic of China.,Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, Department of Pharmacology, Guangdong Medical University, Dongguan, People's Republic of China
| | - Hongyu Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, People's Republic of China.,Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, Department of Pharmacology, Guangdong Medical University, Dongguan, People's Republic of China
| | - Shiyi Liao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, People's Republic of China.,Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, Department of Pharmacology, Guangdong Medical University, Dongguan, People's Republic of China
| | - Chenhui Zhou
- School of Nursing, Guangdong Medical University, Dongguan, People's Republic of China
| | - Daohua Xu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, People's Republic of China.,Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, Department of Pharmacology, Guangdong Medical University, Dongguan, People's Republic of China
| |
Collapse
|
5
|
Dubale NM, Kapron CM, West SL. Commentary: Zebrafish as a Model for Osteoporosis-An Approach to Accelerating Progress in Drug and Exercise-Based Treatment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15866. [PMID: 36497941 PMCID: PMC9739463 DOI: 10.3390/ijerph192315866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Osteoporosis (OP) is a degenerative disease characterized by reduced bone strength and increased fracture risk. As the global population continues to age, the prevalence and economic burden of osteoporosis can be expected to rise substantially, but there remain various gaps in the field of OP care. For instance, there is a lack of anti-fracture drugs with proven long-term efficacy. Likewise, though exercise remains widely recommended in OP prevention and management, data regarding the safety and efficacy for patients after vertebral fracture remain limited. This lack of evidence may be due to the cost and inherent difficulties associated with exercise-based OP research. Thus, the current research landscape highlights the need for novel research strategies that accelerate OP drug discovery and allow for the low-cost study of exercise interventions. Here, we outline an example of one strategy, the use of zebrafish, which has emerged as a potential model for the discovery of anti-osteoporosis therapeutics and study of exercise interventions. The strengths, limitations, and potential applications of zebrafish in OP research will be outlined.
Collapse
Affiliation(s)
- Natnaiel M. Dubale
- Department of Biology, Trent University, Peterborough, ON K9L 0G2, Canada
| | - Carolyn M. Kapron
- Department of Biology, Trent University, Peterborough, ON K9L 0G2, Canada
| | - Sarah L. West
- Department of Biology, Trent University, Peterborough, ON K9L 0G2, Canada
- Department of Kinesiology, Trent University, Peterborough, ON K9L 0G2, Canada
- Trent/Fleming School of Nursing, Trent University, Peterborough, ON K9L 0G2, Canada
| |
Collapse
|
6
|
Poudel S, Martins G, Cancela ML, Gavaia PJ. Regular Supplementation with Antioxidants Rescues Doxorubicin-Induced Bone Deformities and Mineralization Delay in Zebrafish. Nutrients 2022; 14:4959. [PMID: 36500990 PMCID: PMC9739841 DOI: 10.3390/nu14234959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
Osteoporosis is characterized by an abnormal bone structure with low bone mass and degradation of microarchitecture. Oxidative stress induces imbalances in osteoblast and osteoclast activity, leading to bone degradation, a primary cause of secondary osteoporosis. Doxorubicin (DOX) is a widely used chemotherapy drug for treating cancer, known to induce secondary osteoporosis. The mechanism underlying DOX-induced bone loss is still not fully understood, but one of the relevant mechanisms is through a massive accumulation of reactive oxygen and nitrogen species (i.e., ROS and NOS) leading to oxidative stress. We investigated the effects of antioxidants Resveratrol and MitoTEMPO on DOX-induced bone impairment using the zebrafish model. DOX was shown to increase mortality, promote skeletal deformities, induce alterations on intestinal villi, impair growth and mineralization and significantly downregulate osteoblast differentiation markers osteocalcin 2 and osterix/sp7. Lipid peroxidation was significantly increased in DOX-supplemented groups as compared to control and antioxidants, suggesting ROS formation as one of the key factors for DOX-induced bone loss. Furthermore, DOX affected mineral contents, suggesting an altered mineral metabolism. However, upon supplementation with antioxidants, DOX-induced effects on mineral content were rescued. Our data show that supplementation with antioxidants effectively improves the overall growth and mineralization in zebrafish and counteracts DOX-induced bone anomalies.
Collapse
Affiliation(s)
- Sunil Poudel
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139 Faro, Portugal
- PhD Program in Biomedical Sciences, Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139 Faro, Portugal
| | - Gil Martins
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139 Faro, Portugal
- PhD Program in Biomedical Sciences, Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139 Faro, Portugal
| | - M. Leonor Cancela
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139 Faro, Portugal
- Algarve Biomedical Center, University of Algarve, 8005-139 Faro, Portugal
| | - Paulo J. Gavaia
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
7
|
Xu Y, Chen S, Huang L, Han W, Shao Y, Chen M, Zhang Y, He R, Xie B. Epimedin C Alleviates Glucocorticoid-Induced Suppression of Osteogenic Differentiation by Modulating PI3K/AKT/RUNX2 Signaling Pathway. Front Pharmacol 2022; 13:894832. [PMID: 35860032 PMCID: PMC9291512 DOI: 10.3389/fphar.2022.894832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/16/2022] [Indexed: 12/03/2022] Open
Abstract
Secondary osteoporosis is triggered mostly by glucocorticoid (GC) therapy. Dexamethasone (DEX) was reported to inhibit osteogenic differentiation in zebrafish larvae and MC3T3-E1 cells in prior research. In this research, we primarily examined the protective impacts of epimedin C on the osteogenic inhibition impact of MC3T3-E1 cells and zebrafish larvae mediated by DEX. The findings illustrated no apparent toxicity for MC3T3-E1 cells after administering epimedin C at increasing dosages from 1 to 60 μM and no remarkable proliferation in MC3T3-E1 cells treated using DEX. In MC3T3-E1 cells that had been treated using DEX, we discovered that epimedin C enhanced alkaline phosphatase activities and mineralization. Epimedin C could substantially enhance the protein expression of osterix (OSX), Runt-related transcription factor 2 (RUNX2), and alkaline phosphatase (ALPL) in MC3T3-E1 cells subjected to DEX treatment. Additionally, epimedin C stimulated PI3K and AKT signaling pathways in MC3T3-E1 cells that had been treated using DEX. Furthermore, in a zebrafish larvae model, epimedin C was shown to enhance bone mineralization in DEX-mediated bone impairment. We also found that epimedin C enhanced ALPL activity and mineralization in MC3T3-E1 cells treated using DEX, which may be reversed by PI3K inhibitor (LY294002). LY294002 can also reverse the protective impact of epimedin C on DEX-mediated bone impairment in zebrafish larval. These findings suggested that epimedin C alleviated the suppressive impact of DEX on the osteogenesis of zebrafish larval and MC3T3-E1 cells via triggering the PI3K and AKT signaling pathways. Epimedin C has significant potential in the development of innovative drugs for the treatment of glucocorticoid-mediated osteoporosis.
Collapse
Affiliation(s)
- Yongxiang Xu
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Shichun Chen
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Linxuan Huang
- Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Weichao Han
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Yingying Shao
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Minyi Chen
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Yusheng Zhang
- Department of Pharmacy, The First People’s Hospital of Foshan (The Affiliated Foshan Hospital of Sun Yat-Sen University), Foshan, China
| | - Ruirong He
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
- *Correspondence: Ruirong He, ; Baocheng Xie,
| | - Baocheng Xie
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
- *Correspondence: Ruirong He, ; Baocheng Xie,
| |
Collapse
|
8
|
Structural characterization of a mannoglucan polysaccharide from Dendrobium huoshanense and evaluation of its osteogenesis promotion activities. Int J Biol Macromol 2022; 211:441-449. [PMID: 35577191 DOI: 10.1016/j.ijbiomac.2022.05.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 12/31/2022]
Abstract
Dendrobium huoshanense, a valuable traditional Chinese herb, is widely used to prolong life in China. Our study aims to characterize the structure and osteogenesis-promotion effects of a heteropolysaccharide component isolated from Dendrobium huoshanense (DHPW1). The structure of DHPW1 was characterized using gas chromatography-mass spectrometry and nuclear magnetic resonance, while its osteogenic activity was evaluated using MG-63 cells and zebrafish skulls. The results showed that the molecular weight of DHPW1 was 230 kDa and it was mainly composed of mannose and glucose. In addition, the DHPW1 backbone consisted of (1 → 4)-linked-β-D-Mannopyranosyl and (1 → 4)-linked-β-d-Glucopyranosyl. Furthermore, DHPW1 significantly increased ALP activity and mineralized nodule formation in MG-63 cells. DHPW1 in zebrafish skull models significantly enhanced the relative fluorescence intensity of bone mass and increased the degree of bone mineralization. These results suggested that the DHPW1 component in D. huoshanense has potential to promote osteogenesis.
Collapse
|
9
|
Poudel S, Izquierdo M, Cancela ML, Gavaia PJ. Reversal of Doxorubicin-Induced Bone Loss and Mineralization by Supplementation of Resveratrol and MitoTEMPO in the Early Development of Sparus aurata. Nutrients 2022; 14:nu14061154. [PMID: 35334811 PMCID: PMC8950850 DOI: 10.3390/nu14061154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 01/03/2023] Open
Abstract
Doxorubicin is a widely used chemotherapeutic drug known to induce bone loss. The mechanism behind doxorubicin-mediated bone loss is unclear, but oxidative stress has been suggested as a potential cause. Antioxidants that can counteract the toxic effect of doxorubicin on the bone would be helpful for the prevention of secondary osteoporosis. We used resveratrol, a natural antioxidant, and MitoTEMPO, a mitochondria-targeted antioxidant, to counteract doxorubicin-induced bone loss and mineralization on Sparus aurata larvae. Doxorubicin supplemented Microdiets increased bone deformities, decreased mineralization, and lipid peroxidation, whereas Resveratrol and MitoTEMPO supplemented microdiets improved mineralization, decreased bone deformities, and reversed the effects of doxorubicin in vivo and in vitro, using osteoblastic VSa13 cells. Partial Least-Squares Discriminant Analysis highlighted differences between groups on the distribution of skeletal anomalies and mineralization of skeleton elements. Calcium and Phosphorus content was negatively affected in the doxorubicin supplemented group. Doxorubicin reduced the mRNA expression of antioxidant genes, including catalase, glutathione peroxidase 1, superoxide dismutase 1, and hsp90 suggesting that ROS are central for Doxorubicin-induced bone loss. The mRNA expression of antioxidant genes was significantly increased on resveratrol alone or combined treatment. The length of intestinal villi was increased in response to antioxidants and reduced on doxorubicin. Antioxidant supplements effectively prevent bone deformities and mineralization defects, increase antioxidant response and reverse doxorubicin-induced effects on bone anomalies, mineralization, and oxidative stress. A combined treatment of doxorubicin and antioxidants was beneficial in fish larvae and showed the potential for use in preventing Doxorubicin-induced bone impairment.
Collapse
Affiliation(s)
- Sunil Poudel
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal; (S.P.); (M.L.C.)
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139 Faro, Portugal
- PhD Program in Biomedical Sciences, FMCB, University of Algarve, 8005-139 Faro, Portugal
| | - Marisol Izquierdo
- Grupo de Investigación en Acuicultura, Universidad de Las Palmas de Gran Canaria, Taliarte, 35214 Telde, Spain;
| | - Maria Leonor Cancela
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal; (S.P.); (M.L.C.)
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139 Faro, Portugal
- Algarve Biomedical Center, University of Algarve, 8005-139 Faro, Portugal
| | - Paulo J. Gavaia
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal; (S.P.); (M.L.C.)
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139 Faro, Portugal
- Correspondence: ; Tel.: +351-289-800057 or +351-289-800900 (ext. 7057); Fax: +351-289-800069
| |
Collapse
|
10
|
Sekaran S, Thangavelu L. Re-appraising the role of flavonols, flavones and flavonones on osteoblasts and osteoclasts- A review on its molecular mode of action. Chem Biol Interact 2022; 355:109831. [PMID: 35120918 DOI: 10.1016/j.cbi.2022.109831] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/02/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022]
Abstract
Bone disorders have become a global concern illustrated with decreased bone mineral density and disruption in microarchitecture of natural bone tissue organization. Natural compounds that promote bone health by augmenting osteoblast functions and suppressing osteoclast functions has gained much attention and offer greater therapeutic value compared to conventional therapies. Amongst several plant-based molecules, flavonoids act as a major combatant in promoting bone health through their multi-faceted biological activities such as antioxidant, anti-inflammatory, and osteogenic properties. They protect bone loss by regulating the signalling cascades involved in osteoblast and osteoclast functions. Flavonoids augment osteoblastogenesis and inhibits osteoclastogenesis through their modulation of various signalling pathways. This review discusses the role of various flavonoids and their molecular mechanisms involved in maintaining bone health by regulating osteoblast and osteoclast functions.
Collapse
Affiliation(s)
- Saravanan Sekaran
- Centre for Trans-disciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute for Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India.
| | - Lakshmi Thangavelu
- Centre for Trans-disciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute for Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India
| |
Collapse
|
11
|
Ye Q, Xi X, Fan D, Cao X, Wang Q, Wang X, Zhang M, Wang B, Tao Q, Xiao C. Polycyclic aromatic hydrocarbons in bone homeostasis. Biomed Pharmacother 2021; 146:112547. [PMID: 34929579 DOI: 10.1016/j.biopha.2021.112547] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/03/2021] [Accepted: 12/13/2021] [Indexed: 01/16/2023] Open
Abstract
Prolonged exposure to polycyclic aromatic hydrocarbons (PAHs) may result in autoimmune diseases, such as rheumatoid arthritis (RA) and osteoporosis (OP), which are based on an imbalance in bone homeostasis. These diseases are characterized by bone erosion and even a disruption in homeostasis, including in osteoblasts and osteoclasts. Current evidence indicates that multiple factors affect the progression of bone homeostasis, such as genetic susceptibility and epigenetic modifications. However, environmental factors, especially PAHs from various sources, have been shown to play an increasingly prominent role in the progression of bone homeostasis. Hence, it is essential to investigate the effects and pathogenesis of PAHs in bone homeostasis. In this review, recent progress is summarized concerning the effects and mechanisms of PAHs and their ligands and receptors in bone homeostasis. Moreover, strategies based on the effects and mechanisms of PAHs in the regulation of the bone balance and alleviation of bone destruction are also reviewed. We further discuss the future challenges and perspectives regarding the roles of PAHs in autoimmune diseases based on bone homeostasis.
Collapse
Affiliation(s)
- Qinbin Ye
- Beijing University of Chinese Medicine, Beijing 100029, China; Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiaoyu Xi
- Beijing University of Chinese Medicine, Beijing 100029, China; Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Danping Fan
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100193, China
| | - Xiaoxue Cao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100193, China
| | - Qiong Wang
- Beijing University of Chinese Medicine, Beijing 100029, China; Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xing Wang
- Beijing University of Chinese Medicine, Beijing 100029, China; Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Mengxiao Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Bailiang Wang
- Department of Orthopaedic Surgery, Center for Osteonecrosis and Joint Preserving & Reconstruction, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Qingwen Tao
- Department of TCM Rheumatology, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Department of Emergency, China-Japan Friendship Hospital, Beijing 100029, China.
| |
Collapse
|
12
|
Huang W, Wu T, Au WW, Wu K. Impact of environmental chemicals on craniofacial skeletal development: Insights from investigations using zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117541. [PMID: 34118758 DOI: 10.1016/j.envpol.2021.117541] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 02/05/2023]
Abstract
Craniofacial skeletal anomalies are among the most common structural birth defects around the world. Various studies using human populations and experimental animals have shown that genetic and environmental factors play significant roles in the causation and progression of these anomalies. Environmental factors, such as teratogens and toxin mixtures, induce craniofacial anomalies are gaining heightened attention. Among experimental investigations, the use of the zebrafish (Danio rerio) has been increasing. A major reason for the increased use is that the zebrafish boast a simple craniofacial structure, and facial morphogenesis is readily observed due to external fertilization and transparent embryo, making it a valuable platform to screen and identify environmental factors involved in the etiology of craniofacial skeletal malformation. This review provides an update on harmful effects from exposure to environmental chemicals, involving metallic elements, nanoparticles, persistent organic pollutants, pesticides and pharmaceutical formulations on craniofacial skeletal development in zebrafish embryos. The collected data provide a better understanding for induction of craniofacial skeletal anomalies and for development of better prevention strategies.
Collapse
Affiliation(s)
- Wenlong Huang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Tianjie Wu
- Department of Anaesthesiology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, 515041, Guangdong, China
| | - William W Au
- University of Medicine, Pharmacy, Science and Techonology, 540142, Tirgu Mures, Romania
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China; Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Shantou, 515041, Guangdong, China.
| |
Collapse
|
13
|
Giacomello E, Toniolo L. The Potential of Calorie Restriction and Calorie Restriction Mimetics in Delaying Aging: Focus on Experimental Models. Nutrients 2021; 13:2346. [PMID: 34371855 PMCID: PMC8308705 DOI: 10.3390/nu13072346] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022] Open
Abstract
Aging is a biological process determined by multiple cellular mechanisms, such as genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication, that ultimately concur in the functional decline of the individual. The evidence that the old population is steadily increasing and will triplicate in the next 50 years, together with the fact the elderlies are more prone to develop pathologies such as cancer, diabetes, and degenerative disorders, stimulates an important effort in finding specific countermeasures. Calorie restriction (CR) has been demonstrated to modulate nutrient sensing mechanisms, inducing a better metabolic profile, enhanced stress resistance, reduced oxidative stress, and improved inflammatory response. Therefore, CR and CR-mimetics have been suggested as powerful means to slow aging and extend healthy life-span in experimental models and humans. Taking into consideration the difficulties and ethical issues in performing aging research and testing anti-aging interventions in humans, researchers initially need to work with experimental models. The present review reports the major experimental models utilized in the study of CR and CR-mimetics, highlighting their application in the laboratory routine, and their translation to human research.
Collapse
Affiliation(s)
- Emiliana Giacomello
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Luana Toniolo
- Laboratory of Muscle Biophysics, Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
14
|
Rosa JT, Laizé V, Gavaia PJ, Cancela ML. Fish Models of Induced Osteoporosis. Front Cell Dev Biol 2021; 9:672424. [PMID: 34179000 PMCID: PMC8222987 DOI: 10.3389/fcell.2021.672424] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
Osteopenia and osteoporosis are bone disorders characterized by reduced bone mineral density (BMD), altered bone microarchitecture and increased bone fragility. Because of global aging, their incidence is rapidly increasing worldwide and novel treatments that would be more efficient at preventing disease progression and at reducing the risk of bone fractures are needed. Preclinical studies are today a major bottleneck to the collection of new data and the discovery of new drugs, since they are commonly based on rodent in vivo systems that are time consuming and expensive, or in vitro systems that do not exactly recapitulate the complexity of low BMD disorders. In this regard, teleost fish, in particular zebrafish and medaka, have recently emerged as suitable alternatives to study bone formation and mineralization and to model human bone disorders. In addition to the many technical advantages that allow faster and larger studies, the availability of several fish models that efficiently mimic human osteopenia and osteoporosis phenotypes has stimulated the interest of the academia and industry toward a better understanding of the mechanisms of pathogenesis but also toward the discovery of new bone anabolic or antiresorptive compounds. This mini review recapitulates the in vivo teleost fish systems available to study low BMD disorders and highlights their applications and the recent advances in the field.
Collapse
Affiliation(s)
- Joana T Rosa
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.,S2 AQUA - Sustainable and Smart Aquaculture Collaborative Laboratory, Olhão, Portugal
| | - Paulo J Gavaia
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.,GreenCoLab - Associação Oceano Verde, Faro, Portugal.,Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.,Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal.,Algarve Biomedical Center, University of Algarve, Faro, Portugal
| |
Collapse
|
15
|
Dietrich K, Fiedler IA, Kurzyukova A, López-Delgado AC, McGowan LM, Geurtzen K, Hammond CL, Busse B, Knopf F. Skeletal Biology and Disease Modeling in Zebrafish. J Bone Miner Res 2021; 36:436-458. [PMID: 33484578 DOI: 10.1002/jbmr.4256] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022]
Abstract
Zebrafish are teleosts (bony fish) that share with mammals a common ancestor belonging to the phylum Osteichthyes, from which their endoskeletal systems have been inherited. Indeed, teleosts and mammals have numerous genetically conserved features in terms of skeletal elements, ossification mechanisms, and bone matrix components in common. Yet differences related to bone morphology and function need to be considered when investigating zebrafish in skeletal research. In this review, we focus on zebrafish skeletal architecture with emphasis on the morphology of the vertebral column and associated anatomical structures. We provide an overview of the different ossification types and osseous cells in zebrafish and describe bone matrix composition at the microscopic tissue level with a focus on assessing mineralization. Processes of bone formation also strongly depend on loading in zebrafish, as we elaborate here. Furthermore, we illustrate the high regenerative capacity of zebrafish bones and present some of the technological advantages of using zebrafish as a model. We highlight zebrafish axial and fin skeleton patterning mechanisms, metabolic bone disease such as after immunosuppressive glucocorticoid treatment, as well as osteogenesis imperfecta (OI) and osteopetrosis research in zebrafish. We conclude with a view of why larval zebrafish xenografts are a powerful tool to study bone metastasis. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Kristin Dietrich
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Healthy Aging TU Dresden, Dresden, Germany
| | - Imke Ak Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anastasia Kurzyukova
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Healthy Aging TU Dresden, Dresden, Germany
| | - Alejandra C López-Delgado
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Healthy Aging TU Dresden, Dresden, Germany
| | - Lucy M McGowan
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Karina Geurtzen
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Healthy Aging TU Dresden, Dresden, Germany
| | - Chrissy L Hammond
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Interdisciplinary Competence Center for Interface Research (ICCIR), Hamburg, Germany
| | - Franziska Knopf
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Healthy Aging TU Dresden, Dresden, Germany
| |
Collapse
|
16
|
Wu J, Zeng Z, Li Y, Qin H, Zuo C, Zhou C, Xu D. Cycloastragenol protects against glucocorticoid-induced osteogenic differentiation inhibition by activating telomerase. Phytother Res 2020; 35:2034-2044. [PMID: 33165990 DOI: 10.1002/ptr.6946] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/17/2020] [Accepted: 10/25/2020] [Indexed: 12/25/2022]
Abstract
Glucocorticoid-induced osteoporosis (GIOP) that is mainly featured as low bone density and increased risk of fracture is prone to occur with the administration of excessive glucocorticoids. Cycloastragenol (CAG) has been verified to be a small molecule that activates telomerase. Studied showed that up-regulated telomerase was associated with promoting osteogeneic differentiation, so we explored whether CAG could promote osteogenic differentiation to protect against GIOP and telomerase would be the target that CAG exerted its function. Our results demonstrated that CAG prominently increased the ALP activity, mineralization, mRNA of runt-related transcription factor 2, osteocalcin, osteopontin, collagen type I in both MC3T3-E1 cells and dexamethasone (DEX)-treated MC3T3-E1 cells. CAG up-regulated telomerase reverse transcriptase and the protective effect of CAG was blocked by telomerase inhibitor TMPyP4. Moreover, CAG improved bone mineralization in DEX-induced bone damage in a zebrafish larvea model. Therefore, the study showed that CAG could alleviate the osteogenic differentiation inhibition induced by DEX in vitro and in vivo, and CAG might be considered as a candidate drug for the treatment of GIOP.
Collapse
Affiliation(s)
- Jiahuan Wu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,Department of Pharmacology, Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Zhanwei Zeng
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,Department of Pharmacology, Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Yuyun Li
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,Department of Pharmacology, Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Huiyi Qin
- Department of Pharmacology, Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Changqing Zuo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,Department of Pharmacology, Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Chenhui Zhou
- School of Nursing, Guangdong Medical University, Dongguan, China
| | - Daohua Xu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,Department of Pharmacology, Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| |
Collapse
|
17
|
Valenti MT, Marchetto G, Mottes M, Dalle Carbonare L. Zebrafish: A Suitable Tool for the Study of Cell Signaling in Bone. Cells 2020; 9:E1911. [PMID: 32824602 PMCID: PMC7465296 DOI: 10.3390/cells9081911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/23/2022] Open
Abstract
In recent decades, many studies using the zebrafish model organism have been performed. Zebrafish, providing genetic mutants and reporter transgenic lines, enable a great number of studies aiming at the investigation of signaling pathways involved in the osteoarticular system and at the identification of therapeutic tools for bone diseases. In this review, we will discuss studies which demonstrate that many signaling pathways are highly conserved between mammals and teleost and that genes involved in mammalian bone differentiation have orthologs in zebrafish. We will also discuss as human diseases, such as osteogenesis imperfecta, osteoarthritis, osteoporosis and Gaucher disease can be investigated in the zebrafish model.
Collapse
Affiliation(s)
- Maria Teresa Valenti
- Department of Medicine, University of Verona, Ple Scuro 10, 37100 Verona, Italy; (G.M.); (L.D.C.)
| | - Giulia Marchetto
- Department of Medicine, University of Verona, Ple Scuro 10, 37100 Verona, Italy; (G.M.); (L.D.C.)
| | - Monica Mottes
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy;
| | - Luca Dalle Carbonare
- Department of Medicine, University of Verona, Ple Scuro 10, 37100 Verona, Italy; (G.M.); (L.D.C.)
| |
Collapse
|
18
|
Zhang J, Jin X, Zhou C, Zhao H, He P, Hao Y, Dong Q. Resveratrol Suppresses Human Nasopharyngeal Carcinoma Cell Growth Via Inhibiting Differentiation Antagonizing Non-Protein Coding RNA (DANCR) Expression. Med Sci Monit 2020; 26:e923622. [PMID: 32683392 PMCID: PMC7388650 DOI: 10.12659/msm.923622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Although resveratrol has been found to show anti-cancer effects and potential chemotherapeutic activities in several cancers, the role and molecular mechanisms of resveratrol in nasopharyngeal carcinoma (NPC) remains poorly understood. This study aimed to investigate the effect of resveratrol in NPC progression and its molecular mechanism. MATERIAL AND METHODS Quantitative real-time polymerase chain reaction and western blotting were used to detect the expression of DANCR and PTEN. MTT assay and EdU assay were performed to detect the cell proliferation in NPC cells with different treatment. The effect of resveratrol on cell migration was explored by Transwell migration assay. RNA immunoprecipitation assay and chromatin immunoprecipitation assay were performed to test the interaction between DANCR, EZH2, and PTEN. A mouse xenograft model of NPC cell was established, and immunohistochemistry assay was performed to detect the PTEN expression. RESULTS Resveratrol treatment inhibited NPC cell growth and migration in a dose-dependent manner. Additionally, resveratrol downregulated the expression of DANCR and DANCR overexpressing abrogated the inhibition effect of resveratrol on NPC cell migration. Mechanistically, DANCR could bind to EZH2 and downregulated PTEN expression through mediating the binding of EZH2 on PTEN promoter. Furthermore, rescue experiments suggested resveratrol inhibited NPC cell growth and migration by the DANCR/PTEN pathway. Resveratrol significantly decreased the tumor volume and tumor weight and increased the expression of PTEN. CONCLUSIONS Resveratrol increased PTEN expression and suppressed NPC cell growth and migration through downregulation of DANCR.
Collapse
|