1
|
Ma J, Gao K, Li M, Zhou J, Song X, Zhang Y, Yu Z, Yu Z, Cheng W, Zhang W, Shen A, Yang J, Sun H, Li L. Epidemiological and molecular characteristics of carbapenem-resistant Klebsiella pneumoniae from pediatric patients in Henan, China. Ann Clin Microbiol Antimicrob 2024; 23:98. [PMID: 39511610 PMCID: PMC11545200 DOI: 10.1186/s12941-024-00757-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024] Open
Abstract
PURPOSE Carbapenem-resistant Klebsiella pneumoniae (CRKP) is an emerging global threat, whereas its epidemiological characteristics in children are rarely reported. This study aims to analyze clinical and epidemiological characteristics of CRKP from children in Henan, China. METHODS CRKP strains were isolated from pediatric patients, and the antimicrobial susceptibility of CRKP was determined using broth microdilution methods. The epidemiological characteristics of CRKP, including specimen sources, clinical data, carbapenemase types, virulence factors, MLST and PBRT typing were analyzed. RESULTS In total, 108 CRKP isolates were isolated from specimens including sputum, blood and urine, mainly from preterm pediatric department and internal medical intensive care unit (ICU). Newborns and staying in the ICU were risk factors for crude mortality. 107 isolates exhibited a multi-drug resistant (MDR) phenotype, and one isolate was extensively drug-resistant (XDR). Bacterial susceptibility to colistin, tigecycline and trimethoprim/sulfamethoxazole was 98.10%, 78.50% and 91.43%, respectively. Carbapenemase blaKPC (86.11%) was predominant, followed by blaNDM (5.56%) and blaIMP (2.78%). Two strains co-harbored blaKPC-blaNDM, one had blaKPC-blaIMP, whereas three isolates did not carry any of the analyzed carbapenemase genes. All strains possessed fimH, and 98% of the isolates possessed mrkD. Hypervirulent factors rmpA2 and iucA showed high positive rates (71.30% and 49.07%), with 48.15% of strains containing both genes. MLST analysis identified nine distinct sequence types (STs), with ST11 (82.41%) being the most common, followed by ST2154 (4.63%) and ST307 (3.70%). PBRT analysis revealed IncFII (85.19%) as the most prevalent plasmid. CONCLUSION In summary, this study reported the epidemiological features of CRKP in pediatric patients in Henan, China, highlighting the high prevalence of multi-drug-resistant and hypervirulent strains, and underscoring the significance of continuous surveillance.
Collapse
Affiliation(s)
- Jiayue Ma
- Henan International Joint Laboratory of Children's Infectious Diseases, Department of Neonatology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Kaijie Gao
- Zhengzhou Key Laboratory of Children's Infection and Immunity, Department of Laboratory Medicine, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Mingchao Li
- Henan International Joint Laboratory of Children's Infectious Diseases, Department of Neonatology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Juanjuan Zhou
- Zhengzhou Key Laboratory of Children's Infection and Immunity, Department of Laboratory Medicine, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Xiaorui Song
- Henan International Joint Laboratory of Children's Infectious Diseases, Department of Neonatology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Yaodong Zhang
- Henan International Joint Laboratory of Children's Infectious Diseases, Department of Neonatology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Zhidan Yu
- Henan International Joint Laboratory of Children's Infectious Diseases, Department of Neonatology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Zengyuan Yu
- Henan International Joint Laboratory of Children's Infectious Diseases, Department of Neonatology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Weyland Cheng
- Henan International Joint Laboratory of Children's Infectious Diseases, Department of Neonatology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Wancun Zhang
- Henan International Joint Laboratory of Children's Infectious Diseases, Department of Neonatology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Adong Shen
- Henan International Joint Laboratory of Children's Infectious Diseases, Department of Neonatology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Junmei Yang
- Zhengzhou Key Laboratory of Children's Infection and Immunity, Department of Laboratory Medicine, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Huiqing Sun
- Henan International Joint Laboratory of Children's Infectious Diseases, Department of Neonatology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.
| | - Lifeng Li
- Henan International Joint Laboratory of Children's Infectious Diseases, Department of Neonatology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.
| |
Collapse
|
2
|
Zhang Y, Zou C, Qin J, Li M, Wang X, Wei T, Wang H. Predictors of Mortality, Drug Resistance, and Determinants among Carbapenem-Resistant Enterobacteriales Infections in Chinese Elderly Patients. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2024; 2024:5459549. [PMID: 39234528 PMCID: PMC11374419 DOI: 10.1155/2024/5459549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 09/06/2024]
Abstract
Elderly patients with carbapenem-resistant Enterobacteriales (CRE) infections represent considerable mortality rates. But data on the risk factors for the death of elderly patients following such infection remain limited. We aimed to assess the clinical outcomes, identify mortality-associated risk factors, and determine the antibiotic resistance and resistance genes of isolates for these patients. Hospitalized patients aged ≥65 years with CRE infection from January 2020 to December 2020 were retrospectively reviewed. Isolates identification and molecular characterization of CRE were carried out. Logistic regression analysis was applied to assess the potential factors associated with mortality. Of the 123 elderly patients with CRE infection included in our study, the all-cause mortality rate was 39.8% (49/123). The most prevalent pathogen was carbapenem-resistant Klebsiella pneumoniae (CRKP, 116 of 123). The overall rates of multidrug-resistant (MDR) and extensively drug-resistant (XDR) were 100.0% and 66.7%. All CRE isolates exclusively harbored a singular variant of carbapenemase gene, such as bla KPC-2, bla IMP-4, bla NDM-5, or bla OXA-48, while 98.4% of isolates harbored more than one β-lactamase gene, of which 106 (86.2%) isolates harbored bla CTX-M, 121 (98.4%) isolates harbored bla TEM, and 116 (94.3%) isolates harbored bla SHV. Multivariable logistic regression analysis revealed that mechanical ventilation (adjusted odds ratio (AOR) = 33.607, 95% confidence interval (CI): 4.176-270.463, P < 0.001), use of tigecycline during hospitalization (AOR = 5.868, 95% CI: 1.318-26.130, P = 0.020), and APACHE II score (AOR = 1.305, 95% CI: 1.161-1.468, P < 0.001) were independent factors associated with increasing the mortality of patients with CRE infection, while admission to intensive care unit (ICU) during hospitalization (AOR = 0.046, 95% CI: 0.004-0.496, P = 0.011) was a protective factor. CRE-infected elderly patients with mechanical ventilation, use of tigecycline during hospitalization, and high APACHE II score were related to poor outcomes. The isolates carried various antibiotic genes and presented high antibiotic resistance. These findings provide crucial guidance for clinicians to devise appropriate strategies for treatment.
Collapse
Affiliation(s)
- Yufei Zhang
- Department of Clinical Laboratory, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Chengyun Zou
- Department of Clinical Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Jie Qin
- Department of Clinical Laboratory, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Muyi Li
- Department of Clinical Laboratory, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xing Wang
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Tian Wei
- Department of Clinical Laboratory, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Haiying Wang
- Department of Clinical Laboratory, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| |
Collapse
|
3
|
Verma G, Singh N, Smriti S, Panda SS, Pattnaik D, Tripathy S, Praharaj AK, Patro ARK. Modified Carbapenem Inactivation Method and Ethylenediaminetetraacetic Acid (EDTA)-Carbapenem Inactivation Method for Detection of Carbapenemase-Producing Enterobacterales and Pseudomonas aeruginosa. Cureus 2024; 16:e63340. [PMID: 39070485 PMCID: PMC11283628 DOI: 10.7759/cureus.63340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
INTRODUCTION The rising incidence of carbapenem resistance in Enterobacterales and Pseudomonas aeruginosa is a concern. Since carbapenemase production is the primary resistance mechanism, detecting and identifying the genes responsible for it is crucial to effectively monitor its spread. OBJECTIVE This study aims to detect positivity for the modified carbapenem inactivation method (mCIM) and ethylenediaminetetraacetic acid (EDTA)-carbapenem inactivation method (eCIM) for the detection of carbapenemase-producing Enterobacterales and Pseudomonas aeruginosa. METHODS Methods: A cross-sectional study was carried out at a tertiary care hospital, including 250 clinical isolates of Enterobacterales and Pseudomonas aeruginosa. These isolates exhibited resistance to at least one of the carbapenems as determined by the VITEK AST 2 System (bioMérieux, USA). The isolates were subjected to mCIM testing, and those that tested positive were further tested using eCIM. The results were interpreted in accordance with the guidelines provided by the Clinical and Laboratory Standards Institute (CLSI) 2023. RESULTS Out of the total 250 carbapenem-resistant Enterobacterales and Pseudomonas aeruginosa isolates, 151 (60.4%) were Klebsiella pneumonia, 44 (17.6%) were Escherichia coli, 10 (4.0%) were Enterobacter cloacae, 6 (2.4%) were Providencia spp., 4 (1.6%) were Serratia marcescens, 4 (1.6%) were Proteus mirabilis and 31 (12.4%) were Pseudomonas aeruginosa. Positivity for the mCIM was observed in 96% (240 out of 250) of the isolates. Of the mCIM-positive isolates, 234 (97.5%) also tested positive for eCIM, indicating metallo-β-Lactamase (MLB) production. A statistically significant association was found between both mCIM and eCIM positivity and the degree of resistance to carbapenem (p<0.05). Conclusion: This study shows that the inexpensive method, a combination of mCIM and eCIM assists in differentiating between serine carbapenemase producers and MLB producers, thereby guiding the selection of appropriate therapy and useful in infection control in resource-limited settings.
Collapse
Affiliation(s)
- Gaurav Verma
- Microbiology, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| | - Nipa Singh
- Microbiology, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| | - Shradha Smriti
- Microbiology, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| | | | - Dipti Pattnaik
- Microbiology, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| | - Sukanta Tripathy
- Transfusion Medicine, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| | - Ashok K Praharaj
- Microbiology, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| | - A Raj Kumar Patro
- Microbiology, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| |
Collapse
|
4
|
Giliazeva A, Akosah Y, Noack J, Mardanova A. Adhesion of Klebsiella oxytoca to bladder or lung epithelial cells is promoted by the presence of other opportunistic pathogens. Microb Pathog 2024; 190:106642. [PMID: 38599551 DOI: 10.1016/j.micpath.2024.106642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
The intestinal and respiratory tracts of healthy individuals serve as habitats for a diverse array of microorganisms, among which Klebsiella oxytoca holds significance as a causative agent in numerous community- and hospital-acquired infections, often manifesting in polymicrobial contexts. In specific circumstances, K. oxytoca, alongside other constituents of the gut microbiota, undergoes translocation to distinct physiological niches. In these new environments, it engages in close interactions with other microbial community members. As this interaction may progress to co-infection where the virulence of involved pathogens may be promoted and enhance disease severity, we investigated how K. oxytoca affects the adhesion of commonly co-isolated bacteria and vice versa during co-incubation of different biotic and abiotic surfaces. Co-incubation was beneficial for the adhesion of at least one of the two co-cultured strains. K. oxytoca enhanced the adhesion of other enterobacteria strains to polystyrene and adhered more efficiently to bladder or lung epithelial cell lines in the presence of most enterobacteria strains and S. aureus. This effect was accompanied by bacterial coaggregation mediated by carbohydrate-protein interactions occurring between bacteria. These interactions occur only in sessile, but not planktonic populations, and depend on the features of the surface. The data are of particular importance for the risk assessment of the urinary and respiratory tract infections caused by K. oxytoca, including those device-associated. In this paper, we present the first report on K. oxytoca ability to acquire increased adhesive capacities on epithelial cells through interactions with common causal agents of urinary and respiratory tract infections.
Collapse
Affiliation(s)
- Adeliia Giliazeva
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, Building 15, 01968, Senftenberg, Germany.
| | - Yaw Akosah
- Department of Molecular Pathobiology, College of Dentistry, New York University, 345 E. 24th St., 10010, New York, USA
| | - Jonas Noack
- Medipan GmbH, Computer Science, Ludwig-Erhard-Ring 3, 15827, Dahlewitz, Germany
| | - Ayslu Mardanova
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kremlyovskaya 18, 420008, Kazan, Russia
| |
Collapse
|
5
|
Dehdashti S, Mohseni P, Ghanbarpour R, Aslani S, Moradiyan MS, Kalantar-Neyestanaki D. The emergence of carbapenem-resistance and New Delhi metallo-β-lactamase-1 ( blaNDM-1) among Salmonella spp. in Kerman, Iran. IRANIAN JOURNAL OF MICROBIOLOGY 2024; 16:29-38. [PMID: 38682060 PMCID: PMC11055441 DOI: 10.18502/ijm.v16i1.14868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Background and Objectives Salmonella species (spp) are the most prevalent zoonotic pathogens that cause outbreaks of gastroenteritis worldwide. Therefore evaluation of the profile of antibiotic resistance, virulence factors, and plasmid replicon types in these bacteria is necessary to control and prevent the spread of potentially pathogenic and drug-resistant strains. Materials and Methods This study was performed on 39 Salmonella spp. The antibacterial susceptibility of isolates to various antibiotic agents was determined using disk diffusion test. β-lactamases (bla) including ESBLs, AmpC, MBLs, and virulence genes were detected by PCR methods. Plasmid incompatibility groups among the isolates were identified using PCR-based replicon typing (PBRT). Results The most prevalent virulent gene was phoP/Q (84.6%). slyA, sopB, and stn were identified in 79.4% (n=31), 69.2% (n=27), and 2.5% (n=1) of the isolates, respectively. The antibiotic susceptibility testing showed that 30.7% of the isolates were ESBL-producing. blaTEM (41%; n=16) was the most frequent β-lactamase gene among the isolates followed by blaNDM-1 (15.4%; n=6), blaDHA (7.7%; n=3), and blaCTX-M (1.5%; n=1). Six different plasmid replicon types, including IncP (n=9; 23%), IncFIC (n=3; 7.70%), IncY (n=3; 7.70%), IncI1-Iγ (n=2; 5.12%), IncFIIAs (n=1; 2.56%), and IncN (n=1; 2.56%) were observed among the isolates. Conclusion Our study showed the emergence of carbapenem-resistant and blaNDM-1 among Salmonella spp. for the first time in Kerman, Iran. Since Salmonella spp. plays an important role in the transmission of resistance genes in livestock and humans in the food chains, so more stringent control policies are recommended to prevent the circulation of drug-resistant and potentially pathogenic strains from animals to humans.
Collapse
Affiliation(s)
- Sanaz Dehdashti
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Parvin Mohseni
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Reza Ghanbarpour
- Molecular Microbiology Research Group, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Sajad Aslani
- Department of Pharmaceutics, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Davood Kalantar-Neyestanaki
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
6
|
Thomsen J, Abdulrazzaq NM, Everett DB, Menezes GA, Senok A, Ayoub Moubareck C. Carbapenem resistant Enterobacterales in the United Arab Emirates: a retrospective analysis from 2010 to 2021. Front Public Health 2023; 11:1244482. [PMID: 38145078 PMCID: PMC10745492 DOI: 10.3389/fpubh.2023.1244482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/24/2023] [Indexed: 12/26/2023] Open
Abstract
Background Carbapenem-resistant Enterobacterales (CRE) are spreading in the United Arab Emirates (UAE) where their dissemination is facilitated by international travel, trade, and tourism. The objective of this study is to describe the longitudinal changes of CRE as reported by the national AMR surveillance system of the UAE. Methods In this study, we retrospectively describe CRE isolated from 317 surveillance sites, including 87 hospitals and 230 centers/clinics from 2010 to 2021. The associated clinical, demographic, and microbiological characteristics are presented by relying on the UAE national AMR surveillance program. Data was analyzed using WHONET microbiology laboratory database software (http://www.whonet.org). Results A total of 14,593 carbapenem resistant Enterobacterales were analyzed, of which 48.1% were carbapenem resistant Klebsiella pneumoniae (CRKp), 25.1% carbapenem resistant Escherichia coli (CREc), and 26.8% represented 72 other carbapenem resistant species. Carbapenem resistant strains were mostly associated with adults and isolated from urine samples (36.9% of CRKp and 66.6% of CREc) followed by respiratory samples (26.95% for CRKp) and soft tissue samples (19.5% for CRKp). Over the studied period carbapenem resistance rates remained high, especially in K. pneumoniae, and in 2021 were equivalent to 67.6% for imipenem, 76.2% for meropenem, and 91.6% for ertapenem. Nevertheless, there was a statistically significant decreasing trend for imipenem and meropenem resistance in Klebsiella species (p < 0.01) while the decrease in ertapenem resistance was non-significant. Concerning E. coli, there was a statistically significant decreasing trend for meropenem and imipenem resistance over the 12 years, while ertapenem resistance increased significantly with 83.8% of E. coli exhibiting ertapenem resistance in 2021. Resistance rates to ceftazidime and cefotaxime remained higher than 90% (in 2021) for CRKp and cefotaxime rates increased to 90.5% in 2021 for CREc. Starting 2014, resistance to colistin and tigecycline was observed in carbapenem resistant Enterobacterales. CRE were associated with a higher mortality (RR: 6.3), admission to ICU (RR 3.9), and increased length of stay (LOS; 10 excess inpatient days per CRE case). Conclusion This study supports the need to monitor CRE in the UAE and draws attention to the significant increase of ertapenem resistance in E. coli. Future surveillance analysis should include a genetic description of carbapenem resistance to provide new strategies.
Collapse
Affiliation(s)
- Jens Thomsen
- Abu Dhabi Public Health Center, Abu Dhabi, United Arab Emirates
- Department of Pathology and Infectious Diseases, Khalifa University, Abu Dhabi, United Arab Emirates
| | | | | | - Dean B. Everett
- Department of Pathology and Infectious Diseases, Khalifa University, Abu Dhabi, United Arab Emirates
- Biotechnology Research Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Infection Research Unit, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Godfred Antony Menezes
- Department of Medical Microbiology and Immunology, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Abiola Senok
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- School of Dentistry, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
7
|
Yassin A, Huralska M, Pogue JM, Dixit D, Sawyer RG, Kaye KS. State of the Management of Infections Caused by Multidrug-Resistant Gram-Negative Organisms. Clin Infect Dis 2023; 77:e46-e56. [PMID: 37738671 DOI: 10.1093/cid/ciad499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Indexed: 09/24/2023] Open
Abstract
In the past decade, the prevalence of multidrug-resistant gram-negative (MDR-GN) bacterial infections has increased significantly, leading to higher rates of morbidity and mortality. Treating these infections poses numerous challenges, particularly when selecting appropriate empiric therapy for critically ill patients for whom the margin for error is low. Fortunately, the availability of new therapies has improved the treatment landscape, offering safer and more effective options. However, there remains a need to establish and implement optimal clinical and therapeutic approaches for managing these infections. Here, we review strategies for identifying patients at risk for MDR-GN infections, propose a framework for the choice of empiric and definitive treatment, and explore effective multidisciplinary approaches to managing patients in the hospital while ensuring a safe transition to outpatient settings.
Collapse
Affiliation(s)
- Arsheena Yassin
- Department of Pharmacy, Robert Wood Johnson University Hospital, New Brunswick, New Jersey, USA
| | - Mariya Huralska
- Division of Allergy, Immunology and Infectious Diseases, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Jason M Pogue
- Department of Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan, USA
- Department of Pharmacy, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Deepali Dixit
- Department of Pharmacy, Robert Wood Johnson University Hospital, New Brunswick, New Jersey, USA
- Ernest Mario School of Pharmacy, Rutgers, State University of New Jersey, Piscataway, New Jersey, USA
| | - Robert G Sawyer
- Department of Surgery, Western Michigan University Homer Stryker School of Medicine, Kalamazoo, Michigan, USA
| | - Keith S Kaye
- Division of Allergy, Immunology and Infectious Diseases, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| |
Collapse
|
8
|
Hu JN, Hu SQ, Li ZL, Bao C, Liu Q, Liu C, Xu SY. Risk factors of multidrug-resistant bacteria infection in patients with ventilator-associated pneumonia: A systematic review and meta-analysis. J Infect Chemother 2023; 29:942-947. [PMID: 37321291 DOI: 10.1016/j.jiac.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/03/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Multidrug-resistant (MDR) bacteria-induced VAP often has high lethality. We present this systematic review and meta-analysis to assess the risk factors for MDR bacterial infection in patients with VAP. METHODS PubMed, EMBASE, Web of Science, and Cochrane Library were searched for studies regarding MDR bacterial infection in VAP patients, from Jan 1996 to Aug 2022. Study selection, data extraction, and quality assessment of included studies were conducted by two reviewers independently, and potential risk factors for MDR bacterial infection were identified. RESULTS Meta-analysis showed that the score of the Acute Physiology and Chronic Health Evaluation II (APACHE-II) [OR = 1.009, 95% (CI 0.732, 1.287)], Simplified Acute Physiology Score II (SAPS-II) [OR = 2.805, 95%CI (0.854, 4.755)], length of hospital-stay before VAP onset (days) [OR = 2.639, 95%CI (0.387, 4.892)], in-ICU duration [OR = 3.958, 95%CI (0.894, 7.021)], Charlson index [OR = 1.000, 95%CI (0.889, 1.111)], overall hospital-stay [OR = 20.742, 95%CI (18.894, 22.591)], Medication of Quinolones [OR = 2.017, 95%CI (1.339, 3.038)], medication of carbapenems [OR = 3.527, 95%CI (2.476, 5.024)], combination of more than 2 prior antibiotics [OR = 3.181, 95%CI (2.102, 4.812)], and prior use of antibiotics [OR 2.971, 95%CI (2.001, 4.412)] were independent risk factors of MDR bacterial infection in VAP patients. Diabetes and mechanical ventilation duration before VAP onset showed no association with risk for MDR bacterial infection. CONCLUSIONS This study has identified 10 risk factors associated with MDR bacterial infection in VAP patients. Identification of these factors would be able to facilitate the treatment and prevention of MDR bacterial infection in clinical practice.
Collapse
Affiliation(s)
- Jian-Nan Hu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Sheng-Qi Hu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430030, Hubei Province, PR China.
| | - Zi-Ling Li
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Chen Bao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Qian Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Chao Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Shu-Yun Xu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
9
|
Pasha S A R, Suresh Kumar Yadav R, Ahmed MI, Chandra P. Rapid Detection of Carbapenemase-Producing Multidrug-Resistant (MDR) Pathogens by Modified Carba NP Test in Ventilator-Associated Pneumonia (VAP) in Elderly Patients. Cureus 2023; 15:e43895. [PMID: 37746408 PMCID: PMC10511941 DOI: 10.7759/cureus.43895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Background Ventilator-associated pneumonia (VAP) is defined as pneumonia that develops 48 hours or more after endotracheal intubation or tracheostomy and is brought on by infectious organisms that are not present or incubating during mechanical ventilation. Multidrug-resistant organisms originate primarily from the hospital environment and significantly contribute to ventilator-associated pneumonia. These organisms pose a severe threat, leading to a higher mortality rate due to their resistance to more potent antibiotics. Methods The study aims to assess the efficacy of the modified Carba NP test in detecting carbapenemase-producing bacteria in geriatric VAP patients. Results Forty (38 gram-negative and 2 gram-positive) pathogens were isolated from VAP patients. The isolates were identified using standard laboratory protocol; Acinetobacter spp. (n=16; 40% ), followed by Klebsiella pneumoniae (n=13; 32.5%), is the most common organism isolated. Seventeen (44.73%) were multi-drug resistant gram-negative bacteria. The carbapenemase producers were detected by the Kirby-Bauer disc diffusion method and compared with the modified Carba NP test with a turnaround time of 12-18 hrs in comparison to the disk diffusion test which requires additional 12hrs. Carbapenemase production was seen in 12 (70.59%) MDR isolates (7-Acinetobacter spp, 3-Klebsiella pneumonia, 1-Escherichia coli, and 1-Pseudomonas aeruginosa). Conclusion Modified Carba NP can be used as a rapid test to detect carbapenemase production, and it can replace the traditional disk diffusion method of detecting carbapenemase production. This test plays a crucial role in the management of critical patients by saving 12-18 hours to determine the most appropriate and effective antibiotic treatment. This timely decision is essential in preventing sepsis caused by localized infections.
Collapse
Affiliation(s)
- Rahil Pasha S A
- Department of Microbiology, Sri Devraj Urs Medical College, Kolar, IND
| | - Ruby Suresh Kumar Yadav
- Department of Microbiology, Employees' State Insurance Corporation (ESIC) Model Hospital, Gurugram, IND
| | - Md Iqbal Ahmed
- Department of Microbiology, Employees' State Insurance Corporation (ESIC) Medical College, Gulbarga, IND
| | - Pratibha Chandra
- Department of Microbiology, Employees' State Insurance Corporation (ESIC) Medical College, Patna, IND
| |
Collapse
|
10
|
Alnimr A. Antimicrobial Resistance in Ventilator-Associated Pneumonia: Predictive Microbiology and Evidence-Based Therapy. Infect Dis Ther 2023:10.1007/s40121-023-00820-2. [PMID: 37273072 DOI: 10.1007/s40121-023-00820-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
Ventilator-associated pneumonia (VAP) is a serious intensive care unit (ICU)-related infection in mechanically ventilated patients that is frequent, as more than half of antibiotics prescriptions in ICU are due to VAP. Various risk factors and diagnostic criteria for VAP have been referred to in different settings. The estimated attributable mortality of VAP can go up to 50%, which is higher in cases of antimicrobial-resistant VAP. When the diagnosis of pneumonia in a mechanically ventilated patient is made, initiation of effective antimicrobial therapy must be prompt. Microbiological diagnosis of VAP is required to optimize timely therapy since effective early treatment is fundamental for better outcomes, with controversy continuing regarding optimal sampling and testing. Understanding the role of antimicrobial resistance in the context of VAP is crucial in the era of continuously evolving antimicrobial-resistant clones that represent an urgent threat to global health. This review is focused on the risk factors for antimicrobial resistance in adult VAP and its novel microbiological tools. It aims to summarize the current evidence-based knowledge about the mechanisms of resistance in VAP caused by multidrug-resistant bacteria in clinical settings with focus on Gram-negative pathogens. It highlights the evidence-based antimicrobial management and prevention of drug-resistant VAP. It also addresses emerging concepts related to predictive microbiology in VAP and sheds lights on VAP in the context of coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Amani Alnimr
- Department of Microbiology, College of Medicine, King Fahad Hospital of the University, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia.
| |
Collapse
|
11
|
Hashemian M, Kazemian H, Kaviar VH, Karamolahi S, Nazari A, Bagheri MR, Sadeghifard N, Khoshnood S. Nosocomial infections and antimicrobial susceptibility patterns among patients admitted to intensive care unit of Imam Khomeini hospital in Ilam, Iran. Mol Biol Rep 2023:10.1007/s11033-023-08476-4. [PMID: 37155016 DOI: 10.1007/s11033-023-08476-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/19/2023] [Indexed: 05/10/2023]
Abstract
INTRODUCTION Nosocomial infections (NIs) are a major challenge worldwide. Identification of antibiotic resistance pattern extended spectrum beta-lactamases (ESBLs) and carbapenem-resistant Enterobacteriaceae (CRE) were the objectives of this study. METHODS In this cross-sectional study, the antimicrobial susceptibility pattern of bacterial isolates collected from patients with NIs in ICU was determined. Overall, 42 Escherichia coli and Klebsiella pneumoniae isolates from different infection sites were used to determine phenotypic tests of ESBLs, Metallo-β-lactamases (MBLs) and CRE. Detection of ESBLs, MBLs and CRE genes were performed by the polymerase chain reaction (PCR) method. RESULTS From 71 patients with NIs, 103 different bacterial strains were isolated. The most frequently isolated bacteria were E. coli (n = 29; 28.16%), Acinetobacter baumannii (n = 15; 14.56%), and K. pneumoniae (n = 13; 12.26%). Also, the rate of multidrug-resistant (MDR) isolates was 58.25% (60/103). Based on phenotypic confirmation tests, 32 (76.19%) isolates of E. coli and K. pneumoniae produced ESBLs, and 6 (14.28%) isolates were identified as CRE producers. PCR showed the high prevalence of the blaCTX-M (n = 29; 90.62%) in ESBL genes. In addition, blaNDM was detected in 4 (66.66%), blaOXA-23 in 3 (50%), and blaOXA-48 gene in 1 (16.66%) isolates. The blaVIM, blaKPC, and blaIMP genes were not detected in any of the isolates. CONCLUSION The Gram-negative bacteria E. coli, A. baumannii, and K. pneumoniae with high resistance levels were the most common bacteria causing NIs in the ICU. This study for the first time identified blaOXA-11, blaOXA-23, and blaNDM-1 genes in E. coli and K. pneumoniae in Ilam city of Iran.
Collapse
Affiliation(s)
- Marzieh Hashemian
- Department of Microbiology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Hossein Kazemian
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Vahab Hassan Kaviar
- Department of Microbiology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Somayeh Karamolahi
- Department of Microbiology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Ali Nazari
- Department of Infectious Diseases, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohammad Reza Bagheri
- Department of Nursing, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Nourkhoda Sadeghifard
- Department of Microbiology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran.
| | - Saeed Khoshnood
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran.
| |
Collapse
|
12
|
Zheng R, Jiang Y, Yan C, Li Y, Song X, Zheng P. Intra-Abdominal Hypertension Contributes to the Development of Ventilator-Associated Pneumonia from Intestinal Bacteria. Infect Drug Resist 2023; 16:1913-1921. [PMID: 37025194 PMCID: PMC10072333 DOI: 10.2147/idr.s403714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
Introduction Ventilator-associated pneumonia (VAP) is an ICU (intensive care unit)-acquired pulmonary parenchymal infection that is complicated by mechanical ventilation and is associated with high morbidity and mortality. Klebsiella pneumoniae (KPN) is known to asymptomatically colonize the gastrointestinal tract and may increase the incidence of corresponding VAP. Our study aims were to investigate the exact origin of the carbapenem-resistant Klebsiella pneumoniae (CRKP) causing VAP in our patient. Methods Various environmental samples, including the patient's anal swab, were collected in order to find the source of the bacteria. Minimum inhibitory concentrations (MICs) for antimicrobial agents were determined according to the guidelines of the Clinical and Laboratory Standards Institute (CLSI); resistant genes were detected by using PCR and sequencing; clone relationships were analyzed by using multilocus-sequence typing (MLST) and pulsed field gel electrophoresis (PFGE). The IAP values were obtained via urinary catheter. Results One CRKP strain was detected in the patient's anal swab; this strain was confirmed with the same gene type as the strain isolated from the sputum. We found that the patient's intra-abdominal pressure (IAP) was 29.41, 27.06, 24.12, and 22.66 mmHg; the IAP was either equal to or above 12 mmHg, on the operation day and the following three days. Intra-abdominal hypertension (IAH) occurred during the patient's hospitalization and was considered to be caused by the surgical procedure. Meanwhile, we found that there was a correlation between IAH and the detection of CRKP in the sputum. The findings suggested that his VAP was caused by intestinal colonial KPN, and not from the environment. Discussion Our research illustrated that the ST11 KPC-2-producing strain colonized the intestinal tract and caused the development of VAP when the IAP was elevated. Routine screening for the intestinal carriage of CRKP, among patients in ICUs, can limit and prevent current and future outbreaks.
Collapse
Affiliation(s)
- Rui Zheng
- Department of Clinical Laboratory, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Yaxian Jiang
- Department of Clinical Laboratory, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Cheng Yan
- Medical School, Kunming University of Science and Technology, The First People’s Hospital of Yunnan, Kunming, People’s Republic of China
| | - Yikun Li
- Department of Clinical Laboratory, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Xiaozhou Song
- Department of Infection Control, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
- Xiaozhou Song, Department of Infection Control, The First People’s Hospital of Yunnan Province, No. 157 of Jingbi Road, Kunming, People’s Republic of China, Tel +86 013888144965, Email
| | - Pengcheng Zheng
- Department of Pharmacy, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
- Correspondence: Pengcheng Zheng, Department of Pharmacy, The First People’s Hospital of Yunnan Province, No. 157 of Jingbi Road, Kunming, People’s Republic of China, Tel +86 013888116045, Email
| |
Collapse
|
13
|
Xiao C, Li X, Huang L, Cao H, Han L, Ni Y, Xia H, Yang Z. Prevalence and molecular characteristics of polymyxin-resistant Enterobacterales in a Chinese tertiary teaching hospital. Front Cell Infect Microbiol 2023; 13:1118122. [PMID: 37143741 PMCID: PMC10151768 DOI: 10.3389/fcimb.2023.1118122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/29/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction Polymyxin-resistant Enterobacterales poses a significant threat to public health globally, but its prevalence and genomic diversity within a sole hospital is less well known. In this study, the prevalence of polymyxin-resistant Enterobacterales in a Chinese teaching hospital was investigated with deciphering of their genetic determinants of drug resistance. Methods Polymyxin-resistant Enterobacterales isolates identified by matrix-assisted laser desorption were collected in Ruijin Hospital from May to December in 2021. Both the VITEK 2 Compact and broth dilution methods were used to determine polymyxin B (PMB) susceptibility. Polymyxin-resistant isolates were further characterized by molecular typing using PCR, multi-locus sequence typing, and sequencing of the whole genome. Results Of the 1,216 isolates collected, 32 (2.6%) across 12 wards were polymyxin-resistant (minimum inhibitory concentration (MIC) range, PMB 4-256 mg/ml, and colistin 4 ≥ 16 mg/ ml). A total of 28 (87.5%) of the polymyxin-resistant isolates had reduced susceptibility to imipenem and meropenem (MIC ≥ 16 mg/ml). Of the 32 patients, 15 patients received PMB treatment and 20 survived before discharge. The phylogenetic tree of these isolates showed they belonged to different clones and had multiple origins. The polymyxin-resistant Klebsiella pneumoniae isolates belonged to ST-11 (85.72%), ST-15 (10.71%), and ST-65 (3.57%), and the polymyxin-resistant Escherichia coli belonged to four different sequence types, namely, ST-69 (25.00%), ST-38 (25.00%), ST-648 (25.00%), and ST-1193 (25.00%). In addition, six mgrB specific mutations (snp_ALT c.323T>C and amino acid change p.Val8Ala) were identified in 15.6% (5/32) of the isolates. mcr-1, a plasmid-mediated polymyxin-resistant gene, was found in three isolates, and non-synonymous mutations including T157P, A246T, G53V, and I44L were also observed. Discussion In our study, a low prevalence of polymyxin-resistant Enterobacterales was observed, but these isolates were also identified as multidrug resistant. Therefore, efficient infection control measures should be implemented to prevent the further spread of resistance to last-line polymyxin therapy.
Collapse
Affiliation(s)
- Chenlu Xiao
- Department of Laboratory Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Microbiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuming Li
- Department of Scientific Affairs, Hugobiotech Co., Ltd., Beijing, China
| | - Lianjiang Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Huiluo Cao
- Department of Microbiology, The University of Hongkong, Hong Kong, Hong Kong SAR, China
| | - Lizhong Han
- Department of Laboratory Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Microbiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxing Ni
- Department of Infection Control, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Han Xia
- Department of Scientific Affairs, Hugobiotech Co., Ltd., Beijing, China
| | - Zhitao Yang
- Department of Emergency, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Zhitao Yang,
| |
Collapse
|
14
|
Ghotaslou R, Salahi B, Naderi G, Alizadeh N. High Frequency of blaOXA-48like
Producing Klebsiella pneumoniae Isolated from Nosocomial Infection in Azerbaijan, Iran. Infect Chemother 2023; 55:90-98. [PMID: 37021426 PMCID: PMC10079451 DOI: 10.3947/ic.2022.0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/17/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Klebsiella pneumoniae is one of the significant agents of hospital-acquired infections. In recent years, carbapenem-resistant K. pneumoniae (CRKP) isolates have been found in numerous epidemics of nosocomial infections. This study aimed to determine carbapenem resistance mechanisms and molecular epidemiological of CRKP infections in Azerbaijan, Iran. MATERIALS AND METHODS A total of 50 non-duplicated CRKP from January 2020 to December 2020 were isolated form Sina and Imam Reza Hospitals in Tabriz, Iran. Antimicrobial susceptibility testing was performed by the disk-diffusion method. The carbapenem resistance mechanisms were determined by the phenotypic and PCR procedures. CRKP isolates were typed by the Random Amplified Polymorphic DNA PCR (RAPD-PCR) technique. RESULTS Amikacin was the most effective antibiotics against CRKP isolates. AmpC overproduction was observed in five CRKP isolates. Efflux pump activity was found in one isolate by the phenotypic method. Carba NP test could find carbapenemases genes in 96% of isolates. The most common carbapenemases gene in CRKP isolates were blaOXA-48-like (76%) followed by blaNDM (50%), blaIMP (22%), blaVIM (10%), and blaKPC (10%). The outer membrane protein genes (OmpK36 and OmpK35) were identified in 76% and 82% of CRKP isolates, respectively. RAPD-PCR analysis yielded 37 distinct RAPD-types. Most blaOXA-48-like positive CRKP isolates were obtained from patients hospitalized in intensive care unit (ICU) wards with urinary tract infections. CONCLUSION The blaOXA-48-like is the main carbapenemase among CRKP isolates in this area. Most blaOXA-48-like producer CRKP strains were collected from the ICU ward and urine samples. To control infections due to CRKP, a strict control program in hospital settings is required.
Collapse
Affiliation(s)
- Reza Ghotaslou
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Central Laboratory of the Province, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Salahi
- Razi Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghazal Naderi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Alizadeh
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran .
| |
Collapse
|
15
|
Molecular Epidemiology of Carbapenem-Resistant Klebsiella pneumoniae in a Tertiary Hospital in Northern China. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:2615753. [PMID: 36510603 PMCID: PMC9741528 DOI: 10.1155/2022/2615753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 12/05/2022]
Abstract
Background In recent years, carbapenem-resistant Klebsiella pneumoniae (CRKP) has emerged rapidly in China with the abuse and overuse of antibiotics, and infections caused by CRKP pose a serious threat to global public health safety. The present study aimed to explore the epidemiological characteristics of CRKP isolates in Northern China and to elucidate their drug resistance mechanisms. Methods 45 CRKP strains were consecutively collected at a teaching hospital from March 1st, 2018 to June 30th, 2018. Antimicrobial susceptibility was determined by the VITEK2 compact system and microbroth dilution method. Polymerase chain reaction (PCR) and sequencing were used to analyze multilocus sequence typing (MLST), drug resistance determinants, and plasmid types. The transfer of resistance genes was determined by conjugation. All statistical analysis was performed using SPSS 22.0 software. Results All 45 isolates showed multidrug resistance (MDR). MLST analysis showed ST11 (48.9%, 22/45) was the most frequent type. All of the 45 CRKP isolates contained carbapenemase genes, extended-spectrum β-lactamase (ESBL) genes, and plasmid-mediated quinolone resistance (PMQR) genes. For carbapenemase genes, KPC-2 (93.3%, 42/45) was the main genotype, and followed by GES (37.8%, 17/45) and NDM-1 (11.1%, 5/45). Plasmid typing analysis showed that IncFII and IncFIB were the most prevalent plasmids. The carbapenem resistance rate of K.pneumoniae was 11.4% and ICU was the main CRKP infection source. Conclusions ST11 is the most frequent sequence type and KPC-2 is the predominant carbapenemase of CRKP strains in Northern China. KPC-2-ST11 are representative clonal lineages.
Collapse
|
16
|
Hegazy EE, Bahey MG, Abo Hagar AM, Elkholy AA, Mohamed EA. Carbapenem-Resistant Gram-Negative Bacilli Causing Ventilator Associated Pneumonia: Study of MASTDISCS Combi Carba Plus for Detection of Carbapenemase Producing Enterobacterales. Infect Drug Resist 2022; 15:6331-6342. [PMID: 36337932 PMCID: PMC9635390 DOI: 10.2147/idr.s385294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
Background Ventilator-associated pneumonia (VAP) caused by carbapenem-resistant gram-negative bacteria has been proven to be an escalating public health challenge in Egypt owing to its high mortality rate and raised health care costs. Purpose Detection of carbapenem-resistant gram-negative bacilli among VAP patients, genotypic identification of carbapenemase genes in the isolated strains with evaluation of their impact on patient outcome and detection of carbapenemase-producing enterobacterales by MASTDISCS combi Carba plus disc system. Methods Broncho-alveolar lavage fluid (BALF) and endotracheal aspirate were collected aseptically from clinically suspected VAP patients. Pathogen identification and antibiotic sensitivity testing were done. Carbapenemase-encoding genes (blaKPC, blaNDM, and blaOXA-48) were tested by PCR in all carbapenem-resistant gram-negative isolates. Performance of MASTDISCS combi Carba plus in isolated Enterobacterales was assessed in relation to the PCR results. Results Eighty-three carbapenem-resistant gram-negative isolates were detected. The most frequent pathogens were Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aeruginosa representing 34.9%, 20.5% and 18.1%, respectively. blaKPC was the predominant gene. Patients with persistent mechanical ventilation less than 15 days and Pseudomonas aeruginosa infection were significantly associated with a higher death rate. MAST-Carba plus had the highest sensitivity, specificity, positive and negative predictive values for detecting OXA-48 carbapenemases representing 81.8%, 92.5%, 75% and 94.9%, respectively. Conclusion Worse outcome in VAP patients was associated with carbapenem-resistant gram-negative bacilli. MASTDISCS combi Carba plus is an efficient simple method for identification of different carbapenemases among enterobacterales.
Collapse
Affiliation(s)
- Eman E Hegazy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Tanta University, Tanta, Egypt,Correspondence: Eman E Hegazy, Tel +20 10 99008274, Email
| | - Marwa Gamal Bahey
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Alaa Mohammed Abo Hagar
- Department of Anesthesiology, Surgical Intensive Care and Pain Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Esraa A Mohamed
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
17
|
Duan Q, Wang Q, Sun S, Cui Q, Ding Q, Wang R, Wang H. ST11 Carbapenem-Resistant Klebsiella pneumoniae Clone Harboring blaNDM Replaced a blaKPC Clone in a Tertiary Hospital in China. Antibiotics (Basel) 2022; 11:antibiotics11101373. [PMID: 36290031 PMCID: PMC9598860 DOI: 10.3390/antibiotics11101373] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
The nosocomial spread of carbapenem-resistant Enterobacterales (CRE) is extremely common, resulting in severe burdens on healthcare systems. In particular, the high-risk Klebsiella pneumoniae ST11 strain has a wide endemic area in China. The current study describes the results of continuous monitoring of CRE genotypes and phenotypes in a tertiary hospital in North China from 2012 to 2020. A total of 160 isolates were collected, including 109 Klebsiella. pneumoniae (68.13%), 29 Escherichia coli (26.60%), 12 Enterobacter cloacae (7.50%), and 10 other strains (6.25%). A total of 149 carbapenemase genes were detected, of which blaKPC-2 (51.0%) was the most common, followed by blaNDM-1 (22.82%), and blaNDM-5 (23.49%). Based on multi-locus sequence typing, the ST11 strain (66.1%) dominates K. pneumoniae, followed by ST15 (13.8%). Interestingly, the proportion of blaNDM (22.2%, 16/72) in ST11 K. pneumoniae was significantly increased in 2018−2019. Hence, whole-genome sequencing was performed on ST11 K. pneumoniae. Growth curves and in vitro competition experiments showed that K. pneumoniae carrying blaNDM exhibited a stronger growth rate (p < 0.001) and competition index (p < 0.001) than K. pneumoniae carrying blaKPC. Moreover, K. pneumoniae carrying blaNDM had a stronger biofilm-forming ability than K. pneumoniae carrying blaKPC (t = 6.578; p < 0.001). K. pneumoniae carrying blaKPC exhibited increased defense against bactericidal activity than K. pneumoniae carrying blaNDM. Thus, ST11 K. pneumoniae carrying blaNDM has strong adaptability and can locally replace K. pneumoniae carrying blaKPC to become an epidemic strain. Based on these findings, infection control and preventive measures should focus on the high-risk ST11-K. pneumoniae strain.
Collapse
Affiliation(s)
- Qiaoyan Duan
- Department of Clinical Laboratory, Shanxi Provincial People’s Hospital, Taiyuan 030012, China
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing 100044, China
| | - Qi Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing 100044, China
| | - Shijun Sun
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing 100044, China
| | - Qiaozhen Cui
- Department of Clinical Laboratory, Shanxi Provincial People’s Hospital, Taiyuan 030012, China
| | - Qi Ding
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing 100044, China
| | - Ruobing Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing 100044, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing 100044, China
- Correspondence:
| |
Collapse
|
18
|
Xiao C, Zhu Y, Yang Z, Shi D, Ni Y, Hua L, Li J. Prevalence and Molecular Characteristics of Polymyxin-Resistant Pseudomonas aeruginosa in a Chinese Tertiary Teaching Hospital. Antibiotics (Basel) 2022; 11:antibiotics11060799. [PMID: 35740205 PMCID: PMC9219935 DOI: 10.3390/antibiotics11060799] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 12/01/2022] Open
Abstract
Polymyxin-resistant Pseudomonas aeruginosa is a major threat to public health globally. We investigated the prevalence of polymyxin-resistant P. aeruginosa in a Chinese teaching hospital and determined the genetic and drug-resistant phenotypes of the resistant isolates. P. aeruginosa isolates identified by MALDI-TOF MS were collected across a 3-month period in Ruijin Hospital. Antimicrobial susceptibility was determined by a Vitek-2 Compact system with broth dilution used to determine polymyxin B (PMB) susceptibility. Polymyxin-resistant isolates were further characterized by molecular typing using PCR, multi-locus sequence typing (MLST) and whole-genome sequencing. Phylogenetic relationships were analyzed using single nucleotide polymorphism (SNP) from the whole-genome sequencing. Of 362 P. aeruginosa isolates collected, 8 (2.2%) isolates from separate patients across six wards were polymyxin-resistant (MIC range, PMB 4–16 μg/mL and colistin 4–≥16 μg/mL). Four patients received PMB treatments (intravenous, aerosolized and/or topical) and all patients survived to discharge. All polymyxin-resistant isolates were genetically related and were assigned to five different clades (Isolate 150 and Isolate 211 being the same ST823 type). Genetic variations V51I, Y345H, G68S and R155H in pmrB and L71R in pmrA were identified, which might confer polymyxin resistance in these isolates. Six of the polymyxin-resistant isolates showed reduced susceptibility to imipenem and meropenem (MIC range ≥ 16 μg/mL), while two of the eight isolates were resistant to ceftazidime. We revealed a low prevalence of polymyxin-resistant P. aeruginosa in a Chinese teaching hospital with most polymyxin-resistant isolates being multidrug-resistant. Therefore, effective infection control measures are urgently needed to prevent further spread of resistance to the last-line polymyxins.
Collapse
Affiliation(s)
- Chenlu Xiao
- Department of Laboratory Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
- Department of Clinical Microbiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yan Zhu
- Monash Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Melbourne 3800, Australia;
| | - Zhitao Yang
- Department of Emergency, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Dake Shi
- Department of Infection Control, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (D.S.); (Y.N.)
| | - Yuxing Ni
- Department of Infection Control, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (D.S.); (Y.N.)
| | - Li Hua
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Correspondence: (L.H.); (J.L.)
| | - Jian Li
- Monash Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Melbourne 3800, Australia;
- Correspondence: (L.H.); (J.L.)
| |
Collapse
|
19
|
Use of the Combined Modified Carbapenem Inactivation Method and EDTA-modified Carbapenem Inactivation Method for Detection of Carbapenemase-Producing Enterobacteriaceae Causing Ventilator-associated Respiratory Infections. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.2.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is an alarming rise in carbapenem-resistant Enterobacteriaceae (CRE) causing nosocomial infections such as ventilator-associated respiratory infections (VARIs). The use of rapid phenotypic methods for the detection and differentiation of carbapenemases elaborated by these CRE would be helpful in providing timely empirical therapeutic options for management of these infections and preventing spread of these CRE strains in hospital settings. Hence, this study aimed to detect CRE among pathogens isolated from the endotracheal secretions recieved from suspected cases of VARIs and differentiate carbapenemases elaborated by these CRE using combined phenotypic methods, such as the modified carbapenem inactivation method (mCIM) and EDTA modified CIM (eCIM). This observational study was conducted over a period of 1 year in the Department of Microbiology and the intensive care unit of a tertiary care center. Carbapenem resistance was found in 75% of Klebsiella pneumoniae isolates and 50% of Escherichia coli isolates, of which 58.4% were metallo-β-lactamases and 41.6% were serine carbapenemase producers. In conclusion, the combination of the mCIM and eCIM could be useful as an epidemiological tool and be considered essential in deciding the initial antibiotic therapy, help reduce morbidity and mortality associated with VARIs, and guide hospital infection control practices.
Collapse
|
20
|
Peng C, Feng DH, Zhan Y, Wang Q, Chen DQ, Xu Z, Yang L. Molecular Epidemiology, Microbial Virulence, and Resistance of Carbapenem-Resistant Enterobacterales Isolates in a Teaching Hospital in Guangzhou, China. Microb Drug Resist 2022; 28:698-709. [PMID: 35639427 DOI: 10.1089/mdr.2021.0156] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Infection caused by carbapenem-resistant Enterobacterales (CRE) is a global public health problem. We performed whole-genome sequencing to investigate the molecular epidemiological characteristics of local CRE infections and understand the prevalence of hypervirulent carbapenem-resistant Klebsiella pneumoniae (CRKP). Analysis of multiLocus sequence typing (MLST), antibiotic resistance genes, plasmid replicons, virulence genes, and the genetic environment was also performed. Klebsiella pneumoniae (89, 60.95%) was the most common CRE species, primarily prevalent in the intensive care unit (36, 40.45%). Most CRE strains showed a high resistance rate to multiple antibiotics, especially cephalosporins and carbapenems. However, most of these isolates were susceptible to tigecycline (81.7%). Notably, the predominant sequence type (ST) of CRKP isolates was ST11 (80.90%, 72/89), with 93.05% as Klebsiella pneumoniae carbapenemase (KPC)-ST11. In Escherichia coli isolates, ST410 (21.43%, 6/28) was the predominant type, with approximately half carrying blaNDM-5, and importantly, the ST167 carbapenem-resistant Escherichia coli (CRECO) harbors both New Delhi metallo-β-lactamase (NDM)-5 and KPC-2. In Enterobacter cloacae isolates, three cases of ST88 were carrying the blaNDM-1 gene, and the ST594 carbapenem-resistant Enterobacter cloacae (CRECC) carrying NDM-1 and KPC-2 has also been identified. In addition, we found three novel STs, ST5386-ST5388. The IncFII (pHN7A8) (98.41%, 62/63) was the most common plasmid replicon type in KPC-2-producing CRKP strains, and the predominant plasmid ST of IncF was [f33:A-:B-] (n = 73). Two CRKP isolates were found to carry 4 virulence genes (iutA, iroB, rmpA, and rmpA2). As concluded, among CRKP strains, ST11 was the predominant ST with blaKPC-2, and a large proportion of CRKP strains co-harbor blaKPC-2, blaSHV, blaCTX-M, blaTEB-1B, and fosA. The predominant carbapenemase genes carried by CRECO and CRECC were blaNDM-1 and blaCTX-M, respectively.
Collapse
Affiliation(s)
- Chen Peng
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dong-Hua Feng
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yi Zhan
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qun Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ding-Qiang Chen
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhenbo Xu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, Guangdong, China.,Department of Civil and Environmental Engineering, University of Maryland, College Park, Maryland, USA.,Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), South China University of Technology, Guangzhou, Guangdong, China
| | - Ling Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Assefa M. Multi-drug resistant gram-negative bacterial pneumonia: etiology, risk factors, and drug resistance patterns. Pneumonia (Nathan) 2022; 14:4. [PMID: 35509063 PMCID: PMC9069761 DOI: 10.1186/s41479-022-00096-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/11/2022] [Indexed: 12/27/2022] Open
Abstract
Bacterial pneumonia is one of the most serious public health issues owing to its medical and economic costs, which result in increased morbidity and mortality in people of all ages around the world. Furthermore, antimicrobial resistance has risen over time, and the advent of multi-drug resistance in GNB complicates therapy and has a detrimental impact on patient outcomes. The current review aimed to summarize bacterial pneumonia with an emphasis on gram-negative etiology, pathogenesis, risk factors, resistance mechanisms, treatment updates, and vaccine concerns to tackle the problem before it causes a serious consequence. In conclusion, the global prevalence of GNB in CAP was reported 49.7% to 83.1%, whereas in VAP patients ranged between 76.13% to 95.3%. The most commonly reported MDR-GNB causes of pneumonia were A. baumannii, K. pneumoniae, and P. aeruginosa, with A. baumannii isolated particularly in VAP patients and the elderly. In most studies, ampicillin, tetracyclines, amoxicillin-clavulanic acid, cephalosporins, and carbapenems were shown to be highly resistant. Prior MDR-GNB infection, older age, previous use of broad-spectrum antibiotics, high frequency of local antibiotic resistance, prolonged hospital stays, ICU admission, mechanical ventilation, and immunosuppression are associated with the MDR-GNB colonization. S. maltophilia was reported as a severe cause of HAP/VAP in patients with mechanically ventilated and having hematologic malignancy due to its ability of biofilm formation, site adhesion in respiratory devices, and its intrinsic and acquired drug resistance mechanisms. Effective combination therapies targeting PDR strains and drug-resistant genes, antibiofilm agents, gene-based vaccinations, and pathogen-specific lymphocytes should be developed in the future.
Collapse
Affiliation(s)
- Muluneh Assefa
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, P.O. Box 196, Gondar, Ethiopia.
| |
Collapse
|
22
|
Zhang Z, Sun Z, Tian L. Antimicrobial Resistance Among Pathogens Causing Bloodstream Infections: A Multicenter Surveillance Report Over 20 Years (1998–2017). Infect Drug Resist 2022; 15:249-260. [PMID: 35115793 PMCID: PMC8800585 DOI: 10.2147/idr.s344875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/13/2022] [Indexed: 01/14/2023] Open
Abstract
Purpose Bloodstream infections (BSIs) are a common consequence of infectious diseases and cause high morbidity and mortality. Appropriate antibiotic use is critical for patients’ treatment and prognosis. Long-term monitoring and analysis of antimicrobial resistance are important in guiding physicians to choose appropriate antibiotics and understand the changes in antimicrobial resistance and infection control. Here, we report a retrospective study on the trends of antimicrobial resistance in the common BSI-associated pathogens. Methods The identification of strains and antimicrobial susceptibility tests were performed in each anticipating hospital independently. Data from the Hubei Province Antimicrobial Resistance Surveillance System (HBARSS) from 1998 to 2017 were retrospectively analyzed using WHONET 5.6 software. Results Data from HBARSS (1998–2017) revealed that 40,518 Gram-positive bacteria and 26,568 Gram-negative bacteria caused BSIs, the most common of which were Staphylococcus aureus and Escherichia coli. Salmonella typhi was a predominant BSI-associated pathogen in 1998–2003. Antimicrobial susceptibility data showed that the resistance rates of E. coli and Klebsiella pneumoniae to cefotaxime were significantly higher than those to ceftazidime. The proportion of strains of special antimicrobial resistance phenotypes including difficult-to-treat resistance (DTR), carbapenem-resistant (CR), extended-spectrum cephalosporin resistant (ECR) and fluoroquinolone resistant (FQR) in E. coli was 0.18%, 0.26%, 13.95%, 22.78% while in K. pneumoniae was 11.95%, 14.00%, 31.91% and 11.40%, respectively. In 2013–2017, K. pneumoniae showed resistance levels reaching 15.8% and 17.5% to imipenem and meropenem, respectively, and Acinetobacter baumannii showed high resistance rates ranging from 60 to 80% to common antibiotics. The detection rate of Salmonella typhi resistance to third-generation cephalosporins and fluoroquinolones was less than 5%. Control of methicillin-resistant Staphylococcus aureus (MRSA) remains a major challenge, and in 2009–2017, the MRSA detection rate was 40–50%. Conclusion Prevalence of CR K. pneumoniae has increased significantly in recent years. Resistance rates of A. baumannii to common antimicrobial agents have increased exponentially, reaching high levels. MRSA remains a challenge to control. For K. pneumoniae, DTR, CR, ECR and FQR were antimicrobial resistance phenotypes that could not be ignored while for E. coli DTR and CR were rare antimicrobial resistance phenotypes. CR K. pneumoniae, A. baumannii and MRSA present major challenges for controlling BSIs.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Ziyong Sun
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Lei Tian
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
- Correspondence: Lei Tian, Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China, Email
| |
Collapse
|
23
|
Li Z, Ding Z, Liu Y, Jin X, Xie J, Li T, Zeng Z, Wang Z, Liu J. Phenotypic and Genotypic Characteristics of Biofilm Formation in Clinical Isolates of Acinetobacter baumannii. Infect Drug Resist 2021; 14:2613-2624. [PMID: 34262306 PMCID: PMC8274629 DOI: 10.2147/idr.s310081] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
Background Acinetobacter baumannii is an important pathogen in clinical infections, and biofilm formation is an effective way for A. baumannii to survive under external pressures. In this study, the aims were to examine the antimicrobial resistance, biofilm formation, and biofilm-specific resistance in clinical isolates of A. baumannii. Materials and Methods A total of 104 clinical A. baumannii isolates were collected from a large teaching hospital in Southwest China. The antibiotics susceptibilities were tested, and biofilm-forming ability was evaluated by crystal violet staining by confocal laser scanning microscopy (CLSM). Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), minimum biofilm inhibitory concentration (MBIC), and minimum biofilm eradication concentration (MBEC) of ciprofloxacin, meropenem, and ceftazidime were tested on selected strains by broth microdilution method. Biofilm-associated genes were detected by polymerase chain reaction (PCR), and expression of genes at planktonic stage and biofilm stage were analyzed by real-time reverse transcription PCR (RT-PCR). Results Multidrug-resistant (MDR) isolates accounted for 65.4%, but no strain was resistant to tigecycline and polymyxin B. Moreover, non-MDR strains tended to form stronger biofilms than MDR strains, and a negative correlation between biofilm-forming ability and resistance profiles to each of tested antimicrobials were observed. The MBECs and MBICs of ciprofloxacin, ceftazidime, and meropenem were evidently increased compared with MICs and MBCs among all tested strains. Additionally, the biofilm formation ability of the csuD-positive strains was stronger than that of the csuD-negative strains. The strains in MDR group had higher carrying rate of csuA and csuD genes than non-MDR group, while non-MDR strains possessed more ompA gene than MDR group. Finally, abaI gene was significantly up-regulated after biofilm formation. Conclusion These results revealed valuable data for the negative correlation between antimicrobial resistance and biofilm formation, as well as phenotypic and genotypic characteristics of biofilm formation in A. baumannii.
Collapse
Affiliation(s)
- Zhaoyinqian Li
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Zixuan Ding
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Yao Liu
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Xinrui Jin
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jingling Xie
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Tingting Li
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Zhangrui Zeng
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Zhibin Wang
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jinbo Liu
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| |
Collapse
|
24
|
Multimodal Interventions to Prevent and Control Carbapenem-Resistant Enterobacteriaceae and Extended-Spectrum β-Lactamase Producer-Associated Infections at a Tertiary Care Hospital in Egypt. Antibiotics (Basel) 2021; 10:antibiotics10050509. [PMID: 33946253 PMCID: PMC8146387 DOI: 10.3390/antibiotics10050509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 11/17/2022] Open
Abstract
The current rise of multidrug-resistant (MDR) Gram-negative Enterobacteriaceae including the extended-spectrum β-lactamase (ESBL)-producing organisms and carbapenem-resistant Enterobacteriaceae (CRE) has been increasingly reported worldwide, posing new challenges to health care facilities. Accordingly, we evaluated the impact of multimodal infection control interventions at one of the major tertiary healthcare settings in Egypt for the aim of combating infections by the respective pathogens. During the 6-month pre-intervention period, the incidence rate of CRE and ESBL-producing clinical cultures were 1.3 and 0.8/1000 patient days, respectively. During the post-intervention period, the incidence of CRE and ESBL producers continued to decrease, reaching 0.5 and 0.28/1000 patient days, respectively. The susceptibility rate to carbapenems among ESBL producers ranged from 91.4% (ertapenem) to 98.3% (imipenem), amikacin (93%), gentamicin (56.9%), and tobramycin (46.6%). CRE showed the highest resistance pattern toward all of the tested β-lactams and aminoglycosides, ranging from 87.3% to 94.5%. Both CRE and ESBL producers showed a high susceptibility rate (greater than 85.5%) to colistin and tigecycline. In conclusion, our findings revealed the effectiveness of implementing multidisciplinary approaches in controlling and treating infections elicited by CRE and ESBL producers.
Collapse
|
25
|
Correlation between the Antibiotic Resistance Genes and Susceptibility to Antibiotics among the Carbapenem-Resistant Gram-Negative Pathogens. Antibiotics (Basel) 2021; 10:antibiotics10030255. [PMID: 33806340 PMCID: PMC8001261 DOI: 10.3390/antibiotics10030255] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
In this study, the correlation between the antibiotic resistance genes and antibiotic susceptibility among the carbapenem-resistant Gram-negative pathogens (CRGNPs) recovered from patients diagnosed with acute pneumonia in Egypt was found. A total of 194 isolates including Klebsiella pneumoniae (89; 46%), Escherichia coli (47; 24%) and Pseudomonas aeruginosa (58; 30%) were recovered. Of these, 34 (18%) isolates were multiple drug resistant (MDR) and carbapenem resistant. For the K. pneumoniae MDR isolates (n = 22), blaNDM (14; 64%) was the most prevalent carbapenemase, followed by blaOXA-48 (11; 50%) and blaVIM (4; 18%). A significant association (p value < 0.05) was observed between the multidrug efflux pump (AcrA) and resistance to β-lactams and the aminoglycoside acetyl transferase gene (aac-6’-Ib) gene and resistance to ciprofloxacin, azithromycin and β-lactams (except for aztreonam). For P. aeruginosa, a significant association was noticed between the presence of the blaSHV gene and the multidrug efflux pump (MexA) and resistance to fluoroquinolones, amikacin, tobramycin, co-trimoxazole and β-lactams and between the aac-6’-Ib gene and resistance to aminoglycosides. All P. aeruginosa isolates (100%) harbored the MexAB-OprM multidrug efflux pump while 86% of the K. pneumoniae isolates harbored the AcrAB-TolC pump. Our results are of great medical importance for the guidance of healthcare practitioners for effective antibiotic prescription.
Collapse
|
26
|
Trimethoprim-sulfamethoxazole as de-escalation in ventilator-associated pneumonia: a cohort study subanalysis. Eur J Clin Microbiol Infect Dis 2021; 40:1511-1516. [PMID: 33625621 PMCID: PMC7902240 DOI: 10.1007/s10096-021-04184-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/03/2021] [Indexed: 12/19/2022]
Abstract
Purpose This is a subanalysis of a previous study which compared the effectiveness of trimetoprim-sulfametoxazole (TMP-SMX) with all other regimens for treatment of ventilator-associated pneumonia (VAP). Aim of the current study was to focus on the effectiveness of a strategy based on TMP-SMX as de-escalation from β-lactam including regimens. Methods Retrospective cohort study including patients who were hospitalized for VAP from 2011 to 2019. Patients were distributed in two groups: NO SWITCH TO TMP-SMX group, including patients who received β-lactams for all treatment duration, and SWITCH TO TMP-SMX group, which included patients who switched to TMP-SMX from a β-lactam including regimen after microbiology diagnosis. Three clinical outcomes were analyzed: mortality at 30 days from the start of the antibiotic treatment (T30), mortality at the end of treatment (EoT), and acquisition of multidrug-resistant bacteria during hospitalization in intensive care unit. Results Overall, 70 patients were included in the current study, 32/70 (45.7%) in NO SWITCH TO TMP-SMX group and 38/70 (54.3%) in SWITCH TO TMP-SMX group, 37/70 (52.8%) had been already included in the previous study. No significant differences in clinical outcomes and patient’s characteristics were found when the two groups were compared. Conclusions De-escalation to TMP-SMX for VAP treatment was not associated with higher mortality at EoT and T30 than standard treatment with β-lactam. Monotherapy with TMP-SMX as de-escalation from broad-spectrum empirical regimens is a β-lactam sparing strategy worthy to be further investigated in either multicenter cohort studies or randomized clinical trials.
Collapse
|
27
|
A Comparison of Nosocomial Infection Density in Intensive Care Units on Relocating to a New Hospital. J Crit Care Med (Targu Mures) 2020; 6:175-180. [PMID: 32864463 PMCID: PMC7430358 DOI: 10.2478/jccm-2020-0028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/21/2020] [Indexed: 12/02/2022] Open
Abstract
Background The study aimed to investigate the changes in nosocomial infection density after patients were transferred to the intensive care unit (ICU) of a new-build hospital. Methods The types and rates of nosocomial infections were obtained for a one-year period retrospectively before leaving the old hospital premises and for a one-year periods after moving into the new hospital. The intensive care unit in the “old” premises was comprised of a 17-bedded hall, and thirty-three nurses shifted to work forty-eight hours a week, with each nurse assigned to provide care for two patients. The intensive care unit in the “new” premises consisted of single rooms, each with twenty-eight beds. Results The median nosocomial infection density decreased from 23 to 15 per 1000 in-patient days. The catheter-related urinary tract infection rate decreased from 7.5 to 2.6 per100 catheter days. Conclusions Treatment of patients in the new hospital resulted in a decrease in nosocomial infection density.
Collapse
|
28
|
Risk Factors of Multidrug-Resistant Bacteria in Lower Respiratory Tract Infections: A Systematic Review and Meta-Analysis. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2020; 2020:7268519. [PMID: 32670442 PMCID: PMC7345606 DOI: 10.1155/2020/7268519] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/13/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022]
Abstract
Background Multidrug-resistant (MDR) bacteria are the main cause of lower respiratory tract infections (LRTIs) with high mortality. The purpose of this study is to identify the risk factors associated with MDR by performing a systematic review and meta-analysis. Methods PubMed, EMBASE (via Ovid), and Cochrane Library were systematically searched for studies on the risk factors for MDR bacteria in LRTIs as of November 30, 2019. Literature screening, data abstraction, and quality assessment of the eligible studies were performed independently by two researchers. Results A total of 3,607 articles were retrieved, of which 21 articles representing 20 cohort studies published in English were included after title/abstract and full-text screening. Among the 21 articles involving 7,650 patients and 1,360 MDR organisms, ten reported the risk factors for MDR Gram-positive bacteria (GPB) and Gram-negative bacteria (GNB), ten for MDR GNB, and one for MDR GPB. The meta-analysis results suggested that prior antibiotic treatment, inappropriate antibiotic therapy, chronic lung disease, chronic liver disease and cerebral disease, prior MDR and PA infection/colonization, recent hospitalization, longer hospitalization stay, endotracheal tracheostomy and mechanical ventilation, tube feeding, nursing home residence, and higher disease severity score were independent risk factors for MDR bacteria. Conclusions This review identified fourteen clinical factors that might increase the risk of MDR bacteria in patients with LRTIs. Clinicians could take into account these factors when selecting antibiotics for patients and determine whether coverage for MDR bacteria is required. More well-designed studies are needed to confirm the various risk factors for MDR bacteria in the future.
Collapse
|
29
|
Zaragoza R, Vidal-Cortés P, Aguilar G, Borges M, Diaz E, Ferrer R, Maseda E, Nieto M, Nuvials FX, Ramirez P, Rodriguez A, Soriano C, Veganzones J, Martín-Loeches I. Update of the treatment of nosocomial pneumonia in the ICU. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:383. [PMID: 32600375 PMCID: PMC7322703 DOI: 10.1186/s13054-020-03091-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022]
Abstract
In accordance with the recommendations of, amongst others, the Surviving Sepsis Campaign and the recently published European treatment guidelines for hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP), in the event of a patient with such infections, empirical antibiotic treatment must be appropriate and administered as early as possible. The aim of this manuscript is to update treatment protocols by reviewing recently published studies on the treatment of nosocomial pneumonia in the critically ill patients that require invasive respiratory support and patients with HAP from hospital wards that require invasive mechanical ventilation. An interdisciplinary group of experts, comprising specialists in anaesthesia and resuscitation and in intensive care medicine, updated the epidemiology and antimicrobial resistance and established clinical management priorities based on patients' risk factors. Implementation of rapid diagnostic microbiological techniques available and the new antibiotics recently added to the therapeutic arsenal has been reviewed and updated. After analysis of the categories outlined, some recommendations were suggested, and an algorithm to update empirical and targeted treatment in critically ill patients has also been designed. These aspects are key to improve VAP outcomes because of the severity of patients and possible acquisition of multidrug-resistant organisms (MDROs).
Collapse
Affiliation(s)
- Rafael Zaragoza
- Critical Care Department, Hospital Universitario Dr. Peset, Valencia, Spain. .,Fundación Micellium, Valencia, Spain.
| | | | - Gerardo Aguilar
- SICU, Hospital Clínico Universitario Valencia, Valencia, Spain
| | - Marcio Borges
- Fundación Micellium, Valencia, Spain.,ICU, Hospital Universitario Son Llázter, Palma de Mallorca, Spain
| | - Emili Diaz
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Critical Care Department, Corporació Sanitària Parc Taulí, Sabadell, Barcelona, Spain.,CIBERES Ciber de Enfermedades Respiratorias, Madrid, Spain
| | | | - Emilio Maseda
- Fundación Micellium, Valencia, Spain.,SICU, Hospital Universitario La Paz, Madrid, Spain
| | - Mercedes Nieto
- ICU, Hospital Clínico Universitario San Carlos, Madrid, Spain
| | | | - Paula Ramirez
- ICU, Hospital Universitari I Politecnic La Fe, Valencia, Spain
| | | | - Cruz Soriano
- ICU, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | - Ignacio Martín-Loeches
- ICU, Trinity Centre for Health Science HRB-Wellcome Trust, St James's Hospital, Dublin, Ireland
| |
Collapse
|
30
|
Alizadeh N, Ahangarzadeh Rezaee M, Samadi Kafil H, Hasani A, Soroush Barhaghi MH, Milani M, Yeganeh Sefidan F, Memar MY, Lalehzadeh A, Ghotaslou R. Evaluation of Resistance Mechanisms in Carbapenem-Resistant Enterobacteriaceae. Infect Drug Resist 2020; 13:1377-1385. [PMID: 32494169 PMCID: PMC7229782 DOI: 10.2147/idr.s244357] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/26/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Carbapenem-resistant Enterobacteriaceae (CRE) is a major concern leading to morbidity and mortality in the world. CRE often is becoming a cause of therapeutic failure in both hospital and community-acquired infections. AIM This study aimed to investigate the resistance mechanisms of CRE by phenotypic and molecular methods. MATERIALS AND METHODS Sixty CRE (50 Klebsiella pneumoniae, 6 Escherichia coli, and 4 Enterobacter spp.) were isolated from October 2018 to June 2019. Antimicrobial susceptibility testing was carried out using phenotypic methods. The carbapenem resistance mechanisms including efflux pump hyperexpression, AmpC overproduction, carbapenemase genes, and deficiency in OmpK35 and OmpK36 were determined by phenotypic and molecular methods, respectively. RESULTS Sixty CRE (50 Klebsiella pneumoniae, 6 Escherichia coli, and 4 Enterobacter spp.) were isolated from October 2018 to June 2019. Amikacin was found to be the most effective drug against CRE isolates. All isolates were resistant to imipenem and meropenem by the micro-broth dilution. AmpC overproduction was observed in all Enterobacter spp. and three K. pneumoniae isolates. No efflux pump activity was found. Carba NP test and Modified Hodge Test could find carbapenemase in 59 (98%) isolates and 57 (95%) isolates, respectively. The most common carbapenemase gene was bla OXA-48-like (72.8%) followed by bla NDM (50.8%), bla IMP (18.6%), bla VIM (11.8%), and bla KPC (6.7%). The ompK35 and ompK36 genes were not detected in 10 and 7 K. pneumoniae isolates, respectively. CONCLUSION The amikacin is considered as a very efficient antibiotic for the treatment of CRE isolates in our region. Carbapenemase production and overproduction of AmpC are the main carbapenem resistance mechanisms in CRE isolates. Finally, Carba NP test is a rapid and reliable test for early detection of carbapenemase-producing isolates.
Collapse
Affiliation(s)
- Naser Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Students’ Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ahangarzadeh Rezaee
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, IR, Iran
| | - Hossein Samadi Kafil
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, IR, Iran
| | - Alka Hasani
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, IR, Iran
| | | | - Morteza Milani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Medical, University of Tabriz, Tabriz, Iran
| | - Fatemeh Yeganeh Sefidan
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, IR, Iran
| | - Mohammad Yousef Memar
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, IR, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aidin Lalehzadeh
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, IR, Iran
| | - Reza Ghotaslou
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, IR, Iran
| |
Collapse
|
31
|
Stefaniuk EM, Tyski S. Colistin Resistance in Enterobacterales Strains - A Current View. Pol J Microbiol 2019; 68:417-427. [PMID: 31880886 PMCID: PMC7260631 DOI: 10.33073/pjm-2019-055] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023] Open
Abstract
Colistin is a member of cationic polypeptide antibiotics known as polymyxins. It is widely used in animal husbandry, plant cultivation, animal and human medicine and is increasingly used as one of the last available treatment options for patients with severe infections with carbapenem-resistant Gram-negative bacilli. Due to the increased use of colistin in treating infections caused by multidrug-resistant (MDR) bacteria, the resistance to this antibiotic ought to be monitored. Bacterial resistance to colistin may be encoded on transposable genetic elements (e.g. plasmids with the mcr genes). Thus far, nine variants of the mcr gene, mcr-1 – mcr-9, have been identified. Chromosomal resistance to colistin is associated with the modification of lipopolysaccharide (LPS). Various methods, from classical microbiology to molecular biology methods, are used to detect the colistin-resistant bacterial strains and to identify resistance mechanisms. The broth dilution method is recommended for susceptibility testing of bacteria to colistin.
Collapse
Affiliation(s)
- Elżbieta M Stefaniuk
- Department of Antibiotics and Microbiology, National Medicines Institute , Warsaw , Poland
| | - Stefan Tyski
- Department of Antibiotics and Microbiology, National Medicines Institute , Warsaw , Poland ; Department of Pharmaceutical and Microbiology, Medical University of Warsaw , Warsaw , Poland
| |
Collapse
|
32
|
Tian X, Huang C, Ye X, Jiang H, Zhang R, Hu X, Xu D. Molecular Epidemiology of and Risk Factors for Extensively Drug-Resistant Klebsiella pneumoniae Infections in Southwestern China: A Retrospective Study. Front Pharmacol 2019; 10:1307. [PMID: 31736765 PMCID: PMC6838015 DOI: 10.3389/fphar.2019.01307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/15/2019] [Indexed: 12/23/2022] Open
Abstract
Background: The increasing prevalence of extensively drug-resistant Klebsiella pneumoniae (XDR-KP) poses a serious threat to clinical anti-infective treatment. This retrospective study assessed the molecular epidemiology of and risk factors for infections with XDR-KP to investigate the mechanism of drug resistance and the epidemiological characteristics. Methods: A retrospective 1:2 case-control study was conducted at Chongqing Renji Affiliated Hospital of the Chinese Academy of Sciences University from January 2015 to December 2017. A total of 69 non-repetitive XDR-KP strains were collected. Patients infected with XDR-KP comprised the case group, and 138 matched patients with non-XDR-KP infection at the same site comprised the control group. The chi-square test and logistic regression were performed to evaluate the related risk factors. Molecular typing was performed by multilocus sequence typing (MLST). Potential resistance genes were detected by polymerase chain reaction (PCR) and sequencing. Predictors of 28-day mortality in patients with XDR-KP infection were also identified in our study. Results: Only tigecycline and polymyxin B showed favorable in vitro drug sensitivity tests. These XDR-KP strains had a high prevalence rate (n = 66, 95.7%) of carbapenemase-related drug resistance genes. Among them, KPC-2 was the most frequently detected gene (n = 52, 75.4%). Particularly, all of the isolates harbored multiple drug resistance genes. Epidemiological analysis showed that fifty-eight XDR-KP isolates were resistant strains with the ST-11 genotype. Multivariate logistic regression analysis showed that ICU admission (OR: 3.28, 95% CI: 1.66–6.49, P < 0.001), tracheal cannula (OR: 3.16, 95% CI: 1.48–6.76, P = 0.003), and carbapenem exposure (OR: 3.16, 95% CI: 1.25–7.98, P = 0.015) were independent risk factors for XDR-KP infection. Solid tumors (OR: 7.22, 95% CI: 1.84–28.34, P = 0.005) and septic shock (OR: 9.46, 95% CI: 2.00–44.72, P = 0.005) were independent risk factors for 28-day mortality from XDR-KP infection. Conclusion: This study showed that XDR-KP isolates were highly resistant and exhibited clonal transmission. ST11 was the predominant epidemic type of XDR-KP producing KPC-2 in Southwestern China. Physicians should be aware of these high-risk patients with notable predictive factors for XDR-KP infection. These findings may provide some recommendation for the diagnosis and treatment of patients infected with XDR-KP strains in Southwestern China.
Collapse
Affiliation(s)
- Xiaolang Tian
- Department of Clinical Laboratory, University of Chinese Academy of Sciences Chongqing Renji Hospital, Fifth People's Hospital of Chongqing, Chongqing, China
| | - Changwu Huang
- Department of Clinical Laboratory, University of Chinese Academy of Sciences Chongqing Renji Hospital, Fifth People's Hospital of Chongqing, Chongqing, China
| | - Xiaoli Ye
- Department of Clinical Laboratory, University of Chinese Academy of Sciences Chongqing Renji Hospital, Fifth People's Hospital of Chongqing, Chongqing, China
| | - Hongyan Jiang
- Department of Clinical Laboratory, University of Chinese Academy of Sciences Chongqing Renji Hospital, Fifth People's Hospital of Chongqing, Chongqing, China
| | - Rufang Zhang
- Department of Clinical Laboratory, University of Chinese Academy of Sciences Chongqing Renji Hospital, Fifth People's Hospital of Chongqing, Chongqing, China
| | - Xiaofang Hu
- Department of Clinical Laboratory, University of Chinese Academy of Sciences Chongqing Renji Hospital, Fifth People's Hospital of Chongqing, Chongqing, China
| | - Dongshuang Xu
- Department of Clinical Laboratory, University of Chinese Academy of Sciences Chongqing Renji Hospital, Fifth People's Hospital of Chongqing, Chongqing, China
| |
Collapse
|