1
|
Maliuvanchuk S, Grytsyk A, Popadynets O, Kotyk T, Raal A, Koshovyi O. Ajuga reptans L. Herb Extracts: Phytochemical Composition and Pharmacological Activity Screening. PLANTS (BASEL, SWITZERLAND) 2025; 14:219. [PMID: 39861572 PMCID: PMC11768386 DOI: 10.3390/plants14020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/11/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025]
Abstract
The genus Ajuga (Lamiaceae family) comprises approximately 300 species, which are widely used in traditional medicine for their diaphoretic, antiseptic, hemostatic, and anti-inflammatory properties, but scarcely in official ones. Therefore, the study of Ajuga reptans holds promise for developing new medicinal products. In aqueous and aqueous-alcoholic soft extracts of the A. reptans herb, 16 amino acids, 20 phenolics, and 10 volatile substances were identified by HPLC and GC/MS. The assays of the main substances' groups were also determined by spectrophotometry (vitamin K1, polyphenols, tannins, flavonoids, and hydroxycinnamic acids) and titrometry (ascorbic and organic acids). A. reptans herb extracts are practically non-toxic, exhibit hepatoprotective activity (dose 25 mg/kg) in experimental carbon tetrachloride-induced hepatitis, moderate anti-inflammatory activity (dose 100 mg/kg) in carrageenan-induced edema models, and possess significant local hemostatic (reducing bleeding time by 40.6%) and wound-healing properties (complete wound healing after 9 days). The aqueous-ethanolic soft A. reptans extract (extractant 50% ethanol) demonstrated the most pronounced hepatoprotective and anti-inflammatory effects. A. reptans extracts are capable of inhibiting the growth of microorganisms and showing higher activity against Gram-positive bacteria. A. reptans herb extracts are promising agents for implementation in official medicine as wound healing and hepatoprotective remedies after further preclinical and clinical studies.
Collapse
Affiliation(s)
- Svitlana Maliuvanchuk
- Department of Pharmaceutical Management, Drug Technology and Pharmacognosy, Ivano-Frankivsk National Medical University, 76000 Ivano-Frankivsk, Ukraine; (S.M.); (A.G.)
| | - Andriy Grytsyk
- Department of Pharmaceutical Management, Drug Technology and Pharmacognosy, Ivano-Frankivsk National Medical University, 76000 Ivano-Frankivsk, Ukraine; (S.M.); (A.G.)
| | - Oksana Popadynets
- Department of Anatomy, Ivano-Frankivsk National Medical University, 76000 Ivano-Frankivsk, Ukraine; (O.P.); (T.K.);
| | - Taras Kotyk
- Department of Anatomy, Ivano-Frankivsk National Medical University, 76000 Ivano-Frankivsk, Ukraine; (O.P.); (T.K.);
| | - Ain Raal
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Oleh Koshovyi
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
- Department of Pharmacognosy and Nutriciology, The National University of Pharmacy, 61002 Kharkiv, Ukraine
| |
Collapse
|
2
|
Sesarman A, Luput L, Rauca VF, Patras L, Licarete E, Meszaros MS, Dume BR, Negrea G, Toma VA, Muntean D, Porfire A, Banciu M. Targeting of M2 macrophages with IL-13-functionalized liposomal prednisolone inhibits melanoma angiogenesis in vivo. J Liposome Res 2024; 34:535-546. [PMID: 38379249 DOI: 10.1080/08982104.2024.2315452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/18/2024] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
The intricate cooperation between cancer cells and nontumor stromal cells within melanoma microenvironment (MME) enables tumor progression and metastasis. We previously demonstrated that the interplay between tumor-associated macrophages (TAMs) and melanoma cells can be disrupted by using long-circulating liposomes (LCLs) encapsulating prednisolone phosphate (PLP) (LCL-PLP) that inhibited tumor angiogenesis coordinated by TAMs. In this study, our goal was to improve LCL specificity for protumor macrophages (M2-like (i.e., TAMs) macrophages) and to induce a more precise accumulation at tumor site by loading PLP into IL-13-conjugated liposomes (IL-13-LCL-PLP), since IL-13 receptor is overexpressed in this type of macrophages. The IL-13-LCL-PLP liposomal formulation was obtained by covalent attachment of thiolated IL-13 to maleimide-functionalized LCL-PLP. C57BL/6 mice bearing B16.F10 s.c melanoma tumors were used to investigate the antitumor action of LCL-PLP and IL-13-LCL-PLP. Our results showed that IL-13-LCL-PLP formulation remained stable in biological fluids after 24h and it was preferentially taken up by M2 polarized macrophages. IL-13-LCL-PLP induced strong tumor growth inhibition compared to nonfunctionalized LCL-PLP at the same dose, by altering TAMs-mediated angiogenesis and oxidative stress, limiting resistance to apoptosis and invasive features in MME. These findings suggest IL-13-LCL-PLP might become a promising delivery platform for chemotherapeutic agents in melanoma.
Collapse
Affiliation(s)
- Alina Sesarman
- Department of Molecular Biology and Biotechnology, and Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Lavinia Luput
- Department of Molecular Biology and Biotechnology, and Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Valentin-Florian Rauca
- Department of Molecular Biology and Biotechnology, and Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
- Department of Dermatology and Allergology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Laura Patras
- Department of Molecular Biology and Biotechnology, and Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Emilia Licarete
- Department of Molecular Biology and Biotechnology, and Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
- Molecular Biology Centre, Institute for Interdisciplinary Research in Bio-Nano-Sciences of Babes-Bolyai University, Cluj-Napoca, Romania
| | - Marta-Szilvia Meszaros
- Department of Molecular Biology and Biotechnology, and Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Bogdan Razvan Dume
- Doctoral School in Integrative Biology, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Giorgiana Negrea
- Doctoral School in Integrative Biology, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Vlad-Alexandru Toma
- Department of Molecular Biology and Biotechnology, and Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
- Department of Experimental Biology and Biochemistry, nstitute of Biological Research, branch of NIRDBS Bucharest, Cluj-Napoca, Romania
| | - Dana Muntean
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Alina Porfire
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Manuela Banciu
- Department of Molecular Biology and Biotechnology, and Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
3
|
Choi B, Hwang Y, McAdam SAM, Jang TS. Comparative microscopic investigations of leaf epidermis in four Ajuga species from Korea. Microsc Res Tech 2024; 87:434-445. [PMID: 37909218 DOI: 10.1002/jemt.24450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/07/2023] [Accepted: 10/17/2023] [Indexed: 11/02/2023]
Abstract
The genus Ajuga is widely distributed in temperate to subtropical regions, and four species are currently recognized in Korea (A. decumbens, A. multiflora, A. nipponensis, and A. spectabilis), but epidermal anatomical differences across these species have never been described. A comparative study of the leaf micromorphological characteristics of Korean Ajuga species was performed using light microscopy (LM) and scanning electron microscopy (SEM) to elucidate their taxonomic usefulness and to assess leaf micromorphological diversity. Considerable diversity in epidermal and stomatal anatomy was observed across Korean Ajuga species. Species had both hypostomatic or amphistomatic leaves, with anomocytic, anisocytic, diactyic, or actinocytic stomatal complexes. Guard cell length across species ranged from 17.66 ± 0.57 μm to 32.50 ± 2.38 μm and correlated with genome size. Abnormal stomata were frequently observed in three species (A. decumbens, A. multiflora, and A. nipponensis) but not in A. spectabilis. Three types of glandular trichomes were found: peltate in all species, short-stalked in all species, and long-stalked glandular trichomes in A. multiflora. Among the investigated leaf micromophological characters, trichome type, epidermal cell shape, and stomatal morphology were all taxonomically informative traits at a species level. RESEARCH HIGHLIGHTS: A comprehensive micromorphological description of the leaf surface is provided for Korean Ajuga species using scanning electron microscopic (SEM) and light microscopic (LM) analyses. The diverse range of stomatal development and the occurrence of polymorphic stomatal types are documented for the first time in Korean Ajuga species. The great diversity in stomatal and trichome morphology in Korean Ajuga species are taxonomically useful traits for species identification.
Collapse
Affiliation(s)
- Bokyung Choi
- Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Yeojin Hwang
- Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Scott A M McAdam
- Department of Botany and Plant Pathology, Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Tae-Soo Jang
- Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
4
|
Sustainable Production of Ajuga Bioactive Metabolites Using Cell Culture Technologies: A Review. Nutrients 2023; 15:nu15051246. [PMID: 36904246 PMCID: PMC10005297 DOI: 10.3390/nu15051246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/20/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
The genus Ajuga (Lamiaceae) is rich in medicinally important species with biological activities ranging from anti-inflammatory, antitumor, neuroprotective, and antidiabetic to antibacterial, antiviral, cytotoxic, and insecticidal effects. Every species contains a unique and complex mixture of bioactive metabolites-phytoecdysteroids (PEs), iridoid glycosides, withanolides, neo-clerodane terpenoids, flavonoids, phenolics, and other chemicals with high therapeutic potential. Phytoecdysteroids, the main compounds of interest, are natural anabolic and adaptogenic agents that are widely used as components of dietary supplements. Wild plants remain the main source of Ajuga bioactive metabolites, particularly PEs, which leads to frequent overexploitation of their natural resources. Cell culture biotechnologies offer a sustainable approach to the production of vegetative biomass and individual phytochemicals specific for Ajuga genus. Cell cultures developed from eight Ajuga taxa were capable of producing PEs, a variety of phenolics and flavonoids, anthocyanins, volatile compounds, phenyletanoid glycosides, iridoids, and fatty acids, and demonstrated antioxidant, antimicrobial, and anti-inflammatory activities. The most abundant PEs in the cell cultures was 20-hydroxyecdysone, followed by turkesterone and cyasterone. The PE content in the cell cultures was comparable or higher than in wild or greenhouse plants, in vitro-grown shoots, and root cultures. Elicitation with methyl jasmonate (50-125 µM) or mevalonate and induced mutagenesis were the most effective strategies that stimulated cell culture biosynthetic capacity. This review summarizes the current progress in cell culture application for the production of pharmacologically important Ajuga metabolites, discusses various approaches to improve the compound yield, and highlights the potential directions for future interventions.
Collapse
|
5
|
Epilobium Species: From Optimization of the Extraction Process to Evaluation of Biological Properties. Antioxidants (Basel) 2022; 12:antiox12010091. [PMID: 36670952 PMCID: PMC9854965 DOI: 10.3390/antiox12010091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
Epilobium species are used in Romanian folk medicine as tinctures, tea, or tablets for ameliorating the symptoms of benign prostate hyperplasia (BPH), but scientific-based evidence is scarce for this species or other endemic plants of the same genus. Therefore, the aims of this research were to evaluate the phytochemical profile of five endemic Epilobium species (E. hirsutum L., E. parviflorum Schreb., E. palustre L. E. dodonaei Vill., and E. angustifolium L.) and to assess their in vitro biological activity. For enhanced recovery of polyphenols, a D-optimal experimental plan was developed using Modde software and the optimal working conditions were ultra-turrax-assisted extraction, for 8 min, with 30% ethanol in water. The optimized extracts were obtained from various plant parts and were further characterized by LC-MS analysis, with the major compound being oenothein B. All extracts demonstrated good antioxidant activity, evaluated by DPPH and TEAC assays. The most prominent antimicrobial potency of optimized extracts was displayed against Bacillus cereus, while against Gram-(+) bacteria, a moderate efficacy was observed. Furthermore, anti-cancer, anti-inflammatory, and antioxidant potential were assessed on normal fibroblasts and prostate carcinoma cell lines. From the evaluated optimized extracts, E. angustifolium aerial parts had the highest selectivity toward killing cancerous cells, followed by E. hirsutum aerial parts extract. For the antioxidant effect, E. hirsutum leaves and E. hirstum aerial parts extracts displayed the highest potency, decreasing ROS at the level observed for the positive control. The highest anti-inflammatory potential, based on the IL-6 and IL-8 levels, was displayed by E. dodonaei aerial parts and E. angustifolium leaves extracts. In conclusion, all five endemic species of Epilobium harvested from Romanian flora possess a diverse phytochemical composition, which supports complex biological activities.
Collapse
|
6
|
Negrea G, Rauca VF, Meszaros MS, Patras L, Luput L, Licarete E, Toma VA, Porfire A, Muntean D, Sesarman A, Banciu M. Active Tumor-Targeting Nano-formulations Containing Simvastatin and Doxorubicin Inhibit Melanoma Growth and Angiogenesis. Front Pharmacol 2022; 13:870347. [PMID: 35450036 PMCID: PMC9016200 DOI: 10.3389/fphar.2022.870347] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/08/2022] [Indexed: 01/17/2023] Open
Abstract
Primary melanoma aggressiveness is determined by rapid selection and growth of cellular clones resistant to conventional treatments, resulting in metastasis and recurrence. In addition, a reprogrammed tumor-immune microenvironment supports melanoma progression and response to therapy. There is an urgent need to develop selective and specific drug delivery strategies for modulating the interaction between cancer cells and immune cells within the tumor microenvironment. This study proposes a novel combination therapy consisting of sequential administration of simvastatin incorporated in IL-13-functionalized long-circulating liposomes (IL-13-LCL-SIM) and doxorubicin encapsulated into PEG-coated extracellular vesicles (PEG-EV-DOX) to selectively target both tumor-associated macrophages and melanoma cells. To this end, IL-13 was conjugated to LCL-SIM which was obtained via the lipid film hydration method. EVs enriched from melanoma cells were passively loaded with doxorubicin. The cellular uptake of rhodamine-tagged nano-particles and the antiproliferative potential of the treatments by using the ELISA BrdU-colorimetric immunoassay were investigated in vitro. Subsequently, the therapeutic agents were administered i.v in B16.F10 melanoma-bearing mice, and tumor size was monitored during treatment. The molecular mechanisms of antitumor activity were investigated using angiogenic and inflammatory protein arrays and western blot analysis of invasion (HIF-1) and apoptosis markers (Bcl-xL and Bax). Quantification of oxidative stress marker malondialdehyde (MDA) was determined by HPLC. Immunohistochemical staining of angiogenic markers CD31 and VEGF and of pan-macrophage marker F4/80 was performed to validate our findings. The in vitro data showed that IL-13-functionalized LCL were preferentially taken up by tumor-associated macrophages and indicated that sequential administration of IL-13-LCL-SIM and PEG-EV-DOX had the strongest antiproliferative effect on tumor cells co-cultured with tumor-associated macrophages (TAMs). Accordingly, strong inhibition of tumor growth in the group treated with the sequential combination therapy was reported in vivo. Our data suggested that the antitumor action of the combined treatment was exerted through strong inhibition of several pro-angiogenic factors (VEGF, bFGF, and CD31) and oxidative stress-induced upregulation of pro-apoptotic protein Bax. This novel drug delivery strategy based on combined active targeting of both cancer cells and immune cells was able to induce a potent antitumor effect by disruption of the reciprocal interactions between TAMs and melanoma cells.
Collapse
Affiliation(s)
- Giorgiana Negrea
- Doctoral School in Integrative Biology, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Valentin-Florian Rauca
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania.,Department of Dermatology and Allergology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Marta Szilvia Meszaros
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Laura Patras
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Lavinia Luput
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Emilia Licarete
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania.,Molecular Biology Centre, Institute for Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Vlad-Alexandru Toma
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania.,Department of Experimental Biology and Biochemistry, Institute of Biological Research, Branch of NIRDBS Bucharest, Cluj-Napoca, Romania
| | - Alina Porfire
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Dana Muntean
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Alina Sesarman
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Manuela Banciu
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| |
Collapse
|
7
|
Juszczak AM, Wöelfle U, Končić MZ, Tomczyk M. Skin cancer, including related pathways and therapy and the role of luteolin derivatives as potential therapeutics. Med Res Rev 2022; 42:1423-1462. [PMID: 35187675 PMCID: PMC9303584 DOI: 10.1002/med.21880] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/16/2021] [Accepted: 01/23/2022] [Indexed: 12/12/2022]
Abstract
Cutaneous malignant melanoma is the fastest growing and the most aggressive form of skin cancer that is diagnosed. However, its incidence is relatively scarce compared to the highest mortality rate of all skin cancers. The much more common skin cancers include nonmelanoma malignant skin cancers. Moreover, over the past several decades, the frequency of all skin cancers has increased much more dynamically than that of almost any other type of cancer. Among the available therapeutic options for skin cancers, chemotherapy used immediately after the surgical intervention has been an essential element. Unfortunately, the main problem with conventional chemopreventive regimens involves the lack of response to treatment and the associated side effects. Hence, there is a need for much more effective anticancer drugs. Correspondingly, the targeted alternatives have involved phytochemicals, which are safer chemotherapeutic agents and exhibit competitive anticancer activity with high therapeutic efficacy. Among polyphenolic compounds, some flavonoids and their derivatives, which are mostly found in medicinal plants, have been demonstrated to influence the modulation of signaling pathways at each stage of the carcinogenesis process, which is also important in the context of skin cancers. Hence, this review focuses on an exhaustive overview of the therapeutic effects of luteolin and its derivatives in the treatment and prevention of skin cancers. The bioavailability and structure–activity relationships of luteolin derivatives are also discussed. This review is the first such complete account of all of the scientific reports concerning this particular group of natural compounds that target a specific area of neoplastic diseases.
Collapse
Affiliation(s)
- Aleksandra M. Juszczak
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine Medical University of Białystok Białystok Poland
| | - Ute Wöelfle
- Department of Dermatology and Venereology, Research Center Skinitial, Medical Center, Faculty of Medicine University of Freiburg Freiburg Germany
| | - Marijana Zovko Končić
- Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry University of Zagreb Zagreb Croatia
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine Medical University of Białystok Białystok Poland
| |
Collapse
|
8
|
Casian T, Iurian S, Gâvan A, Porfire A, Pop AL, Crișan S, Pușcaș AM, Tomuță I. In-Depth Understanding of Granule Compression Behavior under Variable Raw Material and Processing Conditions. Pharmaceutics 2022; 14:pharmaceutics14010177. [PMID: 35057072 PMCID: PMC8780340 DOI: 10.3390/pharmaceutics14010177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 12/25/2022] Open
Abstract
Tablet manufacturing involves the processing of raw materials through several unit operations. Thus, the mitigation of input-induced variability should also consider the downstream processability of intermediary products. The objective of the present work was to study the effect of variable raw materials and processing conditions on the compression properties of granules containing two active pharmaceutical ingredients (APIs) and microcrystalline cellulose. Differences in compressibility and tabletability of granules were highlighted in function of the initial particle size of the first API, granule polydispersity and fragmentation. Moreover, interactions were underlined with the atomizing pressure. Changing the supplier of the second API was efficiently controlled by adapting the binder addition rate and atomizing pressure during granulation, considering the starting crystal size. By fitting mathematical models on the available compression data, the influence of diluent source on granule compactibility and tabletability was identified. These differences resumed to the ease of compaction, tableting capacity and pressure sensitivity index due to variable water binding capacity of microcrystalline cellulose. Building the design space enabled the identification of suitable API types and the appropriate processing conditions (spray rate, atomizing pressure, compression force) required to ensure the desired tableting performance.
Collapse
Affiliation(s)
- Tibor Casian
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (T.C.); (A.G.); (A.P.); (A.M.P.); (I.T.)
| | - Sonia Iurian
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (T.C.); (A.G.); (A.P.); (A.M.P.); (I.T.)
- Correspondence:
| | - Alexandru Gâvan
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (T.C.); (A.G.); (A.P.); (A.M.P.); (I.T.)
| | - Alina Porfire
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (T.C.); (A.G.); (A.P.); (A.M.P.); (I.T.)
| | - Anca Lucia Pop
- Department of Clinical Laboratory, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- RD Center, AC HELCOR, 430092 Baia Mare, Romania;
| | | | - Anda Maria Pușcaș
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (T.C.); (A.G.); (A.P.); (A.M.P.); (I.T.)
| | - Ioan Tomuță
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (T.C.); (A.G.); (A.P.); (A.M.P.); (I.T.)
| |
Collapse
|
9
|
Pawlak A, Henklewska M, Hernández-Suárez B, Siepka M, Gładkowski W, Wawrzeńczyk C, Motykiewicz-Pers K, Obmińska-Mrukowicz B. Methoxy-Substituted γ-Oxa-ε-Lactones Derived from Flavanones-Comparison of Their Anti-Tumor Activity In Vitro. Molecules 2021; 26:molecules26206295. [PMID: 34684875 PMCID: PMC8538229 DOI: 10.3390/molecules26206295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/10/2021] [Accepted: 10/15/2021] [Indexed: 12/09/2022] Open
Abstract
Background: The study investigated four flavanone-derived γ-oxa-ε-lactones: a parent unsubstituted compound and its three derivatives with the methoxy group in positions 2′, 4′ and 8. Our objective was to find out if the introduction of the methoxy group into the aromatic ring affects in vitro anti-tumor potency of the investigated lactones. Methods: Cytotoxic and pro-apoptotic effects were assessed with cytometric tests with propidium iodide, annexin V, and Western blot techniques. We also investigated potential synergistic potency of the tested lactones and glucocorticoids in canine lymphoma/leukemia cell lines. Results: The tested flavanone-derived lactones showed anti-cancer activity in vitro. Depending on its location, the methoxy group either increased or decreased cytotoxicity of the derivatives as compared with the parent compound. The most potent lactone was the one with the methoxy group at position 4′ of the B ring (compound 3), and the weakest activity was observed when the group was located at C-8 in the A ring. A combination of the lactones with glucocorticoids confirmed their synergy in anti-tumor activity in vitro. Conclusions: Methoxy-substituted flavanone-derived lactones effectively kill canine lymphoma/leukemia cells in vitro and, thanks to their synergistic action with glucocorticoids, may potentially be applied in the treatment of hematopoietic cancers.
Collapse
Affiliation(s)
- Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (M.H.); (B.H.-S.); (K.M.-P.); (B.O.-M.)
- Correspondence:
| | - Marta Henklewska
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (M.H.); (B.H.-S.); (K.M.-P.); (B.O.-M.)
| | - Beatriz Hernández-Suárez
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (M.H.); (B.H.-S.); (K.M.-P.); (B.O.-M.)
| | - Monika Siepka
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (M.S.); (W.G.); (C.W.)
| | - Witold Gładkowski
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (M.S.); (W.G.); (C.W.)
| | - Czesław Wawrzeńczyk
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (M.S.); (W.G.); (C.W.)
| | - Karolina Motykiewicz-Pers
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (M.H.); (B.H.-S.); (K.M.-P.); (B.O.-M.)
| | - Bożena Obmińska-Mrukowicz
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (M.H.); (B.H.-S.); (K.M.-P.); (B.O.-M.)
| |
Collapse
|
10
|
Joshi BC, Juyal V, Sah AN, Verma P, Mukhija M. Review On Documented Medicinal Plants Used For The Treatment Of Cancer. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083807666211011125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background:
Cancer is a frightful disease and it is the second leading cause of death worldwide. Naturally derived compounds are gaining interest of research workers as they have less toxic side effects as compared to currently used treatments such as chemotherapy. Plants are the pool of chemical compounds which provides a promising future for research on cancer.
Objective:
This review paper provides updated information gathered on medicinal plants and isolated phytoconstituents used as anticancer agents and summarises the plant extracts and their isolated chemical constituents exhibiting anticancer potential on clinical trials.
Methods:
An extensive bibliographic investigation was carried out by analysing worldwide established scientific databases like SCOPUS, PUBMED, SCIELO, ScienceDirect, Springerlink, Web of Science, Wiley, SciFinder and Google Scholar etc. In next few decades, herbal medicine may become a new epoch of medical system.
Results:
Many researches are going on medicinal plants for the treatment of cancer but it is a time to increase further experimental studies on plant extracts and their chemical constituents to find out their mechanism of action at molecular level.
Conclusion:
The article may help many researchers to start off further experimentation that might lead to the drugs for the cancer treatment.
Collapse
Affiliation(s)
- Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Vijay Juyal
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Piyush Verma
- Department of Pharmacology, School of Pharmaceutical science and Technology, Sardar Bhagwan Singh University, Dehradun-248001, India
| | - Minky Mukhija
- Department of Pharmaceutical Sciences, Ch. Devi Lal College of Pharmacy, Buria Road, Bhagwangarh, Jagadhri-135003, India
| |
Collapse
|
11
|
Wu Q, Yang H, Yang Y, He J, Aer E, Ma Y, Zou L. A Novel and Efficient In Vitro Organogenesis Approach for Ajuga lupulina Maxim. PLANTS 2021; 10:plants10091918. [PMID: 34579450 PMCID: PMC8472894 DOI: 10.3390/plants10091918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/05/2021] [Accepted: 09/09/2021] [Indexed: 12/03/2022]
Abstract
This work was aimed at establishing an effective approach for in vitro propagation of Ajuga lupulina Maxim, a medicinal and ornamental plant mainly found in eastern Xizang, in the western Sichuan region of China. We report an optimum response in the proliferation of axillary shoots from nodal segment explants (10.2 shoots/explant) on MS medium containing 3.0 mg L−1 of 6-benzyladenine (BA). When BA and TDZ individually or in combination with NAA were employed for adventitious shoot regeneration, shoots and embryo-like structures (ELSs) were noted in the callus from leaf explants. The maximum response of 26.4 shoots /explant (81.6%) and 12.0 ELSs/explant were ascertained on MS medium with 4.0 mg L−1 TDZ and 0.1 mg L−1 NAA. The leaf despite browning still demonstrated a high regeneration capacity. TDZ (2.0 mg L−1) and BA (2.0 mg L−1) along with NAA (0.01 mg L−1) were found to perform well for shoot regeneration via callus from shoot tip explants. The best for rooting was MS medium (half-strength) containing indole-3-butyric acid (IBA: 1.5 mg L−1) and (NAA: 0.5 mg L−1) with the maximum number of roots (25.8 per shoot) and the highest rooting frequency (81.71%). The survival of the plantlets in the greenhouse was 78.2% indicative of successful acclimatization. This work is the first report of a consistent, definitive, and unique protocol for A. lupulina regeneration, paving the way for the in vitro preservation of such significant genetic resources and also further allied systems based on such callus-based or embryo-based approaches.
Collapse
Affiliation(s)
- Qinggui Wu
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, China; (Q.W.); (H.Y.); (E.A.)
| | - Honglin Yang
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, China; (Q.W.); (H.Y.); (E.A.)
| | - Yulin Yang
- Sichuan Academy of Forestry Sciences, Chengdu 610081, China;
| | - Jinyu He
- College of Life Sciences, China West Normal University, Nanchong 637009, China; (J.H.); (Y.M.)
| | - Erga Aer
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, China; (Q.W.); (H.Y.); (E.A.)
| | - Yonghong Ma
- College of Life Sciences, China West Normal University, Nanchong 637009, China; (J.H.); (Y.M.)
| | - Lijuan Zou
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, China; (Q.W.); (H.Y.); (E.A.)
- Correspondence:
| |
Collapse
|
12
|
Wang H, Teng X, Zhang Y, Gu Q, He L. Diterpenoids from the Whole Plants of Ajuga nipponensis and Their Inhibition of RANKL-Induced Osteoclastogenesis. Chem Biodivers 2020; 18:e2000780. [PMID: 33205900 DOI: 10.1002/cbdv.202000780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/18/2020] [Indexed: 11/05/2022]
Abstract
Two new diterpenoids, ajudecunoid A (1) and ajudecunoid B (14), along with thirteen known diterpenoids, were isolated from the whole plants of Ajuga nipponensis Makino. Their structures were elucidated by the extensive spectroscopic analysis (UV, IR, MS, and NMR). The absolute configurations of ajudecunoid A (1) and ajudecunoid B (14) were defined through analysis of X-ray crystallography. Fifteen compounds were evaluated for inhibition of the formation of osteoclasts in bone marrow-derived macrophages (BMM) cells. Two neo-clerodane diterpenoids ajuganipponin B (5) and (12S)-6α,19-diacetoxy-18-chloro-4α-hydroxy-12-tigloyloxy-neo-clerod-13-en-15,16-olide (12) showed significant inhibition of osteoclastogenesis with IC50 values of 0.88 and 0.79 μM, respectively. Here we firstly reported diterpenoids with anti-osteoclastogenesis activity from A. nipponensis.
Collapse
Affiliation(s)
- Haijuan Wang
- a School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Xifeng Teng
- b State Administration of Traditional Chinese Medicine Key Laboratory for Production and Development of Lingnan Medicinal Material, School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Yuting Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Qiong Gu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Lin He
- d Guangdong Provincial Cosmetics Engineering and Technology Research Center, School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P. R. China
| |
Collapse
|
13
|
Das S, Barman S, Teron R, Bhattacharya SS, Kim KH. Secondary metabolites and anti-microbial/anti-oxidant profiles in Ocimum spp.: Role of soil physico-chemical characteristics as eliciting factors. ENVIRONMENTAL RESEARCH 2020; 188:109749. [PMID: 32531524 DOI: 10.1016/j.envres.2020.109749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/23/2020] [Accepted: 05/26/2020] [Indexed: 05/27/2023]
Abstract
Ocimum has long been used as a medicinal plant, although little information is available about its bioactive ingredients, and the influence of soil properties on modulation of secondary metabolites in Ocimum has yet to be ascertained. In this study, we present a thorough survey of all potential metabolic compounds in O. sanctum and O. basilicum. In both species, certain compounds (e.g., quercetin, kaempferol, catechin, and S-adenosyl homocysteine) were detected coincidently. In the case of O. basilicum, other vital phenolic acids (e.g., ursolic, vanilic, coumaric, and syringic acids) were identified. The aqueous extracts (AEs) of Ocimum recorded decrease of 6-94% in the proliferation of pathogenic bacteria (e.g., Listeria monocytogenes, Staphylococcus sp., Salmonella sp., and Bacillus sp.). The AEs also showed effective antioxidant activity by reducing free radicals by a factor of 1.04-1.13. Root-zone soil samples of both Ocimum spp. were collected from strategic locations with varying levels of key soil attributes (e.g., soil organic carbon (SOC), microbial biomass carbon (MBC), urease, and phosphatase). At high levels of SOC, MBC, and soil enzymes, the bioactivity of Ocimum spp. was observed to be promoted, especially with respect to secondary metabolite expression, anti-pathogenic activity, and anti-oxidant properties. As such, the findings of strong correlations between secondary metabolite concentrations and bioactivity attributes in Ocimum suggest the potent role of soil quality in eliciting the production of secondary metabolite in association with bioactivity in Ocimum spp.
Collapse
Affiliation(s)
- Subhasish Das
- Department of Environmental Science, Pachhunga University College, Mizoram University, Aizawl, 796001, India.
| | - Soma Barman
- Soil and Agro Bio-engineering Lab, Department of Environmental Science, Tezpur University, Tezpur, 784 028, India
| | - Rangbamon Teron
- Soil and Agro Bio-engineering Lab, Department of Environmental Science, Tezpur University, Tezpur, 784 028, India
| | - Satya Sundar Bhattacharya
- Soil and Agro Bio-engineering Lab, Department of Environmental Science, Tezpur University, Tezpur, 784 028, India.
| | - Ki-Hyun Kim
- Dept. of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, South Korea.
| |
Collapse
|
14
|
Dong B, Yang X, Liu W, An L, Zhang X, Tuerhong M, Du Q, Wang C, Abudukeremu M, Xu J, Lee D, Shuai L, Lall N, Guo Y. Anti-inflammatory neo-Clerodane Diterpenoids from Ajuga pantantha. JOURNAL OF NATURAL PRODUCTS 2020; 83:894-904. [PMID: 32216313 DOI: 10.1021/acs.jnatprod.9b00629] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Eight new neo-clerodane diterpenoids (1-8) were acquired from the aerial parts of Ajuga pantantha. Spectroscopic data analysis permitted the definition of their structures, and experimental and calculated electronic circular dichroism data were used to define their absolute configurations. Compounds 2 and 4-8 were found to have NO inhibitory effects with IC50 values of 20.2, 45.5, 34.0, 27.0, 45.0, and 25.8 μM, respectively. The more potent compounds 2, 6, and 8 were analyzed to establish their anti-inflammatory mechanism, including regulation of the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins as well as their binding interactions with the two proteins.
Collapse
Affiliation(s)
- Bangjian Dong
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Xueyuan Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Wenpei Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Lijun An
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Xuke Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Muhetaer Tuerhong
- College of Chemistry and Environmental Sciences, Kashgar University, Kashgar 844000, People's Republic of China
| | - Qing Du
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Nationalities University, Xining 810007, People's Republic of China
| | - Chunyan Wang
- Tianjin Second People's Hospital, Tianjin 300192, People's Republic of China
| | - Munira Abudukeremu
- College of Chemistry and Environmental Sciences, Kashgar University, Kashgar 844000, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
- Tianjin Second People's Hospital, Tianjin 300192, People's Republic of China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Dongho Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Ling Shuai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Namrita Lall
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| |
Collapse
|