1
|
Saadh MJ, Ehymayed HM, Alazzawi TS, Fahdil AA, Athab ZH, Yarmukhamedov B, Al-Anbari HHA, Shallal MM, Alsaikhan F, Farhood B. Role of circRNAs in regulating cell death in cancer: a comprehensive review. Cell Biochem Biophys 2024:10.1007/s12013-024-01492-6. [PMID: 39243349 DOI: 10.1007/s12013-024-01492-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/09/2024]
Abstract
Despite multiple diagnostic and therapeutic advances, including surgery, radiation therapy, and chemotherapy, cancer preserved its spot as a global health concern. Prompt cancer diagnosis, treatment, and prognosis depend on the discovery of new biomarkers and therapeutic strategies. Circular RNAs (circRNAs) are considered as a stable, conserved, abundant, and varied group of RNA molecules that perform multiple roles such as gene regulation. There is evidence that circRNAs interact with RNA-binding proteins, especially capturing miRNAs. An extensive amount of research has presented the substantial contribution of circRNAs in various types of cancer. To fully understand the linkage between circRNAs and cancer growth as a consequence of various cell death processes, including autophagy, ferroptosis, and apoptosis, more research is necessary. The expression of circRNAs could be controlled to limit the occurrence and growth of cancer, providing a more encouraging method of cancer treatment. Consequently, it is critical to understand how circRNAs affect various forms of cancer cell death and evaluate whether circRNAs could be used as targets to induce tumor death and increase the efficacy of chemotherapy. The current study aims to review and comprehend the effects that circular RNAs exert on cell apoptosis, autophagy, and ferroptosis in cancer to investigate potential cancer treatment targets.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Tuqa S Alazzawi
- College of dentist, National University of Science and Technology, Dhi Qar, Iraq
| | - Ali A Fahdil
- Medical technical college, Al-Farahidi University, Baghdad, Iraq
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Bekhzod Yarmukhamedov
- Department of Surgical Dentistry and Dental Implantology, Tashkent State Dental Institute, Tashkent, Uzbekistan
- Department of Scientific affairs, Samarkand State Medical University, Samarkand, Uzbekistan
| | | | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Farazi MM, Jafarinejad-Farsangi S, Miri Karam Z, Gholizadeh M, Hadadi M, Yari A. Circular RNAs: Epigenetic regulators of PTEN expression and function in cancer. Gene 2024; 916:148442. [PMID: 38582262 DOI: 10.1016/j.gene.2024.148442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/04/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Epigenetic regulation of gene expression, without altering the DNA sequence, is involved in many normal cellular growth and division events, as well as diseases such as cancer. Epigenetics is no longer limited to DNA methylation, and histone modification, but regulatory non-coding RNAs (ncRNAs) also play an important role in epigenetics. Circular RNAs (circRNAs), single-stranded RNAs without 3' and 5' ends, have recently emerged as a class of ncRNAs that regulate gene expression. CircRNAs regulate phosphatase and tensin homolog (PTEN) expression at various levels of transcription, post-transcription, translation, and post-translation under their own regulation. Given the importance of PTEN as a tumor suppressor in cancer that inhibits one of the most important cancer pathways PI3K/AKT involved in tumor cell proliferation and survival, significant studies have been conducted on the regulatory role of circRNAs in relation to PTEN. These studies will be reviewed in this paper to better understand the function of this protein in cancer and explore new therapeutic approaches.
Collapse
Affiliation(s)
| | - Saeideh Jafarinejad-Farsangi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Zahra Miri Karam
- Department of Medical Genetics, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Endocrinology & Metabolism Research Center, Institute of Basic & Clinical Physiology Sciences, Kerman University of Medical Sciences Kerman, Iran
| | - Maryam Gholizadeh
- Institute of Bioinformatics, University of Medicine Greifswald, Greifwald, Germany
| | - Maryam Hadadi
- Cardiovascular Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Abolfazl Yari
- Endocrinology & Metabolism Research Center, Institute of Basic & Clinical Physiology Sciences, Kerman University of Medical Sciences Kerman, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
3
|
Guo T, Xiong W, Liu C, Zhu L, Xie L. CircSCNN1A inhibits the proliferation, migration and invasion of renal cell carcinoma cells by decreasing CLDN8 expression through miR-590-5p. Genesis 2024; 62:e23599. [PMID: 38764323 DOI: 10.1002/dvg.23599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/19/2024] [Accepted: 04/09/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Increasing evidence suggests that circular RNA (circRNA) plays a regulatory role in the progression of renal cell carcinoma (RCC). However, the precise function and underlying mechanism of circSCNN1A in RCC progression still remain unclear. METHODS The expression levels of circSCNN1A, microRNA-590-5p (miR-590-5p), claudin 8 (CLDN8), cyclin D1, matrix metalloprotein 2 (MMP2), MMP9, E-cadherin, N-cadherin and vimentin were detected by a quantitative real-time polymerase chain reaction and Western blotting analysis. Immunohistochemistry assay was performed to analyze the positive expression rate of CLDN8. Cell proliferation was investigated by cell colony formation, 5-Ethynyl-2'-deoxyuridine and DNA content quantitation assays. Cell migration and invasion were assessed by wound-healing and transwell invasion assays. Interactions among circSCNN1A, miR-590-5p and CLDN8 were identified by dual-luciferase reporter assay, RNA immunoprecipitation assay and RNA pull-down assay. Xenograft mouse model assay was conducted to verify the effect of circSCNN1A on tumor formation in vivo. RESULTS CircSCNN1A and CLDN8 expression were significantly downregulated, while miR-590-5p was upregulated in both RCC tissues and cells. CircSCNN1A overexpression inhibited RCC cell proliferation, migration and invasion, accompanied by decreases of cyclin D1, MMP2, MMP9, N-cadherin and vimentin expression and an increase of E-cadherin expression. CircSCNN1A acted as a miR-590-5p sponge and regulated RCC cell processes by binding to miR-590-5p. CLDN8, a target gene of miR-590-5p, was involved in the regulation of the biological behaviors of RCC cells by miR-590-5p. In addition, circSCNN1A induced CLDN8 production by interacting with miR-590-5p. Further, circSCNN1A suppressed tumor formation in vivo. CONCLUSION CircSCNN1A inhibited RCC cell proliferation, migration and invasion by regulating the miR-590-5p/CLDN8 pathway.
Collapse
Affiliation(s)
- Tingting Guo
- Department of Pharmacy, Wuhan Third Hospital, Wuhan, China
| | - Wanjuan Xiong
- Department of Pharmacy, Wuhan Third Hospital, Wuhan, China
| | - Chong Liu
- Department of Thoracic surgery, Wuhan Third Hospital, Wuhan, China
| | - Li Zhu
- Department of Pharmacy, Wuhan Third Hospital, Wuhan, China
| | - Ling Xie
- Department of Pharmacy, Wuhan Third Hospital, Wuhan, China
| |
Collapse
|
4
|
Tuerdi R, Zhang H, Wang W, Shen M, Wei X. Bibliometric analysis of the research hotspots and trends of circular RNAs. Heliyon 2024; 10:e31478. [PMID: 38818139 PMCID: PMC11137546 DOI: 10.1016/j.heliyon.2024.e31478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/27/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
Background and objective Circular RNAs (circRNAs) have garnered considerable attention in the study of various human diseases due to their ubiquitous expression and potential biological functions. This study conducts a bibliometric and visualization-based analysis of circRNA-related research in diseases, aiming to reveal the current status, hotspots and emerging trends within the field. Methods Literature published between 2013 and 2022 and indexed in the Web of Science core databases was retrieved. Visualizations of publication volume, countries, authors, institutions, journals, references, and keywords were performed. Microsoft Excel (2021) was used to analyze and graph publication volume and growth trends. Additionally, CiteSpace (version 6.1.R6) and VOSviewer (version 1.6.18) were employed to visualize the bibliographic information. Results Between 2013 and 2022, a total of 4195 relevant articles on circRNA in the context of diseases were identified. These articles covered 56 countries, 2528 institutions, 19,842 authors and 698 journals, citing 85,541 references. The annual publication volume showed an exponential growth trend, with rapid development post-2017. China, the United States and Germany emerged as the top three contributors, demonstrating high publication volume and total citations. Notably, Nanjing Medical University exhibited the highest publication volume, boasting 291 articles. Burton B. Yang and Li Yang consistently ranked among the top 10 authors in terms of publication volume and citations, emerging as core contributors in this research field. The journal Bioengineered ranked first in terms of published articles (160), with an impact factor of 6.832, while Molecular Cancer garnered the highest impact factor (41.4), solidifying its position as a top journal in this field. Furthermore, high-frequency keywords included "expression" "proliferation" "biomarker" "microRNA" "cancer", signifying the prevailing research hotspots and principal themes of this field over the past decade. As of 2022, "biomarker", "prostate cancer","drug resistance","papillary thyroid carcinoma", etc. continued as keywords during the outbreak period. At present, the value of circRNA application is mainly reflected in the two aspects of biomarkers and therapeutic targets, and the prediction of accurate diagnosis and precise treatment based on big data analysis, especially in cancer, will become a hot spot of research in the future. Conclusion The trajectory of circRNA research from its biological origins to its applications in diseases has been delineated from 2013 to 2022. However, the transition to disease-specific applications and exploration of biological functions warrants further attention in future research endeavors.
Collapse
Affiliation(s)
- Reyila Tuerdi
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Hui Zhang
- Pathogenic Biology Laboratory, Gansu Provincial Center for Disease Prevention and Control, Lanzhou, 730000, Gansu, China
| | - Wenxin Wang
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Minghui Shen
- Center of Laboratory Medicine, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
| | - Xingmin Wei
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| |
Collapse
|
5
|
He M, Pan Y, You C, Gao H. CircRNAs in cancer therapy tolerance. Clin Chim Acta 2024; 558:119684. [PMID: 38649011 DOI: 10.1016/j.cca.2024.119684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
The rapidly expanding field of circular RNA (circ-RNA) research has opened new avenues in cancer diagnostics and treatment, highlighting the role of serum circRNAs as potential biomarkers for assessing tumor therapy resistance. This review comprehensively compiles existing knowledge regarding the biogenesis, function, and clinical relevance of circRNAs, emphasizing their stability, abundance, and cell type-specific expression profiles, which make them ideal candidates for noninvasive early biomarkers in cancer treatment. We explored the roles of circRNAs in oncogenesis and tumor progression and their complex interactions with patient responses to various cancer treatments, such as chemotherapy, radiotherapy, targeted therapy, and immunotherapy. Through the analysis of data from recent studies and clinical trials, we underscore the prognostic significance of serum circRNAs in predicting therapeutic outcomes, their involvement in resistance mechanisms, and their capacity to inform personalized treatment approaches. Additionally, this review addresses the obstacles inherent in circRNA research, including the need for standardized protocols for circRNA extraction and quantification and the elucidation of the clinical significance of circRNAs. Furthermore, our investigation extends to future prospects, including embedding circRNA profiling into regular clinical workflows and pioneering circRNA-based therapeutic approaches. We underscore the transformative potential of serum circRNAs in enhancing cancer diagnosis, improving the accuracy of therapy tolerance predictions, and ultimately fostering the advent of precision oncology.
Collapse
Affiliation(s)
- Miao He
- The Second Hospital of Lanzhou University, Laboratory Medicine Center, Lanzhou 730030, PR China; The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, PR China
| | - Yunyan Pan
- The Second Hospital of Lanzhou University, Laboratory Medicine Center, Lanzhou 730030, PR China
| | - Chongge You
- The Second Hospital of Lanzhou University, Laboratory Medicine Center, Lanzhou 730030, PR China.
| | - Hongwei Gao
- The Second Hospital of Lanzhou University, Laboratory Medicine Center, Lanzhou 730030, PR China.
| |
Collapse
|
6
|
Wu Z, Wang B, Chen S, Zuo T, Zhang W, Cheng Z, Fu J, Gong J. Hsa_circ_0009096/miR-370-3p modulates hepatic stellate cell proliferation and fibrosis during biliary atresia pathogenesis. PeerJ 2024; 12:e17356. [PMID: 38766485 PMCID: PMC11100479 DOI: 10.7717/peerj.17356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/18/2024] [Indexed: 05/22/2024] Open
Abstract
Background Hepatic stellate cell (HSC) activation and hepatic fibrosis mediated biliary atresia (BA) development, but the underlying molecular mechanisms are poorly understood. This study aimed to investigate the roles of circRNA hsa_circ_0009096 in the regulation of HSC proliferation and hepatic fibrosis. Methods A cellular hepatic fibrosis model was established by treating LX-2 cells with transforming growth factor β (TGF-β1). RNaseR and actinomycin D assays were performed to detect hsa_circ_0009096 stability. Expression of hsa_circ_0009096, miR-370-3p, and target genes was detected using reverse transcription-qPCR. Direct binding of hsa_circ_0009096 to miR-370-3p was validated using dual luciferase reporter assay. Cell cycle progression and apoptosis of LX-2 cells were assessed using flow cytometry. The alpha-smooth muscle actin (α-SMA), collagen 1A1 (COL1A1), and TGF beta receptor 2 (TGFBR2) protein levels in LX-2 cells were analyzed using immunocytochemistry and western blotting. Results Hsa_circ_0009096 exhibited more resistance to RNase R and actinomycinD digestion than UTRN mRNA. Hsa_circ_0009096 expression increased significantly in LX-2 cells treated with TGF-β1, accompanied by elevated α-SMA and COL1A1 expression. Hsa_circ_0009096 siRNAs effectively promoted miR-370-3p and suppressed TGFBR2 expression in LX-2 cells, mediated by direct association of hsa_circ_0009096 with miR-370-3p. Hsa_circ_0009096 siRNA interfered with the cell cycle progression, promoted apoptosis, and reduced α-SMA and COL1A1 expression in LX-2 cells treated with TGF-β1. MiR-370-3p inhibitors mitigated the alterations in cell cycle progression, apoptosis, and α-SMA, COL1A1, and TGFBR2 expression in LX-2 cells caused by hsa_circ_0009096 siRNA. In conclusion, hsa_circ_0009096 promoted HSC proliferation and hepatic fibrosis during BA pathogenesis by accelerating TGFBR2 expression by sponging miR-370-3p.
Collapse
Affiliation(s)
- Zhouguang Wu
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, China
| | - Bin Wang
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, China
| | - Siqi Chen
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, China
| | - Taoyan Zuo
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, China
| | - Wenjie Zhang
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, China
| | - Zhen Cheng
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, China
| | - Jingru Fu
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, China
| | - Jiafeng Gong
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, China
| |
Collapse
|
7
|
Wang T, He M, Zhang X, Guo Z, Wang P, Long F. Deciphering the impact of circRNA-mediated autophagy on tumor therapeutic resistance: a novel perspective. Cell Mol Biol Lett 2024; 29:60. [PMID: 38671354 PMCID: PMC11046940 DOI: 10.1186/s11658-024-00571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer therapeutic resistance remains a significant challenge in the pursuit of effective treatment strategies. Circular RNAs (circRNAs), a class of non-coding RNAs, have recently emerged as key regulators of various biological processes, including cancer progression and drug resistance. This review highlights the emerging role of circRNAs-mediated autophagy in cancer therapeutic resistance, a cellular process that plays a dual role in cancer by promoting both cell survival and death. Increasing evidence suggests that circRNAs can modulate autophagy pathways, thereby influencing the response of cancer cells to therapeutic agents. In this context, the intricate interplay between circRNAs, autophagy, and therapeutic resistance is explored. Various mechanisms are discussed through which circRNAs can impact autophagy, including direct interactions with autophagy-related genes, modulation of signaling pathways, and cross-talk with other non-coding RNAs. Furthermore, the review delves into specific examples of how circRNA-mediated autophagy regulation can contribute to resistance against chemotherapy and radiotherapy. Understanding these intricate molecular interactions provides valuable insights into potential strategies for overcoming therapeutic resistance in cancer. Exploiting circRNAs as therapeutic targets or utilizing them as diagnostic and predictive biomarkers opens new avenues for developing personalized treatment approaches. In summary, this review underscores the importance of circRNA-mediated autophagy in cancer therapeutic resistance and proposes future directions for research in this exciting and rapidly evolving field.
Collapse
Affiliation(s)
- Ting Wang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Mengjie He
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610041, China
| | - Xudong Zhang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Zhixun Guo
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Pinghan Wang
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610041, China.
| | - Fangyi Long
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610041, China.
| |
Collapse
|
8
|
Hong JG, Zheng HL, Wang P, Huang P, Gong DP, Zeng ZY. Hsa_ circ_0006867 regulates ox-LDL-induced endothelial injury via the miR-499a-3p/ADAM10 axis. Clin Hemorheol Microcirc 2024; 88:115-127. [PMID: 37694359 PMCID: PMC11491994 DOI: 10.3233/ch-231895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Circular RNAs (circRNAs) have been reported to participate in the development of various diseases. In this study, we investigated the potential mechanism underlying the role of circRNAs in atherosclerosis. Human umbilical vein endothelial cells (HUVECs) were treated with 100 μg/mL oxidized low-density lipoprotein (ox-LDL) to simulate atherosclerosis. We observed that hsa_circ_0006867 (circ_0006867), a circRNA markedly increased in ox-LDL-treated endothelial cells, acted as a molecular sponge of miR-499a-3p and regulated its expression. This interaction led to changes in the downstream target gene ADAM10, thus affecting cell apoptosis and migration. Thus, our study suggests that circ_0006867 regulates ox-LDL-induced endothelial injury via the circ_0006867/miR-499a-3p/ADAM10 axis, indicating its potential as an exploitable therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Ji-Ge Hong
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, Guangxi, China
| | - Hui-Lei Zheng
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, Guangxi, China
- Department of Health Management, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Peng Wang
- Department of Health Management, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ping Huang
- Department of Health Management, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Dan-Ping Gong
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhi-Yu Zeng
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, Guangxi, China
| |
Collapse
|
9
|
Dandare A, Khan MJ, Naeem A, Liaquat A. Clinical relevance of circulating non-coding RNAs in metabolic diseases: Emphasis on obesity, diabetes, cardiovascular diseases and metabolic syndrome. Genes Dis 2023; 10:2393-2413. [PMID: 37554181 PMCID: PMC10404886 DOI: 10.1016/j.gendis.2022.05.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/11/2022] [Indexed: 11/22/2022] Open
Abstract
Non-coding RNAs (ncRNAs) participate in the regulation of several cellular processes including transcription, RNA processing and genome rearrangement. The aberrant expression of ncRNAs is associated with several pathological conditions. In this review, we focused on recent information to elucidate the role of various regulatory ncRNAs i.e., micro RNAs (miRNAs), circular RNAs (circRNAs) and long-chain non-coding RNAs (lncRNAs), in metabolic diseases, e.g., obesity, diabetes mellitus (DM), cardiovascular diseases (CVD) and metabolic syndrome (MetS). The mechanisms by which ncRNAs participated in disease pathophysiology were also highlighted. miRNAs regulate the expression of genes at transcriptional and translational levels. circRNAs modulate the regulation of gene expression via miRNA sponging activity, interacting with RNA binding protein and polymerase II transcription regulation. lncRNAs regulate the expression of genes by acting as a protein decoy, miRNA sponging, miRNA host gene, binding to miRNA response elements (MRE) and the recruitment of transcriptional element or chromatin modifiers. We examined the role of ncRNAs in the disease pathogenesis and their potential role as molecular markers for diagnosis, prognosis and therapeutic targets. We showed the involvement of ncRNAs in the onset of obesity and its progression to MetS and CVD. miRNA-192, miRNA-122, and miRNA-221 were dysregulated in all these metabolic diseases. Other ncRNAs, implicated in at least three diseases include miRNA-15a, miRNA-26, miRNA-27a, miRNA-320, and miRNA-375. Dysregulation of ncRNAs increased the risk of development of DM and MetS and its progression to CVD in obese individuals. Hence, these molecules are potential targets to arrest or delay the progression of metabolic diseases.
Collapse
Affiliation(s)
- Abdullahi Dandare
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
- Department of Biochemistry, Usmanu Danfodiyo University, Sokoto 840104, Nigeria
| | - Muhammad Jawad Khan
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
| | - Aisha Naeem
- Ministry of Public Health, POB42, Doha, Qatar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Afrose Liaquat
- Shifa College of Medicine, Shifa Tameer-E-Millat University, Islamabad 45550, Pakistan
| |
Collapse
|
10
|
Fan H, Zhou D, Zhang X, Jiang M, Kong X, Xue T, Gao L, Lu D, Tao C, Wang L. hsa_circRNA_BECN1 acts as a ceRNA to promote polycystic ovary syndrome progression by sponging the miR-619-5p/Rab5b axis. Mol Hum Reprod 2023; 29:gaad036. [PMID: 37882757 DOI: 10.1093/molehr/gaad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/30/2023] [Indexed: 10/27/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common reproductive endocrine disease that affects women of reproductive age. It is also a significant cause of infertility. Circular RNAs have been found to have a crucial role in the development and progression of reproductive system diseases. In this study, we focused on circ_BECN1 and aimed to investigate its role and mechanism in PCOS, providing a foundation for early diagnosis and treatment of this condition. Our findings revealed an upregulation of circ_BECN1 expression in the ovarian granulosa cells (GCs) of PCOS patients. Additionally, the silencing of circ_BECN1 resulted in inhibited proliferation and enhanced apoptosis of the human ovarian granulosa-like tumor cell line (KGN), therefore implicating circ_BECN1 in the cell cycle process. Through a dual-luciferase reporting assay, we determined that circ_BECN1 acts as a sponge for miR-619-5p and that Rab5b is the target gene of miR-619-5p. Moreover, the expression of Rab5b was found to be upregulated in the ovarian tissue of PCOS patients. Knocking down circ_BECN1 resulted in decreased Rab5b expression, which was then restored by using a miR-619-5p inhibitor. Additionally, rescue experiments demonstrated that overexpressing Rab5b reversed the effects of circ_BECN1 knockdown on cell proliferation and apoptosis in KGN cells. In summary, our findings indicate that circ_BECN1 is upregulated in PCOS GCs and promotes cell growth and cell cycle progression, and reduces cell apoptosis by modulating the miR-619-5p/Rab5b axis. Therefore, circ_BECN1 may serve as a potential therapeutic target for PCOS treatment.
Collapse
Affiliation(s)
- Hairui Fan
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Dongjie Zhou
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Xiaomei Zhang
- California Excellent Fertility (CEF), Anaheim, CA, USA
| | - Min Jiang
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| | - Xiang Kong
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| | - Tongmin Xue
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| | - Lingling Gao
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| | - Dan Lu
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| | - Chenyue Tao
- School of Nursing School of Public Health, Yangzhou University, Yangzhou, China
| | - Liping Wang
- Department of Biobank, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| |
Collapse
|
11
|
Bergonzini M, Loreni F, Lio A, Russo M, Saitto G, Cammardella A, Irace F, Tramontin C, Chello M, Lusini M, Nenna A, Ferrisi C, Ranocchi F, Musumeci F. Panoramic on Epigenetics in Coronary Artery Disease and the Approach of Personalized Medicine. Biomedicines 2023; 11:2864. [PMID: 37893238 PMCID: PMC10604795 DOI: 10.3390/biomedicines11102864] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Epigenetic modifications play a fundamental role in the progression of coronary artery disease (CAD). This panoramic review aims to provide an overview of the current understanding of the epigenetic mechanisms involved in CAD pathogenesis and highlights the potential implications for personalized medicine approaches. Epigenetics is the study of heritable changes that do not influence alterations in the DNA sequence of the genome. It has been shown that epigenetic processes, including DNA/histone methylation, acetylation, and phosphorylation, play an important role. Additionally, miRNAs, lncRNAs, and circRNAs are also involved in epigenetics, regulating gene expression patterns in response to various environmental factors and lifestyle choices. In the context of CAD, epigenetic alterations contribute to the dysregulation of genes involved in inflammation, oxidative stress, lipid metabolism, and vascular function. These epigenetic changes can occur during early developmental stages and persist throughout life, predisposing individuals to an increased risk of CAD. Furthermore, in recent years, the concept of personalized medicine has gained significant attention. Personalized medicine aims to tailor medical interventions based on an individual's unique genetic, epigenetic, environmental, and lifestyle factors. In the context of CAD, understanding the interplay between genetic variants and epigenetic modifications holds promise for the development of more precise diagnostic tools, risk stratification models, and targeted therapies. This review summarizes the current knowledge of epigenetic mechanisms in CAD and discusses the fundamental principles of personalized medicine.
Collapse
Affiliation(s)
- Marcello Bergonzini
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Francesco Loreni
- Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Antonio Lio
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Marco Russo
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Guglielmo Saitto
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Antonio Cammardella
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Francesco Irace
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Corrado Tramontin
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Massimo Chello
- Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Mario Lusini
- Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Antonio Nenna
- Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Chiara Ferrisi
- Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Federico Ranocchi
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Francesco Musumeci
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| |
Collapse
|
12
|
Lindner G, Takenaka K, Santucci K, Gao Y, Janitz M. Protein-coding circular RNAs - mechanism, detection, and their role in cancer and neurodegenerative diseases. Biochem Biophys Res Commun 2023; 678:68-77. [PMID: 37619313 DOI: 10.1016/j.bbrc.2023.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/04/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Circular RNAs (circRNAs) are a unique class of non-coding RNAs and were originally thought to have no protein-coding potential due to their lack of a 5' cap and 3' poly(A) tail. However, recent studies have challenged this notion and revealed that some circRNAs have protein-coding potential. They have emerged as a key area of interest in cancer and neurodegeneration research as recent studies have identified several circRNAs that can produce functional proteins with important roles in cancer progression. The protein-coding potential of circRNAs is determined by the presence of an open reading frame (ORF) within the circular structure that can encode a protein. In some cases, the ORF can be translated into a functional protein despite the lack of traditional mRNA features. While the protein-coding potential of most circRNAs remains unclear, several studies have identified specific circRNAs that can produce functional proteins. Understanding the protein-coding potential of circRNAs is important for unravelling their biological functions and potential roles in disease. Our review provides comprehensive coverage of recent advances in the field of circRNA protein-coding capacity and its impact on cancer and neurodegenerative diseases pathogenesis and progression.
Collapse
Affiliation(s)
- Grace Lindner
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Konii Takenaka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Kristina Santucci
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Yulan Gao
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Michael Janitz
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
13
|
Sun J, Wu L, Wu M, Liu Q, Cao H. Non-coding RNA therapeutics: Towards a new candidate for arsenic-induced liver disease. Chem Biol Interact 2023; 382:110626. [PMID: 37442288 DOI: 10.1016/j.cbi.2023.110626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Arsenic, a metalloid toxicant, has caused serious environmental pollution and is presently a global health issue. Long-term exposure to arsenic causes diverse organ and system dysfunctions, including liver disease. Arsenic-induced liver disease comprises a spectrum of liver pathologies, ranging from hepatocyte damage, steatosis, fibrosis, to hepatocellular carcinoma. Various mechanisms, including an imbalance in redox reactions, mitochondrial dysfunction and epigenetic changes, participate in the pathogenesis of arsenic-induced liver disease. Altered epigenetic processes involved in its initiation and progression. Dysregulated modulations of non-coding RNAs (ncRNAs), including miRNAs, lncRNAs and circRNAs, exert regulating effects on these processes. Here, we have reviewed the underlying pathogenic mechanisms that lead to progressive arsenic-induced liver disease, and we provide a discussion focusing on the effects of ncRNAs on dysfunctions in intercellular communication and on the activation of hepatic stellate cells and malignant transformation of hepatocytes. Further, we have discussed the roles of ncRNAs in intercellular communication via extracellular vesicles and cytokines, and have provided a perspective for the application of ncRNAs as biomarkers in the early diagnosis and evaluation of the pathogenesis of arsenic-induced liver disease. Further investigations of ncRNAs will help us to understand the nature of arsenic-induced liver disease and to identify biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jing Sun
- Department of Nutrition, Functional Food Clinical Evaluation Center, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Lu Wu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Meng Wu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
| | - Hong Cao
- Department of Nutrition, Functional Food Clinical Evaluation Center, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
14
|
Titze-de-Almeida SS, Titze-de-Almeida R. Progress in circRNA-Targeted Therapy in Experimental Parkinson's Disease. Pharmaceutics 2023; 15:2035. [PMID: 37631249 PMCID: PMC10459713 DOI: 10.3390/pharmaceutics15082035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Circular RNAs (circRNAs) are single-stranded RNA molecules often circularized by backsplicing. Growing evidence implicates circRNAs in the underlying mechanisms of various diseases, such as Alzheimer's and Parkinson's disease (PD)-the first and second most prevalent neurodegenerative disorders. In this sense, circSNCA, circHIPK2, circHIPK3, and circSLC8A1 are circRNAs that have been related to the neurodegenerative process of PD. Gain-of-function and loss-of-function studies on circRNAs have shed light on their roles in the pathobiology of various diseases. Gain-of-function approaches typically employ viral or non-viral vectors that hyperexpress RNA sequences capable of circularizing to form the specific circRNA under investigation. In contrast, loss-of-function studies utilize CRISPR/Cas systems, antisense oligonucleotides (ASOs), or RNAi techniques to knock down the target circRNA. The role of aberrantly expressed circRNAs in brain pathology has raised a critical question: could circRNAs serve as viable targets for neuroprotective treatments? Translating any oligonucleotide-based therapy, including those targeting circRNAs, involves developing adequate brain delivery systems, minimizing off-target effects, and addressing the high costs of treatment. Nonetheless, RNAi-based FDA-approved drugs have entered the market, and circRNAs have attracted significant attention and investment from major pharmaceutical companies. Spanning from bench to bedside, circRNAs present a vast opportunity in biotechnology for oligonucleotide-based therapies designed to slow or even halt the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Simoneide Souza Titze-de-Almeida
- Technology for Gene Therapy Laboratory, Central Institute of Sciences, University of Brasília, Brasília 70910-900, Brazil
- Research Center for Major Themes, Central Institute of Sciences, University of Brasília, Brasília 70910-900, Brazil
| | - Ricardo Titze-de-Almeida
- Technology for Gene Therapy Laboratory, Central Institute of Sciences, University of Brasília, Brasília 70910-900, Brazil
- Research Center for Major Themes, Central Institute of Sciences, University of Brasília, Brasília 70910-900, Brazil
| |
Collapse
|
15
|
Luo H, Peng J, Yuan Y. CircRNA OXCT1 promotes the malignant progression and glutamine metabolism of non-small cell lung cancer by absorbing miR-516b-5p and upregulating SLC1A5. Cell Cycle 2023; 22:1182-1195. [PMID: 35482822 PMCID: PMC10193882 DOI: 10.1080/15384101.2022.2071565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/12/2022] [Accepted: 04/23/2022] [Indexed: 12/24/2022] Open
Abstract
Previous study has demonstrated the high expression of circular RNA 3-oxoacid CoA-transferase 1 (circ-OXCT1) in lung adenocarcinoma tumor tissues. However, the role and possible mechanism of circ-OXCT1 in non-small cell lung cancer (NSCLC) progression was unclear.Quantitative real-time PCR (qRT-PCR), western blotting and immunohistochemistry (IHC) staining assay were performed to detect the expression of circ-OXCT1, microRNA-516b-5p (miR-516b-5p), solute carrier family 1 member 5 (SLC1A5) and other indicated protein markers. Cell proliferation was measured by Cell counting kit 8 (CCK8), colony formation and 5-Ethynyl-2'-deoxyuridine (EdU) assays. Flow cytometry was employed to detect the rate of apoptotic cells. Cell migration and invasion were measured using transwell assay. The relative glutamine uptake and α-ketoglutarate (α-KG) production was determined using commercial kits. Interaction between miR-516b-5p and circ-OXCT1 or SLC1A5 was predicted by bioinformatics analysis and confirmed via luciferase reporter and RNA immunoprecipitation (RIP) assays. In vivo assay was implemented to demonstrate the effect of circ-OXCT1 in tumor growth.Circ-OXCT1 and SLC1A5 were upregulated and miR-516b-5p was downregulated in NSCLC tissues and cells. Functional experiments revealed that circ-OXCT1 silencing suppressed cell proliferation, migration and invasion, but promoted cell apoptosis in vitro. Circ-OXCT1 knockdown repressed tumor formation in vivo. Besides, miR-516b-5p was a target of circ-OXCT1, and miR-516b-5p inhibitor could relieve circ-OXCT1 absence-mediated effects in NSCLC cells. SLC1A5 was identified as a target of miR-516b-5p. Circ-OXCT1 promoted SLC1A5 expression by target binding with miR-516b-5p.Circ-OXCT1 facilitated NSCLC progression via miR-516b-5p-dependent regulation of SLC1A5, which provided a possible circRNA-targeted therapy for NSCLC.
Collapse
Affiliation(s)
- Hua Luo
- Department of Thoracic Surgery, Changsha Central Hospital, Changsha, Hunan, China
| | - Jianming Peng
- Department of Thoracic Surgery, Changsha Central Hospital, Changsha, Hunan, China
| | - Yuexi Yuan
- Department of Thoracic Surgery, Changsha Central Hospital, Changsha, Hunan, China
| |
Collapse
|
16
|
Lin Y, Zeng Z, Pan K. CIRCULAR RNA CIRC_0099188 CONTRIBUTES TO LPS-INDUCED HPAEpiC CELL INJURY BY TARGETING THE MIR-1236-3P/HMGB3 AXIS. Shock 2023; 59:734-743. [PMID: 36802224 DOI: 10.1097/shk.0000000000002100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
ABSTRACT Purpose: This study is designed to explore the role and mechanism of circ_0099188 in LPS-engendered HPAEpiC cells. Methods: Circ_0099188, microRNA-1236-3p (miR-1236-3p), and high mobility group box 3 (HMGB3) levels were measured using real-time quantitative polymerase chain reaction. Cell viability and apoptosis were assessed using cell counting kit-8 (CCK-8) and flow cytometry assays. Protein levels of B-cell lymphoma-2 (Bcl-2), Bcl-2 related X protein (Bax), cleaved-caspase 3, cleaved-caspase 9, and HMGB3 were determined using Western blot assay. IL-6, IL-8, IL-1β, and TNF-α levels were analyzed using enzyme-linked immunosorbent assays. After predicting using Circinteractome and Targetscan, the binding between miR-1236-3p and circ_0099188 or HMGB3 was verified using a dual-luciferase reporter, RNA immunoprecipitation, and RNA pull-down assays. Results: Circ_0099188 and HMGB3 were highly expressed, and miR-1236-3p was decreased in LPS-stimulated HPAEpiC cells. Also, the downregulation of circ_0099188 might overturn LPS-triggered HPAEpiC cell proliferation, apoptosis, and inflammatory response. Mechanically, circ_0099188 is able to affect HMGB3 expression by sponging miR-1236-3p. Conclusion: Circ_0099188 knockdown might mitigate LPS-induced HPAEpiC cell injury by targeting the miR-1236-3p/HMGB3 axis, providing an underlying therapeutic strategy for pneumonia treatment.
Collapse
Affiliation(s)
- Yuhang Lin
- Department of Infection, The First People's Hospital of Wenling, Wenling, China
| | | | | |
Collapse
|
17
|
Qin K, Zhang F, Wang H, Wang N, Qiu H, Jia X, Gong S, Zhang Z. circRNA circSnx12 confers Cisplatin chemoresistance to ovarian cancer by inhibiting ferroptosis through a miR-194-5p/SLC7A11 axis. BMB Rep 2023; 56:184-189. [PMID: 36617466 PMCID: PMC10068343 DOI: 10.5483/bmbrep.2022-0175] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/25/2022] [Accepted: 01/04/2023] [Indexed: 09/10/2023] Open
Abstract
Ovarian cancer (OC) is the most common gynecological malignancy worldwide, and chemoresistance occurs in most patients, resulting in treatment failure. A better understanding of the molecular processes underlying drug resistance is crucial for development of efficient therapies to improve OC patient outcomes. Circular RNAs (circRNAs) and ferroptosis play crucial roles in tumorigenesis and resistance to chemotherapy. However, little is known about the role(s) of circRNAs in regulating ferroptosis in OC. To gain insights into cisplatin resistance in OC, we studied the ferroptosis-associated circRNA circSnx12. We evaluated circSnx12 expression in OC cell lines and tissues that were susceptible or resistant to cisplatin using quantitative real-time PCR. We also conducted in vitro and in vivo assays examining the function and mechanism of lnc-LBCSs. Knockdown of circSnx12 rendered cisplatin-resistant OC cells more sensitive to cisplatin in vitro and in vivo by activating ferroptosis, which was at least partially abolished by downregulation of miR-194-5p. Molecular mechanics studies indicate that circSnx12 can be a molecular sponge of miR-194-5p, which targets SLC7A11. According to our findings, circSnx12 ameliorates cisplatin resistance by blocking ferroptosis via a miR-194-5p/SLC7A11 pathway. CircARNT2 may thus serve as an effective therapeutic target for overcoming cisplatin resistance in OC. [BMB Reports 2023; 56(3): 184-189].
Collapse
Affiliation(s)
- Kaiyun Qin
- Department of Gynecology, Hebei General Hospital, Hebei Shijiazhuang 050057, China
| | - Fenghua Zhang
- Department of Breast & Thyroid Surgery, Hebei General Hospital, Hebei Shijiazhuang 050057, China
| | - Hongxia Wang
- Department of Gynecology, Fourth Hospital of Hebei Medical University, Hebei Shijiazhuang 050011, China
| | - Na Wang
- Department of Gynecology, Fourth Hospital of Hebei Medical University, Hebei Shijiazhuang 050011, China
| | - Hongbing Qiu
- Department of Gynecology, Hebei Xingtai People’s Hospital, Hebei Shijiazhuang 054001, China
| | - Xinzhuan Jia
- Department of Reproductive Medicine, Fourth Hospital of Hebei Medical University, Hebei Shijiazhuang 050011, China
| | - Shan Gong
- Department of Gynecology, Fourth Hospital of Hebei Medical University, Hebei Shijiazhuang 050011, China
| | - Zhengmao Zhang
- Department of Gynecology, Fourth Hospital of Hebei Medical University, Hebei Shijiazhuang 050011, China
| |
Collapse
|
18
|
Qin K, Zhang F, Wang H, Wang N, Qiu H, Jia X, Gong S, Zhang Z. circRNA circSnx12 confers Cisplatin chemoresistance to ovarian cancer by inhibiting ferroptosis through a miR-194-5p/SLC7A11 axis. BMB Rep 2023; 56:184-189. [PMID: 36617466 PMCID: PMC10068343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/25/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
Ovarian cancer (OC) is the most common gynecological malignancy worldwide, and chemoresistance occurs in most patients, resulting in treatment failure. A better understanding of the molecular processes underlying drug resistance is crucial for development of efficient therapies to improve OC patient outcomes. Circular RNAs (circRNAs) and ferroptosis play crucial roles in tumorigenesis and resistance to chemotherapy. However, little is known about the role(s) of circRNAs in regulating ferroptosis in OC. To gain insights into cisplatin resistance in OC, we studied the ferroptosis-associated circRNA circSnx12. We evaluated circSnx12 expression in OC cell lines and tissues that were susceptible or resistant to cisplatin using quantitative real-time PCR. We also conducted in vitro and in vivo assays examining the function and mechanism of lnc-LBCSs. Knockdown of circSnx12 rendered cisplatin-resistant OC cells more sensitive to cisplatin in vitro and in vivo by activating ferroptosis, which was at least partially abolished by downregulation of miR-194-5p. Molecular mechanics studies indicate that circSnx12 can be a molecular sponge of miR-194-5p, which targets SLC7A11. According to our findings, circSnx12 ameliorates cisplatin resistance by blocking ferroptosis via a miR-194-5p/SLC7A11 pathway. CircARNT2 may thus serve as an effective therapeutic target for overcoming cisplatin resistance in OC. [BMB Reports 2023; 56(3): 184-189].
Collapse
Affiliation(s)
- Kaiyun Qin
- Department of Gynecology, Hebei General Hospital, Hebei Shijiazhuang 050057, China
| | - Fenghua Zhang
- Department of Breast & Thyroid Surgery, Hebei General Hospital, Hebei Shijiazhuang 050057, China
| | - Hongxia Wang
- Department of Gynecology, Fourth Hospital of Hebei Medical University, Hebei Shijiazhuang 050011, China
| | - Na Wang
- Department of Gynecology, Fourth Hospital of Hebei Medical University, Hebei Shijiazhuang 050011, China
| | - Hongbing Qiu
- Department of Gynecology, Hebei Xingtai People’s Hospital, Hebei Shijiazhuang 054001, China
| | - Xinzhuan Jia
- Department of Reproductive Medicine, Fourth Hospital of Hebei Medical University, Hebei Shijiazhuang 050011, China
| | - Shan Gong
- Department of Gynecology, Fourth Hospital of Hebei Medical University, Hebei Shijiazhuang 050011, China
| | - Zhengmao Zhang
- Department of Gynecology, Fourth Hospital of Hebei Medical University, Hebei Shijiazhuang 050011, China
| |
Collapse
|
19
|
Long non-coding RNA and circular RNA: new perspectives for molecular pathophysiology of atrial fibrillation. Mol Biol Rep 2023; 50:2835-2845. [PMID: 36596997 DOI: 10.1007/s11033-022-08216-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023]
Abstract
Many studies have demonstrated the association of atrial fibrillation (AF) with endogenous genetic regulatory mechanisms. These interactions could advance the understanding of the AF pathophysiological process, supporting the search for early biomarkers to improve diagnosis and disease monitoring. Among the endogenous genetic regulatory mechanisms, long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) have gained special attention, and studies have demonstrated their involvement in AF development and other AF-related diseases such as coronary artery disease and cardiomyopathy. This review describes the main experimental results reported by studies that analyzed the expression of lncRNAs and circRNAs in AF associated with miRNA or mRNA. The search was conducted in PubMed public database using the terms "lncRNA and atrial fibrillation" or "long ncRNA and atrial fibrillation" or "long non-coding RNA and atrial fibrillation" or "circular RNA and atrial fibrillation" or "circRNA and atrial fibrillation". There was no overlapping of lncRNA or circRNA among the studies, attributed to the different sample types, methods, species, and patient classification evaluated in these studies. Although the regulatory mechanisms in which these molecules are involved are not yet well understood, the studies analyzed show their importance in the pathophysiological process of AF, supporting the idea that lncRNAs and circRNAs are involved in miRNA or mRNA regulation in the molecular mechanism of this disease.
Collapse
|
20
|
Circular RNAs: Biogenesis, Biological Functions, and Roles in Myocardial Infarction. Int J Mol Sci 2023; 24:ijms24044233. [PMID: 36835653 PMCID: PMC9963350 DOI: 10.3390/ijms24044233] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Non-coding RNAs have been excavated as important cardiac function modulators and linked to heart diseases. Significant advances have been obtained in illuminating the effects of microRNAs and long non-coding RNAs. Nevertheless, the characteristics of circular RNAs are rarely mined. Circular RNAs (circRNAs) are widely believed to participate in cardiac pathologic processes, especially in myocardial infarction. In this review, we round up the biogenesis of circRNAs, briefly describe their biological functions, and summarize the latest literature on multifarious circRNAs related to new therapies and biomarkers for myocardial infarction.
Collapse
|
21
|
Pan JJ, Yang Y, Chen XQ, Shi J, Wang MZ, Tong ML, Zhou XG. RNA sequencing and bioinformatics analysis of circular RNAs in asphyxial newborns with acute kidney injury. Kaohsiung J Med Sci 2023; 39:337-344. [PMID: 36655871 DOI: 10.1002/kjm2.12644] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 01/20/2023] Open
Abstract
As one kind of novel noncoding RNA, circular RNAs (circRNAs) are involved in different biological processes. Although growing evidences have supported the important role of circRNAs in renal diseases, the mechanism remains unclear in neonatal acute kidney injury (AKI). High-throughput sequencing analysis was used to investigate the expression of circRNAs between hypoxia-induced AKI neonates and controls. Bioinformatics analysis was conducted to predict the function of differentially expressed circRNAs. Finally, the differentially expressed circRNAs were screened and determined by quantitative real-time PCR (qPCR). (1) A total of 296 differentially expressed circRNAs were identified (Fold change >2 and p < 0.05). Of them, 184 circRNAs were markedly upregulated, and 112 were significantly downregulated in the AKI group. (2) The pathway analysis showed that ubiquitin-mediated proteolysis, renal cell carcinoma, Jak-STAT, and HIF-1 signaling pathways participated in AKI. (3) Top five upregulated and five downregulated circRNAs with higher fold changes were selected for qPCR validation. Hsa_circ_0008898 (Fold Change = 5.48, p = 0.0376) and hsa_circ_0005519 (Fold Change = 4.65, p = 0.0071) were significantly upregulated, while hsa_circ_0132279 (Fold Change = -4.47, p = 0.0008), hsa_circ_0112327 (Fold Change = -4.26, p = 0.0048), and hsa_circ_0017647 (Fold Change = -4.15, p = 0.0313) were significantly downregulated in asphyxia-induced AKI group compared with the control group. This study could contribute to future research on neonatal AKI and facilitate the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Jing-Jing Pan
- Department of Neonatology, Children's Hospital of Nanjing Medical University, Nanjing, China
- Department of Neonatology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yang Yang
- Department of Neonatology, Children's Hospital of Nanjing Medical University, Nanjing, China
- Department of Child Healthcare, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Qing Chen
- Department of Neonatology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jia Shi
- Department of Neonatology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Mu-Zi Wang
- Department of Neonatology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Mei-Ling Tong
- Department of Child Healthcare, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Guang Zhou
- Department of Neonatology, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Cao H, Xu X, Wang K, Li C. Circ_0047835 Combines with miR-144-3p to Promote the Proliferation, Invasion, Migration, and Fibrosis of TGF-β1-Treated Human Tenon's Capsule Fibroblasts by Upregulating SP1. Curr Eye Res 2023; 48:371-381. [PMID: 36524862 DOI: 10.1080/02713683.2022.2159980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE Glaucoma is the leading cause of blindness worldwide with complex pathogenesis. Circular RNAs (circRNAs) play critical roles in various diseases, including glaucoma. The purpose of this study was to investigate the role of circ_0047835 and underlying mechanisms in the development of fibrosis after glaucoma filtration surgery. METHODS Human Tenon's capsule fibroblasts (HTFs) were stimulated using transforming growth factor-β1 (TGF-β1) to mimic a cellular model of glaucoma in vitro. Cell proliferation was evaluated by Cell Counting Kit-8 (CCK-8) assay and 5-ethynyl-2'-deoxyuridine (EdU) assay. Cell invasion and migration were detected by transwell assay and wound healing assay, respectively. Western blot assay was used to measure protein levels. The expression levels of circ_0047835, microRNA-144-3p (miR-144-3p) and specific protein 1 (SP1) mRNA were determined by real-time quantitative polymerase chain reaction (RT-qPCR). The interaction between miR-144-3p and circ_0047835 or SP1 was confirmed by dual-luciferase reporter assay and RNA Immunoprecipitation (RIP) assay. RESULTS Circ_0047835 expression was elevated in glaucoma tissues and TGF-β1-treated HTFs. Circ_0047835 or SP1 knockdown suppressed the proliferation, migration, invasion, and fibrosis of TGF-β1-treated HTFs. MiR-144-3p was a target of circ_0047835, and miR-144-3p inhibition reversed the effects of circ_0047835 knockdown in TGF-β1-treated HTFs. Moreover, SP1 was identified as a target of miR-144-3p, and miR-144-3p overexpression weakened TGF-β1-induced proliferation, migration, invasion, and fibrosis by targeting SP1 in HTFs. Furthermore, circ_0047835 combined with miR-144-3p to regulate SP1 expression. CONCLUSION Circ_0047835 might contribute to fibrosis progression after glaucoma surgery by regulating the miR-144-3p/SP1 axis.
Collapse
Affiliation(s)
- Haijing Cao
- Department of Ophthalmology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Xinhuai Xu
- Department of Ophthalmology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Kai Wang
- Department of Ophthalmology, Huaian City Center for Disease Control and Prevention, Huai'an, China
| | - Chaopeng Li
- Department of Ophthalmology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| |
Collapse
|
23
|
Rahmati A, Mafi A, Soleymani F, Babaei Aghdam Z, Masihipour N, Ghezelbash B, Asemi R, Aschner M, Vakili O, Homayoonfal M, Asemi Z, Sharifi M, Azadi A, Mirzaei H, Aghadavod E. Circular RNAs: pivotal role in the leukemogenesis and novel indicators for the diagnosis and prognosis of acute myeloid leukemia. Front Oncol 2023; 13:1149187. [PMID: 37124518 PMCID: PMC10140500 DOI: 10.3389/fonc.2023.1149187] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological malignancy and affected patients have poor overall survival (OS) rates. Circular RNAs (circRNAs) are a novel class of non-coding RNAs (ncRNAs) with a unique loop structure. In recent years, with the development of high-throughput RNA sequencing, many circRNAs have been identified exhibiting either up-regulation or down-regulation in AML patients compared with healthy controls. Recent studies have reported that circRNAs regulate leukemia cell proliferation, stemness, and apoptosis, both positively and negatively. Additionally, circRNAs could be promising biomarkers and therapeutic targets in AML. In this study, we present a comprehensive review of the regulatory roles and potentials of a number of dysregulated circRNAs in AML.
Collapse
Affiliation(s)
- Atefe Rahmati
- Department of Hematology and Blood Banking, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Basic Sciences, Faculty of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Firooze Soleymani
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Babaei Aghdam
- Imaging Sciences Research Group, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Masihipour
- Department of Medicine, Lorestan University of Medical Science, Lorestan, Iran
| | - Behrooz Ghezelbash
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Azadi
- Department of Internal Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
- *Correspondence: Abbas Azadi, ; Esmat Aghadavod, ; Hamed Mirzaei, ;
| | - Esmat Aghadavod
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
- Department of Clinical Biochemistry, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- *Correspondence: Abbas Azadi, ; Esmat Aghadavod, ; Hamed Mirzaei, ;
| |
Collapse
|
24
|
Ye Y, Fan X, Cai Z, Wu Y, Zhang W, Zhao H, Guo S, Feng P, Li Q, Zou P, Chen M, Fan N, Chen D, Guo R. Unveiling the circRNA-Mediated Immune Responses of Western Honey Bee Larvae to Ascosphaera apis Invasion. Int J Mol Sci 2022; 24:613. [PMID: 36614055 PMCID: PMC9820429 DOI: 10.3390/ijms24010613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Western honey bee (Apis mellifera), a eusocial insect with a superior economic and ecological value, is widely used in the beekeeping industry throughout the world. As a new class of non-coding RNAs (ncRNAs), circular RNAs (circRNAs) participate in the modulation of considerable biological processes, such as the immune response via diverse manners. Here, the identification, characteristic investigation, and molecular verification of circRNAs in the Apis mellifera ligustica larval guts were conducted, and the expression pattern of larval circRNAs during the Ascosphaera apis infection was analyzed, followed by the exploration of the potential regulatory part of differentially expressed circRNAs (DEcircRNAs) in host immune responses. A total of 2083 circRNAs in the larval guts of A. m. ligustcia were identified, with a length distribution ranging from 106 nt to 92,798 nt. Among these, exonic circRNAs were the most abundant type and LG1 was the most distributed chromosome. Additionally, 25, 14, and 30 up-regulated circRNAs as well as 26, 25, and 62 down-regulated ones were identified in the A. apis-inoculated 4-, 5-, and 6-day-old larval guts in comparison with the corresponding un-inoculated larval guts. These DEcircRNAs were predicted to target 35, 70, and 129 source genes, which were relative to 12, 23, and 20 GO terms as well as 11, 10, and 27 KEGG pathways, including 5 cellular and humoral immune pathways containing apoptosis, autophagy, endocytosis, MAPK, Toll, and Imd signaling pathways. Furthermore, complex competing endogenous RNA (ceRNA) regulatory networks were detected to be formed among DEcircRNAs, DEmiRNAs, and DEmRNAs. The Target DEmRNAs were engaged in 24, 20, and 25 functional terms as well as 62, 80, and 159 pathways, including several vital immune defense-associated pathways, namely the lysosome, endocytosis, phagosome, autophagy, apoptosis, MAPK, Jak-STAT, Toll, and Imd signaling pathways. Finally, back-splicing sites within 15 circRNAs and the difference in the 9 DEcircRNAs' expression between un-inoculated and A. apis-inoculated larval guts were confirmed utilizing molecular methods. These findings not only enrich our understanding of bee host-fungal pathogen interactions, but also lay a foundation for illuminating the mechanism underlying the DEcircRNA-mediated immune defense of A. m. ligustica larvae against A. apis invasion.
Collapse
Affiliation(s)
- Yaping Ye
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoxue Fan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zongbing Cai
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ying Wu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wende Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haodong Zhao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sijia Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peilin Feng
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiming Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peiyuan Zou
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengjun Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Nian Fan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dafu Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| | - Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| |
Collapse
|
25
|
Liang X, Liu X, Song Z, Zhu J, Zhang J. Hsa_circ_0097922 promotes tamoxifen resistance and cell malignant behaviour of breast cancer cells by regulating ACTN4 expression via miR-876-3p. Clin Exp Pharmacol Physiol 2022; 49:1257-1269. [PMID: 35856314 DOI: 10.1111/1440-1681.13702] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/22/2022] [Accepted: 07/15/2022] [Indexed: 01/31/2023]
Abstract
An increasing number of findings have verified the critical roles of circular RNAs (circRNAs) in human cancers, and chemotherapy resistance is a poor prognostic factor for breast cancer (BC). This study is designed to explore the function of hsa_circ_0097922 in the tamoxifen resistance of breast cancer. Hsa_circ_0097922, microRNA-876-3p (miR-876-3p), and alpha-actinin 4 (ACTN4) level were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Cell survival, proliferation, apoptosis, migration and invasion were detected by Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), and flow cytometry, wound healing and Transwell assays. Protein levels of proliferating cell nuclear antigen (PCNA), B-cell lymphoma-2 (Bcl-2), cleaved caspase 3, matrix metalloproteinase 9 (MMP9), and ACTN4 were determined using western blot assay. Using bioinformatics software, the binding between miR-876-3p and hsa_circ_0097922 or ACTN4 was predicted, followed by confirmation by RNA immunoprecipitation (RIP) and RNA pull-down assays. A xenograft tumour model in vivo analysed the biological role of hsa_circ_0097922 on BC tumour growth and drug resistance. Hsa_circ_0097922 and ACTN4 were increased, and miR-876-3p was decreased in tamoxifen resistance BC cells. Moreover, hsa_circ_0097922 knockdown can block BC cell malignant behaviour and tamoxifen resistance in vitro. Mechanically, hsa_circ_0097922 acted as a sponge of miR-876-3p to regulate ACTN4 expression. Hsa_circ_0097922 silencing increased the drug sensitivity of BC in vivo. Hsa_circ_0097922 might regulate BC cell malignant behaviour and tamoxifen resistance partly by regulating the miR-876-3p/ACTN4 axis, hinting at a promising therapeutic target for the BC treatment.
Collapse
Affiliation(s)
- Xiuju Liang
- Department of Oncology, No. 960 Hospital, the People's Liberation Army, Jinan City, Shandong, China
| | - Xiao Liu
- Department of Oncology, No. 960 Hospital, the People's Liberation Army, Jinan City, Shandong, China
| | - Zhonghua Song
- Department of General Practice, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong, China
| | - Jian Zhu
- Department of Thyroid Breast Surgery, No. 960 Hospital, the People's Liberation Army, Jinan City, Shandong, China
| | - Jinqing Zhang
- Department of General Surgery, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong, China
| |
Collapse
|
26
|
Sun Q, Wang L, Zhang C, Hong Z, Han Z. Cervical cancer heterogeneity: a constant battle against viruses and drugs. Biomark Res 2022; 10:85. [PMCID: PMC9670454 DOI: 10.1186/s40364-022-00428-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/30/2022] [Indexed: 11/19/2022] Open
Abstract
Cervical cancer is the first identified human papillomavirus (HPV) associated cancer and the most promising malignancy to be eliminated. However, the ever-changing virus subtypes and acquired multiple drug resistance continue to induce failure of tumor prevention and treatment. The exploration of cervical cancer heterogeneity is the crucial way to achieve effective prevention and precise treatment. Tumor heterogeneity exists in various aspects including the immune clearance of viruses, tumorigenesis, neoplasm recurrence, metastasis and drug resistance. Tumor development and drug resistance are often driven by potential gene amplification and deletion, not only somatic genomic alterations, but also copy number amplifications, histone modification and DNA methylation. Genomic rearrangements may occur by selection effects from chemotherapy or radiotherapy which exhibits genetic intra-tumor heterogeneity in advanced cervical cancers. The combined application of cervical cancer therapeutic vaccine and immune checkpoint inhibitors has become an effective strategy to address the heterogeneity of treatment. In this review, we will integrate classic and recently updated epidemiological data on vaccination rates, screening rates, incidence and mortality of cervical cancer patients worldwide aiming to understand the current situation of disease prevention and control and identify the direction of urgent efforts. Additionally, we will focus on the tumor environment to summarize the conditions of immune clearance and gene integration after different HPV infections and to explore the genomic factors of tumor heterogeneity. Finally, we will make a thorough inquiry into completed and ongoing phase III clinical trials in cervical cancer and summarize molecular mechanisms of drug resistance among chemotherapy, radiotherapy, biotherapy, and immunotherapy.
Collapse
Affiliation(s)
- Qian Sun
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Liangliang Wang
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Cong Zhang
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zhenya Hong
- grid.33199.310000 0004 0368 7223Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zhiqiang Han
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| |
Collapse
|
27
|
Wang M, Zhang Y, Chang W, Zhang L, Syrigos KN, Li P. Noncoding RNA-mediated regulation of pyroptotic cell death in cancer. Front Oncol 2022; 12:1015587. [PMID: 36387211 PMCID: PMC9659888 DOI: 10.3389/fonc.2022.1015587] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/18/2022] [Indexed: 07/30/2023] Open
Abstract
Pyroptosis is a newly discovered form of programmed cell death, which is manifested by DNA fragmentation, cell swelling, cell membrane rupture and leakage of cell contents. Previous studies have demonstrated that pyroptosis is tightly associated with the initiation and development of various cancers, whereas the molecular mechanisms underlying pyroptosis remain obscure. Noncoding RNAs (ncRNAs) are a type of heterogeneous transcripts that are broadly expressed in mammalian cells. Owing to their potency of regulating gene expression, ncRNAs play essential roles in physiological and pathological processes. NcRNAs are increasingly acknowledged as important regulators of the pyroptosis process. Importantly, the crosstalk between ncRNAs and pyroptosis affects various hallmarks of cancer, including cell growth, survival, metastasis and therapeutic resistance. The study of the involvement of pyroptosis-associated ncRNAs in cancer pathobiology has become a hot area in recent years, while there are limited reviews on this topic. Herein, we provide an overview of the complicated roles of ncRNAs, mainly including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), in modulating pyroptosis, with a focus on the underlying mechanisms of the ncRNA-pyroptosis axis in cancer pathogenesis. Finally, we discuss the potential applications and challenges of exploiting pyroptosis-regulating ncRNAs as molecular biomarkers and therapeutic targets in cancer.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Konstantinos N. Syrigos
- Third Department of Internal Medicine and Laboratory, National & Kapodistrian University of Athens, Athens, Greece
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
28
|
Sruthi KB, Menon A, P A, Vasudevan Soniya E. Pervasive translation of small open reading frames in plant long non-coding RNAs. FRONTIERS IN PLANT SCIENCE 2022; 13:975938. [PMID: 36352887 PMCID: PMC9638090 DOI: 10.3389/fpls.2022.975938] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Long non-coding RNAs (lncRNAs) are primarily recognized as non-coding transcripts longer than 200 nucleotides with low coding potential and are present in both eukaryotes and prokaryotes. Recent findings reveal that lncRNAs can code for micropeptides in various species. Micropeptides are generated from small open reading frames (smORFs) and have been discovered frequently in short mRNAs and non-coding RNAs, such as lncRNAs, circular RNAs, and pri-miRNAs. The most accepted definition of a smORF is an ORF containing fewer than 100 codons, and ribosome profiling and mass spectrometry are the most prevalent experimental techniques used to identify them. Although the majority of micropeptides perform critical roles throughout plant developmental processes and stress conditions, only a handful of their functions have been verified to date. Even though more research is being directed toward identifying micropeptides, there is still a dearth of information regarding these peptides in plants. This review outlines the lncRNA-encoded peptides, the evolutionary roles of such peptides in plants, and the techniques used to identify them. It also describes the functions of the pri-miRNA and circRNA-encoded peptides that have been identified in plants.
Collapse
|
29
|
Ma H, Qu S, Zhai Y, Yang X. circ_0025033 promotes ovarian cancer development via regulating the hsa_miR-370-3p/SLC1A5 axis. Cell Mol Biol Lett 2022; 27:94. [PMID: 36273140 PMCID: PMC9588225 DOI: 10.1186/s11658-022-00364-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/06/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) appear to be important modulators in ovarian cancer. We aimed to explore the role and mechanism of circ_0025033 in ovarian cancer. METHODS qRT-PCR was conducted to determine circ_0025033, hsa_miR-370-3p, and SLC1A5 mRNA expression. Functional experiments were conducted, including Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, transwell, tube formation, xenograft tumor model assay, western blot analysis of protein levels, and analysis of glutamine metabolism using commercial kits. Their predicted interaction was confirmed using dual-luciferase reporter and RNA pull-down. RESULTS circ_0025033 was upregulated in ovarian cancer; its knockdown induced proliferation, invasion, angiogenesis, glutamine metabolism, and apoptosis in vitro, and blocked tumor growth in vivo. circ_0025033 regulated ovarian cancer cellular behaviors via sponging hsa_miR-370-3p. In parallel, SLC1A5 might abolish the anti-ovarian cancer role of hsa_miR-370-3p. Furthermore, circ_0025033 affected SLC1A5 via regulating hsa_miR-370-3p. CONCLUSION circ_0025033 might promote ovarian cancer progression via hsa_miR-370-3p/SLC1A5, providing an interesting insight into ovarian cancer tumorigenesis.
Collapse
Affiliation(s)
- Huiping Ma
- Department of Gynecology, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710000, Shaanxi, China
| | - Shuyun Qu
- Department of Gynecology, Gynaecology Hospital of Shaanxi Nuclear Industry, Xi'an, Shaanxi, China
| | - Yao Zhai
- Department of Gynecology, Gynaecology Hospital of Shaanxi Nuclear Industry, Xi'an, Shaanxi, China
| | - Xiaofeng Yang
- Department of Gynecology, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710000, Shaanxi, China.
| |
Collapse
|
30
|
Wei W, Tang M, Wang Q, Li X. Circ_HECW2 regulates ox-LDL-induced dysfunction of cardiovascular endothelial cells by miR-942-5p/TLR4 axis. Clin Hemorheol Microcirc 2022:CH221550. [PMID: 36213989 DOI: 10.3233/ch-221550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Coronary artery disease (CAD) is a common coronary artery disease. The functional mechanism of circular RNA (circRNA) HECT, C2 and WW domain containing E3 ubiquitin protein ligase 2 (circ_HECW2, hsa_circ_0057583) in ox-LDL-treated human cardiac microvascular endothelial cells (hCMECs) is still unclear. METHODS Expression levels of circ_HECW2, microRNA (miR)-942-5p, and toll-like receptor 4 (TLR4) were analyzed by quantitative real-time PCR (qRT-PCR) and western blot assays. Cell proliferation and apoptosis were analyzed by 5-ethynyl-2'-deoxyuridine (EdU) assay, cell counting kit-8 (CCK8) assay, and flow cytometry, respectively. Tube formation assay was performed to analyze the angiogenesis of cells. Luciferase reporter and RNA pull-down assays were performed to analyze the target relationship among circ_HECW2, miR-942-5p and TLR4. RESULTS Circ_HECW2 and TLR4 expression levels were up-regulated and miR-942-5p expression was decreased in the serum of CAD patients and oxidized low-density lipoprotein (ox-LDL)-induced hCMECs. Knockdown of circ_HECW2 enhanced cell proliferation and inhibited cell apoptosis in ox-LDL-treated hCMECs. MiR-942-5p was the target of circ_HECW2 and directly targeted TLR4. Moreover, the effect of circ_HECW2 knockdown could be weakened by anti-miR-942-5p, and TLR4 could restore the function of miR-942-5p on cell damage of ox-LDL-induced hCMECs. CONCLUSION Circ_HECW2 could regulate ox-LDL-induced cardiovascular endothelial cell dysfunction through targeting miR-942-5p/TLR4 axis.
Collapse
Affiliation(s)
- Wenbo Wei
- Department of Cardiology, Nanjing Jiangning Hospital of Traditional Chinese Medicine, Nanjing City, Jiangsu, China
| | - Min Tang
- Department of Cardiology, Nanjing Tongren Hospital Affiliated to Southeast University School of Medicine, Nanjing City, Jiangsu, China
| | - Qi Wang
- Department of Cardiology, Nanjing Tongren Hospital Affiliated to Southeast University School of Medicine, Nanjing City, Jiangsu, China
| | - Xiaoming Li
- Emergency Department, Ben Q Hospital Affiliated to Nanjing Medical University, Nanjing City, Jiangsu, China
| |
Collapse
|
31
|
Zhao Y, Dhani S, Zhivotovsky B. Unveiling caspase-2 regulation by non-coding RNAs. Cell Death Dis 2022; 13:834. [PMID: 36171196 PMCID: PMC9519946 DOI: 10.1038/s41419-022-05270-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 01/23/2023]
Abstract
Non-coding RNAs (ncRNAs) are a group of RNA molecules, such as small nucleolar RNAs, circular RNAs (circRNAs), microRNAs (miRNAs) and long-noncoding RNAs (ncRNAs), that do not encode proteins. Although their biofunctions are not well-understood, many regulatory ncRNAs appear to be highly involved in regulating the transcription and translation of several genes that have essential biological roles including cell differentiation, cell death, metabolism, tumorigenesis and so on. A growing number of studies have revealed the associations between dysregulated ncRNAs and caspases involved in cell death in numerous human diseases. As one of the initiator and executor caspases, caspase-2 is the most evolutionally conserved caspase in mammals, exerting both apoptotic and non-apoptotic functions. A great deal of studies has shown the involvement of caspase-2 as a tumor suppressor in multiple oncogene-driven cancers, and yet a comprehensive understanding of its biological roles remains largely unknown. In this review, we highlight a compilation of studies focused on the interaction between caspase-2 and miRNAs/lncRNAs in the context of different diseases in order to deepen our knowledge on the regulatory biofunctions of caspase-2 and, furthermore, provide more insight into understanding the role that ncRNAs/caspase-2 axis plays in the development of human diseases.
Collapse
Affiliation(s)
- Yun Zhao
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden
| | - Shanel Dhani
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden
| | - Boris Zhivotovsky
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden.
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991, Moscow, Russia.
| |
Collapse
|
32
|
Sun Z, Yin M, Ding Y, Zhu Z, Sun Y, Li K, Yan W. Integrative analysis of synovial sarcoma transcriptome reveals different types of transcriptomic changes. Front Genet 2022; 13:925564. [PMID: 36118864 PMCID: PMC9478865 DOI: 10.3389/fgene.2022.925564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Synovial sarcoma (SS) is a rare and aggressive cancer that can come from distinct soft tissue types including muscle and ligaments. However, the transcriptomic landscape of SS is still poorly understood. This study aimed to systematically dissect the changes in SS transcriptome from different perspectives.Methods: We performed deep total RNA sequencing on ten paired Synovial sarcoma and tumor-adjacent tissues to systematically dissect the transcriptomic profile of SS in terms of gene expression, alternative splicing, gene fusion, and circular RNAs.Results: A total of 2,309 upregulated and 1,977 downregulated genes were identified between SS and tumor-adjacent tissues. Those upregulated genes could lead to the upregulation of the cell cycle, ribosome, and DNA replication pathways, while the downregulated genes may result in the downregulation of a set of metabolic biological processes and signaling pathways. Moreover, 2,511 genes (including 21 splicing factors) were differentially alternative spliced, indicating that the deregulation of alternative splicing could be one important factor that contributes to tumorigenesis. Additionally, we identified the known gene fusions of SS18-SSX1/SSX2 as well as 11 potentially novel gene fusions. Interestingly, 49 circular RNAs were differentially expressed and their parental genes could function in muscle contraction and muscle system processes.Conclusions: Collectively, our comprehensive dissection of the transcriptomic changes of SS from both transcriptional and post-transcriptional levels provides novel insights into the biology and underlying molecular mechanism of SS.
Collapse
Affiliation(s)
- Zhengwang Sun
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Mengchen Yin
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Ding
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zixu Zhu
- No.2 High School of East China Normal University, Shanghai,200000, China
| | - Yangbai Sun
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Kun Li
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Wangjun Yan
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
33
|
Xing J, Fan S, Liu H, Zhang S, Li N. CircZNF644 aggravates lipopolysaccharide-induced HK-2 cell impairment via the miR-140-5p/MLKL axis. J Bioenerg Biomembr 2022; 54:215-226. [PMID: 35976517 DOI: 10.1007/s10863-022-09946-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
Abstract
Circular RNAs (circRNAs) play vital roles in human diseases, including acute kidney injury (AKI). In this paper, we focused on the effect of circRNA zinc finger protein 644 (circZNF644) on AKI cell model progression. qRT-PCR was conducted for the levels of circZNF644, ZNF644, miR-140-5p and mixed lineage kinase domain like pseudokinase (MLKL). RNase R assay, actinomycin D assay and subcellular fraction analysis were conducted to analyze the features of circZNF644. CCK-8 assay and EdU assay were used to explore cell proliferation. Flow cytometry analysis was conducted to analyze cell cycle and cell apoptosis. Western blot assay was executed for protein levels. ELISA was performed for the levels of inflammatory cytokines. The relationships among circZNF644, miR-140-5p and MLKL were analyzed by dual-luciferase reporter assay and RIP assay. CircZNF644 was upregulated in LPS-stimulated HK-2 cells. LPS-mediated inhibitory effects on cell proliferation and cell cycle and promotional effects on apoptosis and inflammation were reversed by circZNF644 knockdown. CircZNF644 directly interacted with miR-140-5p and MLKL was the target gene of miR-140-5p. The impact of circZNF644 knockdown on HK-2 cell injury was relieved by miR-140-5p inhibition. Moreover, miR-140-5p enhancement alleviated LPS-triggered HK-2 cell damage, while MLKL elevation reversed the effect. CircZNF644 knockdown protected HK-2 cells from LPS-induced injury by altering miR-140-5p/MLKL pathway, suggesting that circZNF644 may be a hopeful therapeutic target for AKI.
Collapse
Affiliation(s)
- Jing Xing
- Department of Emergency, the First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Xigang District, Dalian City, 116011, Liaoning Province, China
| | - Songtao Fan
- Department of Ophthalmology, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning Province, China
| | - Hongyang Liu
- Department of Cardiac ICU, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning Province, China
| | - Su Zhang
- Department of Emergency, the First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Xigang District, Dalian City, 116011, Liaoning Province, China
| | - Nan Li
- Department of Emergency, the First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Xigang District, Dalian City, 116011, Liaoning Province, China.
| |
Collapse
|
34
|
Dong L, Huang J, Gao X, Du J, Wang Y, Zhao L. CircPCBP2 promotes the stemness and chemoresistance of DLBCL via targeting miR-33a/b to disinhibit PD-L1. Cancer Sci 2022; 113:2888-2903. [PMID: 35579082 PMCID: PMC9357607 DOI: 10.1111/cas.15402] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022] Open
Abstract
Diffuse large B‐cell lymphoma (DLBCL) is the most common lymphoid malignancy with a high relapse rate of up to 40%. The prognosis of the disease needs improvement and requires a understanding of its molecular mechanism. We investigated the mechanisms of DLBCL development and its sensitivity to chemotherapy by focusing on circPCBP2/miR‐33a/b/PD‐L1 axis. Human DLBCL specimens and cultured cancer cell lines were used. Features of circPCBP2 were systematically characterized through Sanger sequencing, Actinomycin D, RNase R treatment, and FISH. The expression levels of circPCBP2, miR‐33a/b, PD‐L1, stemness‐related markers, ERK/AKT and JAK2/STAT3 signaling were measured using qRT‐PCR, western blotting, and immunohistochemistry. Stemness of DLBCL cells was assessed through spheroid formation assay and flow cytometry. Cell viability and apoptosis upon cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) treatment were determined using MTT assay and flow cytometry, respectively. Interactions of circPCBP2‐miR‐33a/b and miR‐33a/b‐PD‐L1 were validated using dual luciferase activity assay and RNA‐RIP. Nude mouse xenograft model was used to assess the function of circPCBP2 in DLBCL growth in vivo. circPCBP2 was upregulated in human DLBCL specimens and cultured DLBCL cells while miR‐33a/b was reduced. Knockdown of circPCBP2 or miR‐33a/b overexpression inhibited the stemness of DLBCL cells and promoted cancer cell apoptosis upon CHOP treatment. circPCBP2 directly bound with miR‐33a/b while miR‐33a/b targeted PD‐L1 3’‐UTR. circPCBP2 disinhibited PD‐L1 signaling via sponging miR‐33a/b. miR‐33a/b inhibitor and activating PD‐L1 reversed the effects of circPCBP2 knockdown and miR‐33a/b mimics, respectively. circPBCP2 knockdown restrained DLBCL growth in vivo and potentiated the anti‐tumor effects of CHOP. In conclusion, circPCBP2 enhances DLBCL cell stemness but suppresses its sensitivity to CHOP via sponging miR‐33a/b to disinhibit PD‐L1 expression. circPCBP2/miR‐33a/b/PD‐L1 axis could serve as a diagnosis marker or therapeutic target for DLBCL.
Collapse
Affiliation(s)
- Lihua Dong
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan Province, P.R. China
| | - Jingjing Huang
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan Province, P.R. China
| | - Xue Gao
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan Province, P.R. China
| | - Jianwei Du
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan Province, P.R. China
| | - Yesheng Wang
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan Province, P.R. China
| | - Lingdi Zhao
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, Henan Province, P.R. China
| |
Collapse
|
35
|
Jiang C, Li H, Liu F, Shi L, Liu J, Li Y. Hsa_circ_0000345 inhibits cell proliferation, migration and invasion of nasopharyngeal carcinoma cells via miR-513a-3p/PTEN axis. J Physiol Sci 2022; 72:10. [PMID: 35545766 PMCID: PMC10716933 DOI: 10.1186/s12576-022-00834-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 04/12/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Hsa_circ_0000345 has been reported to be down-regulated in nasopharyngeal carcinoma (NPC). Whether hsa_circ_0000345 can exert antitumor effect in NPC remains unclear. This study aimed to investigate the possible biological role of hsa_cic_0000345 in suppressing the progression of NPC. METHODS Hsa_circ_0000345 expression was detected in normal nasopharynx epithelial cells (NP69) and NPC cell lines (SUNE1, HONE1, 6-10B and HNE1). The influence of hsa_circ_0000345 on cell proliferation, migration and invasion of NPC cells was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and transwell assays. Quantitative real-time PCR and western blot were performed to examine gene and protein expression, respectively. Luciferase reporter assay was carried out to verify the relationship among hsa_circ_0000345, miR-513a-3p and phosphatase and tensin homolog deleted on chromosome 10 (PTEN). RESULTS Compared with NP69 cells, hsa_circ_0000345 was down-regulated in NPC cells. Moreover, hsa_circ_0000345 overexpression repressed cell proliferation, migration and invasion of SUNE1 cells, whereas hsa_circ_0000345 knockdown promoted cell proliferation, migration and invasion of 6-10B cells. Furthermore, hsa_circ_0000345 promoted PTEN expression by sponging miR-513a-3p. Both miR-513a-3p overexpression and PTEN knockdown promoted cell proliferation, migration and invasion of SUNE1 cells, which were effectively abolished by hsa_circ_0000345 up-regulation. CONCLUSION Hsa_circ_0000345 inhibits cell proliferation, migration and invasion of NPC cells via miR-513a-3p/PTEN axis, thereby suppressing the progression of NPC. Thus, this work suggests that hsa_circ_0000345 may be a potential biomarker for diagnosis and treatment of NPC.
Collapse
Affiliation(s)
- Chang Jiang
- Department of Otorhinolaryngology, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), No 7 Weiwu Road, Zhengzhou, 450003, China
| | - Hongyan Li
- Department of Otorhinolaryngology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No 195 Tongbai Road, Zhengzhou, 450007, China
| | - Fei Liu
- Department of Otorhinolaryngology, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), No 7 Weiwu Road, Zhengzhou, 450003, China
| | - Linggai Shi
- Department of Otorhinolaryngology, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), No 7 Weiwu Road, Zhengzhou, 450003, China
| | - Jun Liu
- Department of Otorhinolaryngology, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), No 7 Weiwu Road, Zhengzhou, 450003, China.
| | - Yujie Li
- Department of Otorhinolaryngology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No 195 Tongbai Road, Zhengzhou, 450007, China.
| |
Collapse
|
36
|
Zhang C, Gu S, Kang X. CircRNA circ_0006892 regulates miR-24/PHLPP2 axis to mitigate cigarette smoke extract-induced bronchial epithelial cell injury. Biotechnol Appl Biochem 2022; 69:735-748. [PMID: 33734482 DOI: 10.1002/bab.2148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/29/2021] [Indexed: 12/22/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic airway disorder mainly resulted from cigarette smoke exposure. The dysregulated circular RNAs (circRNAs) are relevant to the pathogenesis of COPD. This study aims to explore the function and mechanism of circRNA hsa_circ_0006892 (circ_0006892) in cigarette smoke extract (CSE)-induced bronchial epithelial injury. The lung tissues were collected from 17 nonsmokers and 23 smokers with COPD. The bronchial epithelial cells (BEAS-2B and 16HBE) were stimulated via CSE. Circ_0006892, microRNA-24 (miR-24), and PH domain and leucine-rich repeat protein phosphatase 2 (PHLPP2) abundances were examined via a quantitative reverse transcription polymerase chain reaction or Western blot. Cell viability, apoptosis, and inflammatory response were assessed via cell counting kit-8 (CCK-8), flow cytometry, and enzyme-linked immunosorbent assay (ELISA). The target relationship of miR-24 and circ_0006892 or PHLPP2 was tested via dual-luciferase reporter analysis, RNA immunoprecipitation, and RNA pull-down. Circ_0006892 expression was reduced in lung tissues of smokers with COPD and CSE-stimulated bronchial epithelial cells. Circ_0006892 overexpression alleviated CSE-induced viability reduction and promotion of apoptosis and inflammatory response. MiR-24 was bound via circ_0006892, and miR-24 overexpression reversed the effect of circ_0006892 on CSE-induced injury. PHLPP2 was targeted via miR-24, and miR-24 knockdown mitigated CSE-induced viability reduction and promotion of apoptosis and inflammatory response via regulating PHLPP2. Circ_0006892 could promote PHLPP2 expression via regulating miR-24. Circ_0006892 attenuated CSE-induced bronchial epithelial cell apoptosis and inflammatory response via regulating miR-24/PHLPP2 axis.
Collapse
Affiliation(s)
- Chenying Zhang
- Department of Respiratory Medicine, The Hospital of Lianyungang Affiliated Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Shuangshuang Gu
- Department of Emergency, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Xiuwen Kang
- Department of Intensive Care Unit, The Hospital of Lianyungang Affiliated Xuzhou Medical University, Lianyungang, Jiangsu, China
| |
Collapse
|
37
|
circDlgap4 Alleviates Cerebral Ischaemic Injury by Binding to AUF1 to Suppress Oxidative Stress and Neuroinflammation. Mol Neurobiol 2022; 59:3218-3232. [PMID: 35294732 DOI: 10.1007/s12035-022-02796-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 03/09/2022] [Indexed: 10/18/2022]
Abstract
Ischaemic stroke is one of the most common causes of mortality and morbidity.circDlgap4 has been implicated in ischemia/reperfusion injury through an unknown mechanism. Here, we studied the function of circDlgap4/AUF1 in ischaemic stroke and its underlying molecular mechanism. N2a cells and primary mouse cortical neurons were subjected to OGD to mimic neuronal injury during ischemia. BV-2 cells were treated with LPS to mimic neuroinflammation. The MTT assay was used to assess cell viability, while flow cytometry was used to measure cell apoptosis. qRT-PCR, western blotting, immunohistochemistry, and immunostaining were employed to determine the levels of circDlgap4, AUF1, NRF2/HO-1, proinflammatory cytokines, NF-κB pathway-related proteins, and IBA-1. RIP and RNA pulldown assays were employed to validate the interactions of circDlgap4/AUF1, AUF1/NRF2, and AUF1/cytokine mRNAs. mRNA degradation was used to determine the effects on mRNA stability. The tMCAO model was used as an in vivo model of ischaemic stroke. TCC staining and neurological scoring were performed to evaluate ischaemic injury. circDlgap4 was decreased following OGD and during tMCAO. circDlgap4 overexpression inhibited OGD-induced cell death and oxidative stress and LPS-induced increases in proinflammatory cytokines by increasing NRF2/HO-1. Knockdown of AUF1 blocked the effects of circDlgap4 overexpression. Mechanistically, RIP, RNA pulldown, and mRNA degradation assay results showed circDlgap4/AUF1/NRF2 mRNA formed a complex to stabilize NRF2 mRNA. Furthermore, AUF1 directly interacted with TNF-α, IL-1β, and COX-2 mRNAs, and circDlgap4/AUF1 binding promoted the degradation of these mRNAs. Finally, circDlgap4 ameliorated ischaemic injury in vivo. circDlgap4 alleviates ischaemic stroke injury by suppressing oxidative stress and neuroinflammation by binding to AUF1.
Collapse
|
38
|
Huang HB, Luo HT, Wei NN, Liu ML, He F, Yang W, Dong J, Yang XF, Li FR. Integrative analysis reveals a lineage-specific circular RNA landscape for adipo-osteogenesis of human mesenchymal stem cells. Stem Cell Res Ther 2022; 13:106. [PMID: 35279206 PMCID: PMC8917624 DOI: 10.1186/s13287-022-02792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/28/2022] [Indexed: 12/03/2022] Open
Abstract
Background The balance between osteogenesis and adipogenesis of mesenchymal stem cells (MSCs) is critical to skeletal development and diseases. As a research hotspot, circular RNAs (circRNAs) have expanded our understanding of a hidden layer of the transcriptome. Yet, their roles during adipo-osteogenesis remain poorly described. Methods The identity of human MSCs derived from bone marrow and adipose were first determined by flow cytometry, cellular staining, and quantitative polymerase chain reaction (qPCR). Multi-strategic RNA-sequencing was performed using Poly A, RiboMinus and RiboMinus/RNase R methods. Integrative analysis was performed to identify lineage-specific expressed circRNAs. The structural and expressional characteristics were identified by Sanger sequencing and qPCR, respectively. The regulatory effects of adipogenesis-specific circ-CRLF1 were confirmed using siRNA transcfection and qPCR. Results We generated a whole transcriptome map during adipo-osteogenesis based on 10 Poly A, 20 RiboMinus and 20 RiboMinus/ RNase R datasets. A total of 31,326 circRNAs were identified and quantified from ~ 3.4 billion paired-end reads. Furthermore, the integrative analysis revealed that 1166 circRNA genes exhibited strong lineage-specific expression patterns. Their host genes were enriched in distinct biological functions, such as cell adhesion, cytokine signaling, and cell division. We randomly selected and validated the back-spliced junction sites and expression patterns of 12 lineage-specific circRNAs. Functional analysis indicated that circ-CRLF1 negatively regulated adipogenesis. Conclusions Our integrative analysis reveals an accurate and generally applicable lineage-specific circRNA landscape for adipo-osteogenesis of MSCs and provides a potential therapeutic target, circ-CRLF1, for the treatment of skeleton-related disease. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02792-5.
Collapse
Affiliation(s)
- Hai-Bo Huang
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), ShenzhenGuangdong, 518020, China.,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, Guangdong, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, Guangdong, China.,Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Hai-Tao Luo
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), ShenzhenGuangdong, 518020, China.,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, Guangdong, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Na-Na Wei
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), ShenzhenGuangdong, 518020, China.,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, Guangdong, China.,Kunpeng Institute of Modern Agriculture at Foshan, Foshan, 528200, China
| | - Miao-Ling Liu
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), ShenzhenGuangdong, 518020, China.,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, Guangdong, China
| | - Fei He
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), ShenzhenGuangdong, 518020, China.,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, Guangdong, China
| | - Wei Yang
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), ShenzhenGuangdong, 518020, China.,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, Guangdong, China
| | - Jun Dong
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, Guangdong, China. .,Department of Pathophysiology, Key Laboratory of the State Administration of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Xiao-Fei Yang
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), ShenzhenGuangdong, 518020, China. .,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, Guangdong, China.
| | - Fu-Rong Li
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), ShenzhenGuangdong, 518020, China. .,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, Guangdong, China. .,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
39
|
Hassani B, Mollanoori H, Pouresmaeili F, Asgari Y, Ghafouri-Fard S. Constructing mRNA, miRNA, circRNA and lncRNA regulatory network by Analysis of microarray data in breast cancer. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
40
|
Zhou W, Chen YX, Ke B, He JK, Zhu N, Zhang AF, Fang XD, Tu WP. circPlekha7 suppresses renal fibrosis via targeting miR-493-3p/KLF4. Epigenomics 2022; 14:199-217. [PMID: 35172608 DOI: 10.2217/epi-2021-0370] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Aims: The authors aim to investigate the function of circPlekha7 in renal fibrosis. Methods: Human renal tissues from chronic kidney disease patients, kidney cell line and primary cultured renal tubular epithelial cells were used. TGF-β1-treated human kidney 2 cells/tubular epithelial cells and a unilateral ureteral obstruction mouse model were employed to study renal fibrosis. Results: circPlekha7 was diminished in renal tissues from chronic kidney disease patients and TGF-β1-treated human kidney 2 cells and tubular epithelial cells, while miR-493-3p was upregulated. Overexpression of circPlekha7 or knockdown of miR-493-3p suppressed TGF-β1 induced enhancements on epithelial to mesenchymal transition and fibrogenesis, as well as attenuated renal fibrosis and injury in mice subjected to unilateral ureteral obstruction. circPlekha7 bound with miR-493-3p, which directly targeted KLF4. Conclusion: circPlekha7 inhibits epithelial to mesenchymal transition of renal tubular epithelial cells and fibrosis via targeting miR-493-3p to de-repress KLF4/mitofusin2 expression.
Collapse
Affiliation(s)
- Wa Zhou
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, PR China
| | - Yan-Xia Chen
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, PR China
| | - Ben Ke
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, PR China
| | - Jia-Ke He
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, PR China
| | - Na Zhu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, PR China
| | - A-Fei Zhang
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, PR China
| | - Xiang-Dong Fang
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, PR China
| | - Wei-Ping Tu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, PR China
| |
Collapse
|
41
|
Wang W, He X, Di R, Wang X, Chu M. Photoperiods induced the circRNA differential expression in the thyroid gland of OVX+E 2 ewes. Front Endocrinol (Lausanne) 2022; 13:974518. [PMID: 36105406 PMCID: PMC9464909 DOI: 10.3389/fendo.2022.974518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Circular RNAs (circRNAs) are non-coding RNAs newly identified and play important roles in RNA regulation. However, little is known regarding photoperiods induced circRNAs in the thyroid gland. In this study, we performed a comprehensive analysis of circRNA profiles in the thyroid gland of OVX+E2 ewes at different photoperiods by whole transcriptome sequencing. A total of 37,470 novel circRNAs were detected in different photoperiods (42 days of short photoperiod treatment, SP42; 42 days of long photoperiod treatment, LP42; SP42 transfer to LP42, SPLP42), with a total of 817 circRNAs for SP42-LP42 (down: 132; up: 114), LP42-SPLP42 (down: 136; up: 112) and SP42-SPLP42 (down: 182; up: 141) having differentially expressed. Functional enrichment annotation analysis of DE-circRNAs for GO and KEGG by R package, features that influence photoperiod response in Sunite ewes through the Inositol phosphate metabolism, cGMP-PKG signaling pathway, Calcium signaling pathway, MAPK signaling pathway, and Oocyte meiosis. In addition, competitive endogenous RNA (ceRNA) network analysis revealed target binding sites for identified miRNAs in DE-cirRNAs such as oar-miR-10b, oar-miR-200c, oar-miR-21, oar-miR-370-3p, oar-miR-377-3p, oar-miR-181a, oar-miR-432, and oar-miR-495-3p. These results of this study will provide some new information for understanding circRNA function as well as the changes in the sheep thyroid gland under different photoperiods.
Collapse
|
42
|
Abstract
The circular and linear forms of viroid RNAs can be separated by two-dimensional polyacrylamide gel electrophoresis (PAGE) based on the selective delay in mobility that circular RNAs experience under denaturing conditions. First PAGE separates RNA preparations from viroid-infected plants, and the whole lane from this first gel is next perpendicularly loaded on top of a second gel. Separation continues under new conditions that differ in the degree of denaturation from the first. The result is a two-dimensional separation of the RNAs in which circular and linear molecules are distributed in two parallel diagonals.
Collapse
Affiliation(s)
- José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, Spain.
| |
Collapse
|
43
|
Tu C, Wang L, Wei L, Jiang Z. The role of circular RNA in Diabetic Nephropathy. Int J Med Sci 2022; 19:916-923. [PMID: 35693742 PMCID: PMC9149631 DOI: 10.7150/ijms.71648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/06/2022] [Indexed: 11/05/2022] Open
Abstract
Diabetic nephropathy (DKD) is the most common chronic microvascular complication of diabetes. About 20%-40% of diabetics develop DKD, which eventually leads to chronic kidney failure. Although progress has been made in diagnosis and treatment tools, diabetic nephropathy is still a major clinical problem. In recent years, circular RNA (CircRNA) has become a research hotspot. CircRNA is a non-coding RNA formed by covalently closing the 5 'and 3' ends of the precursor RNA. CircRNA has powerful biological functions. CircRNA can regulate the expression of target genes through competitive binding with microRNA, thus playing the biological role of endogenous RNA (CeRNA). Many studies have shown that circRNAs plays an important role in malignant tumors, autoimmune system diseases, coronary heart disease and other diseases. More and more studies have shown that it can also be used as a biomarker of diabetes and diabetic nephropathy. This review summarizes the origin, classification, biogenesis and regulatory mechanisms of circRNAs. In addition, the pathogenesis and clinical significance of circRNAs as competing endogenous RNAs involved in diabetic nephropathy were also introduced. This will help us fully understand the pathological mechanism of diabetic nephropathy and develop new therapeutic targets or treatment options to improve the prognosis of patients with diabetic nephropathy.
Collapse
Affiliation(s)
- Chao Tu
- Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213000, China
| | - Liangzhi Wang
- Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213000, China
| | - Lan Wei
- Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213000, China
| | - Zhuyan Jiang
- Department of Dermatology, Southwest Hospital, Army Military Medical University, Chongqing, 400038, China
| |
Collapse
|
44
|
Zheng X, Liu J, Gong X, Zhang X, Ma S. Circ_0002984 Enhances Growth, Invasion, and Migration in PDGF-bb-Induced Vascular Smooth Muscle Cells Through miR-379-5p/FRS2 Axis. J Cardiovasc Pharmacol 2021; 78:875-884. [PMID: 34882114 DOI: 10.1097/fjc.0000000000001143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 08/28/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT The accumulation of vascular smooth muscle cells (VSMCs) is considered to play important roles in atherosclerosis (AS) development and progression. Circ_0002984 was found to be increased in oxidized low-density lipoprotein (ox-LDL) human VSMCs (HVSMCs). However, the function and mechanism of circ_0002984 in VSMC dysfunction remain unknown. In this study, the expression of circ_0002984, microRNA (miR)-379-5p, and fibroblast growth factor receptor substrate 2 (FRS2) was detected using quantitative real-time polymerase chain reaction and western blot. Cell proliferation, cell cycle, migration, and invasion were detected using Cell Counting Kit-8, flow cytometry, and transwell assays. The binding interaction between miR-379-5p and circ_0002984 or FRS2 was confirmed by the dual-luciferase reporter assay. Collectively, this study found that circ_0002984 was elevated in platelet-derived growth factor type bb (PDGF-bb)-induced HVSMCs. Circ_0002984 knockdown abrogated PDGF-bb-induced proliferation, migration, and invasion in HVSMCs. Mechanistically, circ_0002984 was confirmed to target miR-379-5p, and miR-379-5p upregulation reversed the protective effects of circ_0002984 knockdown on PDGF-bb-induced HVSMCs. Besides, when FRS2 was a target of miR-379-5p, miR-379-5p restoration abolished PDGF-bb-evoked HVSMC dysfunction, which was attenuated by the overexpression of FRS2. Moreover, circ_0002984 could regulate FRS2 expression through sponging miR-379-5p in HVSMCs. Collectively, these results demonstrated that circ_0002984 promoted PDGF-bb-induced VSMC proliferation, migration, and invasion through the regulation of miR-379-5p/FRS2 axis, suggesting a new insight into the pathogenesis of AS and the potential application of circ_0002984 in AS treatment.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Becaplermin/pharmacology
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Gene Expression Regulation
- Humans
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Xiangni Zheng
- Internal Medicine-Cardiovascular Department, Qingyang People's Hospital of Qingyang City, Qingyang, Gansu, China
| | - Jian Liu
- Department of Radiology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Xuepeng Gong
- Imaging Department, PLA Air Force 986 Hospital, Xi'an, Shaanxi, China
| | - Xu Zhang
- Department of Hemodialysis, Weifang Hospital of Traditional Chinese Medicine, Weifang, China ; and
| | - Shengting Ma
- Department of Cardiovascular Medicine, the Third Affiliated Hospital of Shandong First Medical University, The Fouth People's Hospital of Jinan, Jinan, Shandong, China
| |
Collapse
|
45
|
Hu K, Li NF, Li JR, Chen ZG, Wang JH, Sheng LQ. Exosome circCMTM3 promotes angiogenesis and tumorigenesis of hepatocellular carcinoma through miR-3619-5p/SOX9. Hepatol Res 2021; 51:1139-1152. [PMID: 34233088 DOI: 10.1111/hepr.13692] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 12/29/2022]
Abstract
AIM As one of the most common and lethal carcinomas, hepatocellular carcinoma (HCC) is a global health concern and affects millions of people worldwide. Current treatments for HCC are very limited due to its unclear pathogenesis. Here, we aim to further investigate the role of circCMTM3/microRNA (miR)-3619-5p in HCC. METHODS Human blood samples were collected from HCC patients and healthy people. Quantitative reverse transcription-polymerase chain reaction and western blot analysis were undertaken to measure levels of circCMTM3, miR-3619-5p, SOX9, and exosome markers. The MTT, colony formation, and Transwell assays were used to examine the viability, migration, and invasion of human umbilical vein endothelial cells (HUVECs), respectively. Tube formation assay was used to assess angiogenesis. Dual luciferase assay was used to validate circCMTM3/miR-3619-5p and miR-3619-5p/SOX9 interactions. A nude mouse xenograft model was used to test the role of circCMTM3 in HCC in vivo. RESULTS Levels of circCMTM3 in exosomes from HCC patients and cells were elevated. Knockdown of circCMTM3 greatly decreased viability, migration, and invasion of HUVECs, as well as angiogenesis. CircCMTM3 acted as a miR-3619-5p sponge and miR-3619-5p inhibitor reversed the effects of si-circCMTM3 on angiogenesis. MiR-3619-5p directly targeted SOX9 and modulated angiogenesis through SOX9. Furthermore, knockdown of circCMTM3 suppressed angiogenesis and HCC tumor growth in vivo. CONCLUSION The exosome circCMTM3/miR-3619-5p/SOX9 axis from HCC cells promotes angiogenesis and thus contributes to HCC tumorigenesis.
Collapse
Affiliation(s)
- Ke Hu
- Department of Intensive Care Unit, Yiyang Central Hospital, Yiyang, China
| | - Nian-Feng Li
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Rong Li
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ze-Guo Chen
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jian-Hua Wang
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Lang-Qing Sheng
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
46
|
Mafi A, Yadegar N, Salami M, Salami R, Vakili O, Aghadavod E. Circular RNAs; powerful microRNA sponges to overcome diabetic nephropathy. Pathol Res Pract 2021; 227:153618. [PMID: 34649056 DOI: 10.1016/j.prp.2021.153618] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022]
Abstract
Diabetic nephropathy (DN), also known as diabetic kidney disease (DKD), is a drastic renal complication of type 1 and type 2 diabetes mellitus (DM). Poorly controlled DM over the years, may disrupt kidneys' blood vessels, leading to the hypertension (HTN) and DN onset. During DN, kidneys' waste filtering ability becomes disturbed. Being on a healthy lifestyle and controlling both DM and HTN are now the best proceedings to prevent or at least delay DN occurrence. Unfortunately, about one-fourth of diabetic individuals eventually experience the corresponding renal failure, and thus it is critical to discover effective diagnostic biomarkers and therapeutic strategies to combat DN. In the past few years, circular RNAs (circRNAs), as covalently closed endogenous non-coding RNAs (ncRNAs), are believed to affect DN pathogenesis in a positive manner. CircRNAs are able to impact different cellular processes and signaling pathways by targeting biological molecules or various molecular mechanisms. Still, as a key regulatory axis, circRNAs can select miRNAs as their molecular targets, in which they are considered as miRNA sponges. In this way, circRNA-induced suppression of particular miRNAs may prevent from DN progression or promotes the DN elimination. Since the expression of circRNAs has also been reported to be increased in DN-associated cells and tissues, they can be employed as either diagnostic biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Negar Yadegar
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Marziyeh Salami
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| | - Raziyeh Salami
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Esmat Aghadavod
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran; Department of Clinical Biochemistry, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
47
|
Wang F, Zhang Y, Zhou X, Chen X, Xiang J, Fan M, Yu Y, Cai Y, Wu H, Huang S, He N, Hu Z, Ding G, Jin X. Circular RNA CircPPP1CB Suppresses Tumorigenesis by Interacting With the MiR-1307-3p/SMG1 Axis in Human Bladder Cancer. Front Cell Dev Biol 2021; 9:704683. [PMID: 34595165 PMCID: PMC8476764 DOI: 10.3389/fcell.2021.704683] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/16/2021] [Indexed: 12/23/2022] Open
Abstract
Circular RNA (circRNA) is a newly discovered endogenous non-coding RNA (ncRNA), which is characterized with a closed circular structure. A growing body of evidence has verified the vital roles of circRNAs in human cancer. In this research, we selected circPPP1CB as a study object by circRNA sequencing and quantitative real-time PCR (qRT-PCR) validation in human bladder cancer (BC). CircPPP1CB is downregulated in BC and is negatively correlated with clinical stages and histological grades. Functionally, circPPP1CB modulated cell growth, metastasis, and epithelial-to-mesenchymal transition (EMT) process in vitro and in vivo. Mechanically, we performed various experiments to verify the circPPP1CB/miR-1307-3p/SMG1 regulatory axis. Taken together, our results demonstrated that circPPP1CB participates in tumor growth, metastasis, and EMT process by interacting with the miR-1307-3p/SMG1 axis, and that circPPP1CB might be a novel therapeutic target and diagnostic biomarker in human BC.
Collapse
Affiliation(s)
- Feifan Wang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Zhang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuejian Zhou
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianwu Chen
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiayong Xiang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengjing Fan
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanlan Yu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yueshu Cai
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongshen Wu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shihan Huang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ning He
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenghui Hu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoqing Ding
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaodong Jin
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
48
|
Xiong Y, Wang Y, Tian H, Li Y, Xu Q, He Z. Circ-PRKCI Alleviates Lipopolysaccharide-induced Human Kidney 2 Cell Injury by Regulating miR-106b-5p/GAB1 Axis. J Cardiovasc Pharmacol 2021; 78:523-533. [PMID: 34269703 DOI: 10.1097/fjc.0000000000001031] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/19/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Circular RNAs act as vital regulators in diverse diseases. However, the investigation of circular RNAs in sepsis-engendered acute kidney injury remains dismal. We aimed to explore the effects of circular RNA protein kinase C iota (circ-PRKCI) in lipopolysaccharide (LPS)-mediated HK2 cell injury. Sepsis in vitro model was established by LPS treatment. Quantitative real-time polymerase chain reaction assay was conducted for determining the levels of circ-PRKCI, microRNA-106b-5p (miR-106b-5p), and growth factor receptor binding 2-associated binding protein 1 (GAB1). Cell viability and apoptosis were evaluated using Cell Counting Kit-8 assay and flow cytometry analysis, respectively. The concentrations of interleukin-6, interleukin-1β, and tumor necrosis factor-α were measured with enzyme-linked immunosorbent assay kits. The levels of oxidative stress markers were determined using relevant commercial kits. Western blot assay was conducted for B-cell lymphoma-2 (Bcl-2), BCL2-Associated X (Bax), and GAB1 protein levels. Dual-luciferase reporter assay and RNA immunoprecipitation assay were used to verify the association between miR-106b-5p and circ-PRKCI or GAB1. We found the Circ-PRKCI level was decreased in sepsis patients and LPS-induced human kidney 2 (HK-2) cells. LPS exposure inhibited cell viability and facilitated apoptosis, inflammation, and oxidative stress in HK-2 cells. Circ-PRKCI overexpression abrogated the effects of LPS on cell apoptosis, inflammation, and oxidative stress in HK-2 cells. Furthermore, circ-PRKCI was identified as the sponge for miR-106b-5p to positively regulate GAB1 expression. Overexpression of circ-PRKCI relieved LPS-mediated HK-2 cell damage by sponging miR-106b-5p. MiR-106b-5p inhibition ameliorated the injury of HK-2 cells mediated by LPS, whereas GAB1 knockdown reversed the effect. Collectively, Circ-PRKCI overexpression attenuated LPS-induced HK-2 cell injury by regulating miR-106b-5p/GAB1 axis.
Collapse
Affiliation(s)
- Yueli Xiong
- Department of Infectious Diseases, Huaihe Hospital of Henan University, Kaifeng, Henan, China; and
| | - Yang Wang
- Department of Ultrasound, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Hui Tian
- Department of Infectious Diseases, Huaihe Hospital of Henan University, Kaifeng, Henan, China; and
| | - Yuanyuan Li
- Department of Infectious Diseases, Huaihe Hospital of Henan University, Kaifeng, Henan, China; and
| | - Qingjie Xu
- Department of Infectious Diseases, Huaihe Hospital of Henan University, Kaifeng, Henan, China; and
| | - Zhenkun He
- Department of Infectious Diseases, Huaihe Hospital of Henan University, Kaifeng, Henan, China; and
| |
Collapse
|
49
|
Ma Y, Zheng L, Gao Y, Zhang W, Zhang Q, Xu Y. A Comprehensive Overview of circRNAs: Emerging Biomarkers and Potential Therapeutics in Gynecological Cancers. Front Cell Dev Biol 2021; 9:709512. [PMID: 34368160 PMCID: PMC8335568 DOI: 10.3389/fcell.2021.709512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/21/2021] [Indexed: 01/01/2023] Open
Abstract
Circular RNA (circRNA) is a highly conserved, stable and abundant non-coding RNA (ncRNA). Also, some circRNAs play an essential part in the progression of human cancers. CircRNA is different from traditional linear RNA. CircRNA has a closed circular structure, so it is resistant to exonuclease-mediated degradation and is more stable than linear RNA. Numerous studies have found that many circRNAs can act as a microRNA (miRNA) sponge, interact with RNA-binding proteins, regulate gene transcription, affect alternative splicing and be translated into proteins. Recently, some studies have also indicated that circRNA participates in the progression of gynecological cancers. In addition, circRNA can act as a promising biomarker for the diagnosis of gynecological tumors. Additionally, they can also play a key role in the prognosis of gynecological tumors. Furthermore, to our delight, circRNA may be a potential therapeutic target in gynecological cancers and widely used in clinical practice. This article reviews the functions and related molecular mechanisms of circRNAs in gynecological tumors, and discusses their potential as biomarkers for diagnostic and prognostic and therapeutic targets for gynecological cancers.
Collapse
Affiliation(s)
- Yalan Ma
- Department of Obstetrics and Gynecology, Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Lianwen Zheng
- Department of Obstetrics and Gynecology, Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Yiyin Gao
- Department of Obstetrics and Gynecology, Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Wenying Zhang
- Department of Obstetrics and Gynecology, Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Qiang Zhang
- Department of Obstetrics and Gynecology, Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Ying Xu
- Department of Obstetrics and Gynecology, Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
50
|
Identification and Functional Characterization of Viroid Circular RNAs. Methods Mol Biol 2021. [PMID: 34195959 DOI: 10.1007/978-1-0716-1645-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Viroids are relatively small, noncoding, plant circular RNAs. In contrast to other plant circular RNAs of endogenous origin, viroids are infectious agents able to replicate autonomously in the appropriate host. Because of their highly base-paired structures, they can be purified from infected tissue extracts using nonionic CF11 chromatography. Depending on the host plant species, viroid RNA preparation may also require polysaccharide removal by an extraction with 2-methoxyethanol followed by precipitation with cetyltrimethylammonium bromide. Electrophoretic analyses of this kind of preparations frequently show differential bands corresponding to the viroid circular molecules, which are absent in those from healthy plants. These RNA preparations can also be used for viroid transmission to new plants by mechanical inoculation.
Collapse
|