1
|
Sa P, Singh P, Panda S, Swain RK, Dash R, Sahoo SK. Reversal of cisplatin resistance in oral squamous cell carcinoma by piperlongumine loaded smart nanoparticles through inhibition of Hippo-YAP signaling pathway. Transl Res 2024; 268:63-78. [PMID: 38499286 DOI: 10.1016/j.trsl.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/13/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Cisplatin alone or in combination with 5FU and docetaxel is the preferred chemotherapy regimen for advanced-stage OSCC patients. However, its use has been linked to recurrence and metastasis due to the development of drug resistance. Therefore, sensitization of cancer cells to conventional chemotherapeutics can be an effective strategy to overcome drug resistance. Piperlongumine (PL), an alkaloid, have shown anticancer properties and sensitizes numerous neoplasms, but its effect on OSCC has not been explored. However, low aqueous solubility and poor pharmacokinetics limit its clinical application. Therefore, to improve its therapeutic efficacy, we developed piperlongumine-loaded PLGA-based smart nanoparticles (smart PL-NPs) that can rapidly release PL in an acidic environment of cancer cells and provide optimum drug concentrations to overcome chemoresistance. Our results revealed that smart PL-NPs has high cellular uptake in acidic environment, facilitating the intracellular delivery of PL and sensitizing cancer cells to cisplatin, resulting in synergistic anticancer activity in vitro by increasing DNA damage, apoptosis, and inhibiting drug efflux. Further, we have mechanistically explored the Hippo-YAP signaling pathway, which is the critical mediator of chemoresistance, and investigated the chemosensitizing effect of PL in OSCC. We observed that PL alone and in combination with cisplatin significantly inhibits the activation of YAP and its downstream target genes and proteins. In addition, the combination of cisplatin with smart PL-NPs significantly inhibited tumor growth in two preclinical models (patient-derived cell based nude mice and zebrafish xenograft). Taken together, our findings suggest that smart PL-NPs with cisplatin will be a novel formulation to reverse cisplatin resistance in patients with advanced OSCC.
Collapse
Affiliation(s)
- Pratikshya Sa
- Institute of Life Sciences, Nalco square, Chandrasekharpur, Bhubaneswar, Odisha 751 023, India; Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121 001, India
| | - Priya Singh
- Institute of Life Sciences, Nalco square, Chandrasekharpur, Bhubaneswar, Odisha 751 023, India; Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121 001, India
| | - Sudhakar Panda
- Institute of Life Sciences, Nalco square, Chandrasekharpur, Bhubaneswar, Odisha 751 023, India
| | - Rajeeb K Swain
- Institute of Life Sciences, Nalco square, Chandrasekharpur, Bhubaneswar, Odisha 751 023, India
| | - Rupesh Dash
- Institute of Life Sciences, Nalco square, Chandrasekharpur, Bhubaneswar, Odisha 751 023, India
| | - Sanjeeb Kumar Sahoo
- Institute of Life Sciences, Nalco square, Chandrasekharpur, Bhubaneswar, Odisha 751 023, India.
| |
Collapse
|
2
|
Mitra S, Biswas P, Bandyopadhyay A, Gadekar VS, Gopalakrishnan AV, Kumar M, Radha, Nandy S. Piperlongumine: the amazing amide alkaloid from Piper in the treatment of breast cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2637-2650. [PMID: 37955690 DOI: 10.1007/s00210-023-02673-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/12/2023] [Indexed: 11/14/2023]
Abstract
Piperlongumine (PL), an alkaloid found primarily in the fruits and roots of the plant Piper longum L. (Piperaceae), is a natural compound that exhibits potent activity against various cancer cell proliferation. The most frequently caused malignancy in women globally, breast cancer (BC), has been demonstrated to be significantly inhibited by PL. Apoptosis, cell cycle arrest, increased ROS generation, and changes in the signalling protein's expression are all caused by the numerous signalling pathways that PL impacts. Since BC cells resist conventional chemotherapeutic drugs (doxorubicin, docetaxel etc.), researchers have shown that the drugs in combination with PL can exhibit a synergistic effect, greater than the effects of the drug or PL alone. Recently, techniques for drug packaging based on nanotechnology have been employed to improve PL release. The review has presented an outline of the chemistry of PL, its molecular basis in BC, its bioavailability, toxicity, and nanotechnological applications. An attempt to understand the future prospects and direction of research about the compound has also been discussed.
Collapse
Affiliation(s)
- Shatakshi Mitra
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Protha Biswas
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Anupriya Bandyopadhyay
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | | | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research On Cotton Technology, Mumbai, 400019, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Samapika Nandy
- Department of Botany, Vedanta College, 33A, Shiv Krishna Daw Lane, Phool Bagan, Kolkata, 700054, West Bengal, India.
- School of Pharmacy, Graphic Era Hill University, Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India.
| |
Collapse
|
3
|
Panda M, Biswal S, Biswal BK. Evodiamine potentiates cisplatin-induced cell death and overcomes cisplatin resistance in non-small-cell lung cancer by targeting SOX9-β-catenin axis. Mol Biol Rep 2024; 51:523. [PMID: 38630183 DOI: 10.1007/s11033-024-09477-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND In recent decades, phytotherapy has remained as a key therapeutic option for the treatment of various cancers. Evodiamine, an excellent phytocompound from Evodia fructus, exerts anticancer activity in several cancers by modulating drug resistance. However, the role of evodiamine in cisplatin-resistant NSCLC cells is not clear till now. Therefore, we have used evodiamine as a chemosensitizer to overcome cisplatin resistance in NSCLC. METHODS Here, we looked into SOX9 expression and how it affects the cisplatin sensitivity of cisplatin-resistant NSCLC cells. MTT and clonogenic assays were performed to check the cell proliferation. AO/EtBr and DAPI staining, ROS measurement assay, transfection, Western blot analysis, RT-PCR, Scratch & invasion, and comet assay were done to check the role of evodiamine in cisplatin-resistant NSCLC cells. RESULTS SOX9 levels were observed to be higher in cisplatin-resistant A549 (A549CR) and NCI-H522 (NCI-H522CR) compared to parental A549 and NCI-H522. It was found that SOX9 promotes cisplatin resistance by regulating β-catenin. Depletion of SOX9 restores cisplatin sensitivity by decreasing cell proliferation and cell migration and inducing apoptosis in A549CR and NCI-H522CR. After evodiamine treatment, it was revealed that evodiamine increases cisplatin-induced cytotoxicity in A549CR and NCI-H522CR cells through increasing intracellular ROS generation. The combination of both drugs also significantly inhibited cell migration by inhibiting epithelial to mesenchymal transition (EMT). Mechanistic investigation revealed that evodiamine resensitizes cisplatin-resistant cells toward cisplatin by decreasing the expression of SOX9 and β-catenin. CONCLUSION The combination of evodiamine and cisplatin may be a novel strategy for combating cisplatin resistance in NSCLC.
Collapse
Affiliation(s)
- Munmun Panda
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha,, 769008, India
| | - Stuti Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha,, 769008, India
| | - Bijesh K Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha,, 769008, India.
| |
Collapse
|
4
|
Cao P, Gu J, Liu M, Wang Y, Chen M, Jiang Y, Wang X, Zhu S, Gao X, Li S. BRMS1L confers anticancer activity in non-small cell lung cancer by transcriptionally inducing a redox imbalance in the GPX2-ROS pathway. Transl Oncol 2024; 41:101870. [PMID: 38262108 PMCID: PMC10832508 DOI: 10.1016/j.tranon.2023.101870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/22/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Low expression levels of breast cancer metastasis suppressor 1 like (BRMS1L) have been associated with the growth of cancer cells. However, the mechanisms underlying the role of BRMS1L as an antitumour transcription factor in the progression of NSCLC have not been explored. Herein, we reveal that BRMS1L plays a key role as a tumour suppressor in inhibiting NSCLC proliferation and metastasis. Mechanistically, BRMS1L overexpression results in the downregulation of glutathione peroxidase 2 (GPX2) expression and consequently causes abnormal glutathione metabolism and increased levels of reactive oxygen species (ROS) in cells, inducing oxidative stress injury and apoptosis. Furthermore, overexpression of GPX2 enhances the growth advantage and oxidative stress repair conferred by knockdown of BRMS1L. Importantly, we show that low expression of BRMS1L in NSCLC cells causes relatively high levels of antioxidant accumulation to maintain cell redox balance and renders cancer cells more sensitive to treatment with piperlongumine as an ROS inducer both in vitro and in vivo. These findings offer new insights into the role of BRMS1L as a transcriptional repressor in NSCLC and suggest that the BRMS1L expression level may be a potential biomarker for predicting the therapeutic response to small molecule ROS inducers, providing new ideas for targeted therapy.
Collapse
Affiliation(s)
- Penglong Cao
- Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, Liaoning 116011, China
| | - Juebin Gu
- Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, Liaoning 116011, China
| | - Mulin Liu
- Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, Liaoning 116011, China
| | - Yingxin Wang
- Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China
| | - Mingying Chen
- Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, Liaoning 116011, China
| | - Yizhu Jiang
- Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, Liaoning 116011, China
| | - Xiaoyan Wang
- Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, Liaoning 116011, China
| | - Siqi Zhu
- Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, Liaoning 116011, China
| | - Xue Gao
- Department of Pathology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Shijun Li
- Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, Liaoning 116011, China.
| |
Collapse
|
5
|
Lin TH, Kuo CH, Zhang YS, Chen PT, Chen SH, Li YZ, Lee YR. Piperlongumine Induces Cellular Apoptosis and Autophagy via the ROS/Akt Signaling Pathway in Human Follicular Thyroid Cancer Cells. Int J Mol Sci 2023; 24:ijms24098048. [PMID: 37175755 PMCID: PMC10179299 DOI: 10.3390/ijms24098048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Thyroid cancer (TC) is the most common endocrine malignancy. Recently, the global incidence of TC has increased rapidly. Differentiated thyroid cancer includes papillary thyroid carcinoma (PTC) and follicular thyroid carcinoma (FTC), which are the most common types of TC. Although PTCs and FTCs exert good prognoses and high survival rates, FTCs tend to be more aggressive than PTCs. There is an urgent need to improve patient outcomes by developing effective therapeutic agents for FTCs. Piperlongumine exerts anti-cancer effects in various human carcinomas, including human anaplastic TCs and PTCs. However, the anti-cancer effects of piperlongumine in FTCs and the underlying mechanisms are yet to be elucidated. Therefore, in the present study, we evaluated the effect of piperlongumine on cell proliferation, cell cycle, apoptosis, and autophagy in FTC cells with flowcytometry and Western blot. We observed that piperlongumine caused growth inhibition, cell cycle arrest, apoptosis induction, and autophagy elevation in FTC cells. Activities of reactive oxygen species and the downstream PI3K/Akt pathway were the underlying mechanisms involved in piperlongumine mediated anti-FTC effects. Advancements in our understanding of the effects of piperlongumine in FTC hold promise for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Tsung-Hsing Lin
- Department of Emergency Medicine, Kuang Tien General Hospital, Taichung City 433, Taiwan
| | - Chin-Ho Kuo
- Department of Hematology-Oncology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Yi-Sheng Zhang
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Pin-Tzu Chen
- Department of Hematology-Oncology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Shu-Hsin Chen
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Yi-Zhen Li
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Ying-Ray Lee
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Master of Science Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Faculty of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
6
|
Sun Z, Zang L, Cheng Y, Qin L. Cancer Exosome Loaded with Paclitaxel for Targeted Lung Cancer Therapy. J BIOMATER TISS ENG 2023. [DOI: 10.1166/jbt.2023.3222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lung cancer is a serious issue to threat the health of human and the treatment using currently available chemotherapy drug, such as paclitaxel (PTX) is significantly impaired by the poor solubility and targetability. In this study, we used the cancer exosome (CE) derived from lung cancer
cell line A549 to load PTX (CE/PTX) and construct a drug delivery system (DDS) for the treatment of A549 tumor in a mice mode. The DDS realized better inhibition on both A549 cells and tumors as compared to commercial PTX formulation (Taxol). Therefore, we believe this strategy can be applied
to clinical trials for better cancer treatment.
Collapse
Affiliation(s)
- Zhengui Sun
- Department of Respiratory and Critical Care Medicine, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui, 241001, China
| | - Leilei Zang
- Department of Respiratory and Critical Care Medicine, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui, 241001, China
| | - Yusheng Cheng
- Department of Respiratory and Critical Care Medicine, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui, 241001, China
| | - Lilong Qin
- Department of Respiratory and Critical Care Medicine, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui, 241001, China
| |
Collapse
|
7
|
Ma L, Qiu S, Chen K, Tang J, Liu J, Su W, Liu X, Zeng X. Synergistic Antibacterial Effect from Silver Nanoparticles and Anticancer Activity Against Human Lung Cancer Cells. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Microbially synthesized silver nanoparticles (AgNPs) with high stability and bioactivity have recently shown considerable promise in biomedical research and application. In this study, AgNPs prepared by Penicillium aculeatum Su1 exhibited effective antibacterial action by inhibiting
bacterial growth and destroying cellular structure. Meanwhile, their assessed increased in fold area (IFA) through the Kirby-Bauer disc diffusion method proved that, the AgNPs showed synergistic antibacterial effect on different bacteria when combined with antibiotics, especially for drug-resistant
P. aeruginosa (4.58∼6.36-fold) and B. subtilis (4.2-fold). Moreover, the CCK-8 assay and flow cytometric analysis were used to evaluate the cytotoxic effects of AgNPs on normal cells (HBE) and lung cancer cells (HTB-182), which confirmed that they presented higher biocompatibility
towards HBE cells when compared with silver ions, but high cytotoxicity in a dosedependent manner with an IC50 values of 35.00 μg/mL towards HTB-182 cells by raising intracellular reactive oxygen species (ROS) levels, hindering cell proliferation, and ultimately leading
to cell cycle arrest and cell apoptosis. These results demonstrate that, the biosynthesized AgNPs could be a potential candidate for future therapies of infection caused by drug-resistant bacteria, as well as lung squamous cell carcinoma.
Collapse
Affiliation(s)
- Liang Ma
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, Hunan, PR China
| | - Siyu Qiu
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, Hunan, PR China
| | - Kang Chen
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, Hunan, PR China
| | - Jianxin Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, Hunan, PR China
| | - Jianxin Liu
- School of Geosciences and Info-Physics, Central South University, Changsha, 410083, Hunan, PR China
| | - Wei Su
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, Hunan, PR China
| | - Xueying Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, Hunan, PR China
| | - Xiaoxi Zeng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, Hunan, PR China
| |
Collapse
|
8
|
Sritharan S, Guha S, Hazarika S, Sivalingam N. Meta analysis of bioactive compounds, miRNA, siRNA and cell death regulators as sensitizers to doxorubicin induced chemoresistance. Apoptosis 2022; 27:622-646. [PMID: 35716277 DOI: 10.1007/s10495-022-01742-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 11/02/2022]
Abstract
Cancer has presented to be the most challenging disease, contributing to one in six mortalities worldwide. The current treatment regimen involves multiple rounds of chemotherapy administration, alone or in combination. The treatment has adverse effects including cardiomyopathy, hepatotoxicity, and nephrotoxicity. In addition, the development of resistance to chemo has been attributed to cancer relapse and low patient overall survivability. Multiple drug resistance development may be through numerous factors such as up-regulation of drug transporters, drug inactivation, alteration of drug targets and drug degradation. Doxorubicin is a widely used first line chemotherapeutic drug for a myriad of cancers. It has multiple intracellular targets, DNA intercalation, adduct formation, topoisomerase inhibition, iron chelation, reactive oxygen species generation and promotes immune mediated clearance of the tumor. Agents that can sensitize the resistant cancer cells to the chemotherapeutic drug are currently the focus to improve the clinical efficiency of cancer therapy. This review summarizes the recent 10-year research on the use of natural phytochemicals, inhibitors of apoptosis and autophagy, miRNAs, siRNAs and nanoformulations being investigated for doxorubicin chemosensitization.
Collapse
Affiliation(s)
- Sruthi Sritharan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India
| | - Sampurna Guha
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India
| | - Snoopy Hazarika
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India
| | - Nageswaran Sivalingam
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
9
|
Lenihan JM, Mailloux MJ, Beeler AB. Multigram Scale Synthesis of Piperarborenines C-E. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jason M. Lenihan
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Matthew J. Mailloux
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Aaron B. Beeler
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
10
|
Role of Plant-Derived Active Constituents in Cancer Treatment and Their Mechanisms of Action. Cells 2022; 11:cells11081326. [PMID: 35456005 PMCID: PMC9031068 DOI: 10.3390/cells11081326] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023] Open
Abstract
Despite significant technological advancements in conventional therapies, cancer remains one of the main causes of death worldwide. Although substantial progress has been made in the control and treatment of cancer, several limitations still exist, and there is scope for further advancements. Several adverse effects are associated with modern chemotherapy that hinder cancer treatment and lead to other critical disorders. Since ancient times, plant-based medicines have been employed in clinical practice and have yielded good results with few side effects. The modern research system and advanced screening techniques for plants’ bioactive constituents have enabled phytochemical discovery for the prevention and treatment of challenging diseases such as cancer. Phytochemicals such as vincristine, vinblastine, paclitaxel, curcumin, colchicine, and lycopene have shown promising anticancer effects. Discovery of more plant-derived bioactive compounds should be encouraged via the exploitation of advanced and innovative research techniques, to prevent and treat advanced-stage cancers without causing significant adverse effects. This review highlights numerous plant-derived bioactive molecules that have shown potential as anticancer agents and their probable mechanisms of action and provides an overview of in vitro, in vivo and clinical trial studies on anticancer phytochemicals.
Collapse
|
11
|
Chen D, Wei X, Yang K, Liu X, Song Y, Bai F, Jiang Y, Guo Y, Jha RK. Piperlongumine combined with vitamin C as a new adjuvant therapy against gastric cancer regulates the ROS-STAT3 pathway. J Int Med Res 2022; 50:3000605221093308. [PMID: 35481419 PMCID: PMC9087272 DOI: 10.1177/03000605221093308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/21/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE To investigate the effects of piperlongumine (PL) and vitamin C (VC) on signal transducer and activator of transcription 3 (STAT3) signalling in gastric cancer cell lines. METHODS In vivo tumour xenograft anticancer assays were undertaken to confirm the anticancer activity of PL. Cell viability, flow cytometry and Western blot assays were undertaken to evaluate the anticancer effects of PL, VC and combinations of PL and VC in AGS and KATO III cells. RESULTS Both PL and VC induced apoptosis and inhibited cell proliferation in AGS and KATO III cells. These effects were dependent on reactive oxygen species (ROS). PL effectively suppressed STAT3 activation while VC caused abnormal activation of STAT3. The combination of PL and VC exhibited a stronger apoptotic effect compared with either agent alone. PL reversed the abnormal activation of STAT3 by VC, which could be a key to their synergistic effect. CONCLUSIONS PL combined with VC exhibited a stronger anticancer effect by regulating the ROS-STAT3 pathway, suggesting that this combination might be a potential adjuvant therapy for gastric cancer.
Collapse
Affiliation(s)
- Di Chen
- Institute of Basic Medical Sciences, Xi’an Medical University,
Xi’an, Shaanxi Province, China
- China-Nepal Friendship Medical Research Centre of Rajiv Kumar
Jha, School of Clinical Medicine, Xi’an Medical University, Xi’an, Shaanxi
Province, China
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumour
Immunity, Xi’an Medical University, Xi’an, Shaanxi Province, China
| | - Xinyue Wei
- Institute of Basic Medical Sciences, Xi’an Medical University,
Xi’an, Shaanxi Province, China
- China-Nepal Friendship Medical Research Centre of Rajiv Kumar
Jha, School of Clinical Medicine, Xi’an Medical University, Xi’an, Shaanxi
Province, China
| | - Ke Yang
- Institute of Basic Medical Sciences, Xi’an Medical University,
Xi’an, Shaanxi Province, China
- China-Nepal Friendship Medical Research Centre of Rajiv Kumar
Jha, School of Clinical Medicine, Xi’an Medical University, Xi’an, Shaanxi
Province, China
| | - Xinyue Liu
- Institute of Basic Medical Sciences, Xi’an Medical University,
Xi’an, Shaanxi Province, China
- China-Nepal Friendship Medical Research Centre of Rajiv Kumar
Jha, School of Clinical Medicine, Xi’an Medical University, Xi’an, Shaanxi
Province, China
| | - Yujin Song
- Institute of Basic Medical Sciences, Xi’an Medical University,
Xi’an, Shaanxi Province, China
- China-Nepal Friendship Medical Research Centre of Rajiv Kumar
Jha, School of Clinical Medicine, Xi’an Medical University, Xi’an, Shaanxi
Province, China
| | - Futing Bai
- Institute of Basic Medical Sciences, Xi’an Medical University,
Xi’an, Shaanxi Province, China
- China-Nepal Friendship Medical Research Centre of Rajiv Kumar
Jha, School of Clinical Medicine, Xi’an Medical University, Xi’an, Shaanxi
Province, China
| | - Yi Jiang
- Institute of Basic Medical Sciences, Xi’an Medical University,
Xi’an, Shaanxi Province, China
- China-Nepal Friendship Medical Research Centre of Rajiv Kumar
Jha, School of Clinical Medicine, Xi’an Medical University, Xi’an, Shaanxi
Province, China
| | - Yuhang Guo
- Institute of Basic Medical Sciences, Xi’an Medical University,
Xi’an, Shaanxi Province, China
- China-Nepal Friendship Medical Research Centre of Rajiv Kumar
Jha, School of Clinical Medicine, Xi’an Medical University, Xi’an, Shaanxi
Province, China
| | - Rajiv Kumar Jha
- China-Nepal Friendship Medical Research Centre of Rajiv Kumar
Jha, School of Clinical Medicine, Xi’an Medical University, Xi’an, Shaanxi
Province, China
| |
Collapse
|
12
|
Zhang W, Chen Y, Wang B, Feng X, Zhang L, Liu S. Facile Preparation of Paclitaxel Nano-Suspensions to Treat Lung Cancer. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lung cancer is a worldwide issue which account for the death of thousands every year. Paclitaxel (PTX) as the first line chemotherapy drug to treat lung cancer, its clinical applications is largely limited by its poor solubility. The facile preparation of pharmaceutical formulations
to increase the solubility as well as targetability of PTX is of vital importance in lung cancer treatment. Herein, we introduced a facile method to prepare PTX nano-suspensions (NSs), which have high drug loading as well as well-dispersed particle size. The in vitro cell experiments
revealed its capability to enhance the drug accumulation in A549 cells than free PTX. Moreover, in vivo animal assay suggested its better tumor accumulation and antitumor efficacy than PTX injection (Taxol).
Collapse
Affiliation(s)
- Wei Zhang
- Department of Respiratory and Critical Care Medicine, Huzhou Central Hospital of Zhejiang Province, 1558 Sanhuan North Road, Wuxing District, Huzhou City, 313099, Zhejiang Province, China
| | - Yi Chen
- Department of Respiratory and Critical Care Medicine, Huzhou Central Hospital of Zhejiang Province, 1558 Sanhuan North Road, Wuxing District, Huzhou City, 313099, Zhejiang Province, China
| | - Bin Wang
- Department of Respiratory and Critical Care Medicine, Huzhou Central Hospital of Zhejiang Province, 1558 Sanhuan North Road, Wuxing District, Huzhou City, 313099, Zhejiang Province, China
| | - Xueren Feng
- Department of Respiratory and Critical Care Medicine, Huzhou Central Hospital of Zhejiang Province, 1558 Sanhuan North Road, Wuxing District, Huzhou City, 313099, Zhejiang Province, China
| | - Lijuan Zhang
- Department of Respiratory and Critical Care Medicine, Huzhou Central Hospital of Zhejiang Province, 1558 Sanhuan North Road, Wuxing District, Huzhou City, 313099, Zhejiang Province, China
| | - Shunlin Liu
- Department of Respiratory and Critical Care Medicine, Huzhou Central Hospital of Zhejiang Province, 1558 Sanhuan North Road, Wuxing District, Huzhou City, 313099, Zhejiang Province, China
| |
Collapse
|
13
|
Xiang L, Gao Y, Chen S, Sun J, Wu J, Meng X. Therapeutic potential of Scutellaria baicalensis Georgi in lung cancer therapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 95:153727. [PMID: 34535372 DOI: 10.1016/j.phymed.2021.153727] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Globally, lung cancer is the leading cause of cancer associated mortalities. The current conventional chemotherapy remains the preferred treatment option for lung cancer, as surgical resection plays little role in the treatment of over 75% of lung cancer patients. Therefore, there is a need to develop novel potential therapeutic drugs or adjuvants with a high efficiency and safety against lung cancer. Scutellaria baicalensis Georgi, a common Chinese medicinal herb that has been in use for more than 2000 years, has recently been shown to possess significant activities against lung cancer. However, current research progress on pharmacological effects and relevant molecular mechanisms of S. baicalensis in lung cancer therapy have not been systematically summarized. PURPOSE This review aimed at elucidating on the anti-lung cancer mechanisms and antitumor efficacies of S. baicalensis as well as its active ingredients, and providing a valuable reference for further investigation in this field. METHODS We used "Scutellaria baicalensis" or the name of the compound in S. baicalensis, in combination with "lung cancer" as key words to systematically search for relevant literature from the Web of Science and PubMed databases. Publications that investigated molecular mechanisms were the only ones selected for analysis. The PRISMA guidelines were followed. RESULTS Fifty-four publications met the inclusion criteria for this study. Five anti-lung cancer mechanisms of S. baicalensis and its constituent components are discussed. These mechanisms include apoptosis induction, cell-cycle arrest, suppression of proliferation, blockade of invasion and metastasis, and overcoming drug-resistance. These compounds exhibited high antitumor efficacies and safety against lung cancer xenografts. CONCLUSION Studies should aim at elucidating on the anti-cancer mechanisms of S. baicalensis to achieve the ultimate goal of lung cancer therapy.
Collapse
Affiliation(s)
- Li Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yue Gao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shiyu Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiayi Sun
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiasi Wu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
14
|
Qian J, Xu Z, Zhu P, Meng C, Liu Y, Shan W, He A, Gu Y, Ran F, Zhang Y, Ling Y. A Derivative of Piperlongumine and Ligustrazine as a Potential Thioredoxin Reductase Inhibitor in Drug-Resistant Hepatocellular Carcinoma. JOURNAL OF NATURAL PRODUCTS 2021; 84:3161-3168. [PMID: 34806369 DOI: 10.1021/acs.jnatprod.1c00618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The natural products piperlongumine (1) and ligustrazine (2) have been reported to exert antiproliferative effects against various types of cancer cells by up-regulating the level of reactive oxidative species (ROS). However, the moderate activities of 1 and 2 limit their application. To improve their potential antitumor activity, novel piperlongumine/ligustrazine derivatives were designed and prepared, and their potential pharmacological effects were determined in vitro and in vivo. Among the derivatives obtained, 11 exerted more prominent inhibitory activities against proliferation of drug-sensitive/-resistant cancer cells with lower IC50 values than 1. Particularly, the IC50 value of 11 against drug-resistant Bel-7402/5-FU cells was 0.9 μM, which was about 9-fold better than that of 1 (IC50 value of 8.4 μM). Mechanistic studies showed that 11 demonstrated thioredoxin reductase (TrxR) inhibitory activity, increase of ROS levels, decrease of mitochondrial transmembrane potential levels, and occurrence of DNA damage and autophagy, in a dose-dependent manner, via regulation of DNA damage protein H2AX and autophagy-associated proteins LC3, beclin-1, and p62 in drug-resistant Bel-7402/5-FU cells. Finally, compound 11 at 5 mg/kg displayed potent antitumor activity in vivo with tumor suppression of 76% (w/w). Taken together, compound 11 may represent a promising candidate drug for the chemotherapy of drug-resistant hepatocellular carcinoma and warrant more intensive study.
Collapse
Affiliation(s)
- Jianqiang Qian
- Medical College, Nantong University, Nantong 226001, People's Republic of China
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong 226001, People's Republic of China
| | - Zhongyuan Xu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong 226001, People's Republic of China
| | - Peng Zhu
- Medical College, Nantong University, Nantong 226001, People's Republic of China
| | - Chi Meng
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong 226001, People's Republic of China
| | - Yun Liu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong 226001, People's Republic of China
| | - Wenpei Shan
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong 226001, People's Republic of China
| | - Ang He
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong 226001, People's Republic of China
| | - Yipeng Gu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong 226001, People's Republic of China
| | - Fansheng Ran
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong 226001, People's Republic of China
| | - Yanan Zhang
- Medical College, Nantong University, Nantong 226001, People's Republic of China
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong 226001, People's Republic of China
| | - Yong Ling
- Medical College, Nantong University, Nantong 226001, People's Republic of China
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong 226001, People's Republic of China
| |
Collapse
|
15
|
Zhu P, Qian J, Xu Z, Meng C, Zhu W, Ran F, Zhang W, Zhang Y, Ling Y. Overview of piperlongumine analogues and their therapeutic potential. Eur J Med Chem 2021; 220:113471. [PMID: 33930801 DOI: 10.1016/j.ejmech.2021.113471] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/29/2021] [Accepted: 04/10/2021] [Indexed: 01/18/2023]
Abstract
Natural products have long been an important source for discovery of new drugs to treat human diseases. Piperlongumine (PL) is an amide alkaloid isolated from Piper longum L. (long piper) and other piper plants and has received widespread attention because of its diverse biological activities. A large number of PL derivatives have been designed, synthesized and assessed in many pharmacological functions, including antiplatelet aggregation, neuroprotective activities, anti-diabetic activities, anti-inflammatory activities, anti-senolytic activities, immune activities, and antitumor activities. Among them, the anti-tumor effects and application of PL and its derivatives are most extensively studied. We herein summarize the development of PL derivatives, the structure and activity relationships (SARs), and their therapeutic potential on the treatments of various diseases, especially against cancer. We also discussed the challenges and future directions associated with PL and its derivatives in these indications.
Collapse
Affiliation(s)
- Peng Zhu
- Medical School, Nantong University, Nantong, 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China; State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau
| | - Jianqiang Qian
- Medical School, Nantong University, Nantong, 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Zhongyuan Xu
- Medical School, Nantong University, Nantong, 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Chi Meng
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Weizhong Zhu
- Medical School, Nantong University, Nantong, 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Fansheng Ran
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau.
| | - Yanan Zhang
- Medical School, Nantong University, Nantong, 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China.
| | - Yong Ling
- Medical School, Nantong University, Nantong, 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China.
| |
Collapse
|
16
|
Afolabi LO, Bi J, Chen L, Wan X. A natural product, Piperlongumine (PL), increases tumor cells sensitivity to NK cell killing. Int Immunopharmacol 2021; 96:107658. [PMID: 33887610 DOI: 10.1016/j.intimp.2021.107658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/08/2021] [Accepted: 04/03/2021] [Indexed: 12/17/2022]
Abstract
Natural Killer (NK) cells are components of innate immune surveillance against transformed cells. NK cell immunotherapy has attracted attention as a promising strategy for cancer treatment, whose antitumor effects, however, require further improvement. The use of small molecules with immunomodulatory potentials and selective tumor-killing possesses the potential to complement immunotherapy. This study demonstrated that Piperlongumine (PL), a natural alkaloid obtained from long pepper fruit, alone has antitumor and anti-proliferative potential on all the tested tumors in vitro. PL pretreatment of tumor cells also potentiates their susceptibility to NK cell cytolysis at the doses where NK cell functions were preserved. Importantly, PL suppresses both NK -sensitive MHC-I -deficient and MHC-I -sufficient tumor growth in vivo. Mechanistically, PL induces misfolded proteins, impedes autophagy, increases ROS and tumor conjugation with NK cells. Furthermore, PL enhances the expression of NK cell-activating receptors on NK cells and its ligands on tumor cells, possibly leading to increased susceptibility to NK cell killing. Our findings showed the antitumor and immunomodulatory potential of PL, which could be explored to complement NK cell immunotherapy for cancer treatment.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/immunology
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Autophagy/drug effects
- Biological Products/immunology
- Biological Products/pharmacology
- Cell Line, Tumor
- Cell Survival/drug effects
- Cytotoxicity, Immunologic/drug effects
- Dioxolanes/immunology
- Dioxolanes/pharmacology
- Humans
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Neoplasms/drug therapy
- Neoplasms/immunology
- Reactive Oxygen Species/metabolism
- Receptors, Natural Killer Cell/drug effects
- Receptors, Natural Killer Cell/metabolism
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Lukman O Afolabi
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100864, PR China
| | - Jiacheng Bi
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100864, PR China
| | - Liang Chen
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100864, PR China
| | - Xiaochun Wan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100864, PR China.
| |
Collapse
|
17
|
Mirzaei S, Hushmandi K, Zabolian A, Saleki H, Torabi SMR, Ranjbar A, SeyedSaleh S, Sharifzadeh SO, Khan H, Ashrafizadeh M, Zarrabi A, Ahn KS. Elucidating Role of Reactive Oxygen Species (ROS) in Cisplatin Chemotherapy: A Focus on Molecular Pathways and Possible Therapeutic Strategies. Molecules 2021; 26:2382. [PMID: 33921908 PMCID: PMC8073650 DOI: 10.3390/molecules26082382] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023] Open
Abstract
The failure of chemotherapy is a major challenge nowadays, and in order to ensure effective treatment of cancer patients, it is of great importance to reveal the molecular pathways and mechanisms involved in chemoresistance. Cisplatin (CP) is a platinum-containing drug with anti-tumor activity against different cancers in both pre-clinical and clinical studies. However, drug resistance has restricted its potential in the treatment of cancer patients. CP can promote levels of free radicals, particularly reactive oxygen species (ROS) to induce cell death. Due to the double-edged sword role of ROS in cancer as a pro-survival or pro-death mechanism, ROS can result in CP resistance. In the present review, association of ROS with CP sensitivity/resistance is discussed, and in particular, how molecular pathways, both upstream and downstream targets, can affect the response of cancer cells to CP chemotherapy. Furthermore, anti-tumor compounds, such as curcumin, emodin, chloroquine that regulate ROS and related molecular pathways in increasing CP sensitivity are described. Nanoparticles can provide co-delivery of CP with anti-tumor agents and by mediating photodynamic therapy, and induce ROS overgeneration to trigger CP sensitivity. Genetic tools, such as small interfering RNA (siRNA) can down-regulate molecular pathways such as HIF-1α and Nrf2 to promote ROS levels, leading to CP sensitivity. Considering the relationship between ROS and CP chemotherapy, and translating these findings to clinic can pave the way for effective treatment of cancer patients.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran 1477893855, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417466191, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran
| | - Seyed Mohammad Reza Torabi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran
| | - Adnan Ranjbar
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran
| | - SeyedHesam SeyedSaleh
- Student Research Committee, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Seyed Omid Sharifzadeh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul 34956, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Kwang-Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
18
|
Li N, Li X, Shi YL, Gao JM, He YQ, Li F, Shi JS, Gong QH. Trilobatin, a Component from Lithocarpus polystachyrus Rehd., Increases Longevity in C. elegans Through Activating SKN1/SIRT3/DAF16 Signaling Pathway. Front Pharmacol 2021; 12:655045. [PMID: 33935768 PMCID: PMC8082181 DOI: 10.3389/fphar.2021.655045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/15/2021] [Indexed: 12/28/2022] Open
Abstract
Trilobatin (TLB) is an effective component from Lithocarpus polystachyrus Rehd. Our previous study revealed that TLB protected against oxidative injury in neuronal cells by AMPK/Nrf2/SIRT3 signaling pathway. However, whether TLB can delay aging remains still a mystery. Therefore, the present study was designed to investigate the possible longevity-enhancing effect of TLB, and further to explore its underlying mechanism in Caenorhabditis elegans (C. elegans). The results showed that TLB exerted beneficial effects on C. elegans, as evidenced by survival rate, body movement assay and pharynx-pumping assay. Furthermore, TLB not only significantly decreased ROS and MDA levels, but also increased anti-oxidant enzyme activities including CAT and SOD, as well as its subtypes SOD2 andSOD3, but not affect SOD1 activity, as evidenced by heat and oxidative stress resistance assays. Whereas, the anti-oxidative effects of TLB were almost abolished in SKN1, Sir2.3, and DAF16 mutant C. elegans. Moreover, TLB augmented the fluorescence intensity of DAF16: GFP, SKN1:GFP, GST4:GFP mutants, indicating that TLB increased the contents of SKN1, SIRT3 and DAF16 due to fluorescence intensity of these mutants, which were indicative of these proteins. In addition, TLB markedly increased the protein expressions of SKN1, SIRT3 and DAF16 as evidenced by ELISA assay. However, its longevity-enhancing effect were abolished in DAF16, Sir2.3, SKN1, SOD2, SOD3, and GST4 mutant C. elegans than those of non-TLB treated controls. In conclusion, TLB effectively prolongs lifespan of C. elegans, through regulating redox homeostasis, which is, at least partially, mediated by SKN1/SIRT3/DAF16 signaling pathway.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xi Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yan-Ling Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jian-Mei Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China.,Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yu-Qi He
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China.,Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Fei Li
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China.,Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jing-Shan Shi
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China.,Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Qi-Hai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China.,Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
19
|
Machado S, Silva A, De Sousa-Coelho AL, Duarte I, Grenho I, Santos B, Mayoral-Varo V, Megias D, Sánchez-Cabo F, Dopazo A, Ferreira BI, Link W. Harmine and Piperlongumine Revert TRIB2-Mediated Drug Resistance. Cancers (Basel) 2020; 12:cancers12123689. [PMID: 33316942 PMCID: PMC7763856 DOI: 10.3390/cancers12123689] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Poor survival and treatment failure of patients with cancer are mainly due to resistance to therapy. Tribbles homologue 2 (TRIB2) has recently been identified as a protein that promotes resistance to several anti-cancer drugs. In this study, RNA sequencing and bioinformatics analysis were used with the aim of characterizing the impact of TRIB2 on the expression of genes and developing pharmacological strategies to revert these TRIB2-mediated changes, thereby overcoming therapy resistance. We show that two naturally occurring alkaloids, harmine and piperlongumine, inverse the gene expression profile produced by TRIB2 and sensitize cancer cells to anti-cancer drugs. Our data suggest that harmine and piperlongumine or similar compounds might have the potential to overcome TRIB2-mediated therapy resistance in cancer patients. Abstract Therapy resistance is responsible for most relapses in patients with cancer and is the major challenge to improving the clinical outcome. The pseudokinase Tribbles homologue 2 (TRIB2) has been characterized as an important driver of resistance to several anti-cancer drugs, including the dual ATP-competitive PI3K and mTOR inhibitor dactolisib (BEZ235). TRIB2 promotes AKT activity, leading to the inactivation of FOXO transcription factors, which are known to mediate the cell response to antitumor drugs. To characterize the downstream events of TRIB2 activity, we analyzed the gene expression profiles of isogenic cell lines with different TRIB2 statuses by RNA sequencing. Using a connectivity map-based computational approach, we identified drug-induced gene-expression profiles that invert the TRIB2-associated expression profile. In particular, the natural alkaloids harmine and piperlongumine not only produced inverse gene expression profiles but also synergistically increased BEZ235-induced cell toxicity. Importantly, both agents promote FOXO nuclear translocation without interfering with the nuclear export machinery and induce the transcription of FOXO target genes. Our results highlight the great potential of this approach for drug repurposing and suggest that harmine and piperlongumine or similar compounds might be useful in the clinic to overcome TRIB2-mediated therapy resistance in cancer patients.
Collapse
Affiliation(s)
- Susana Machado
- Centre for Biomedical Research (CBMR), Universidade do Algarve, Campus of Gambelas, Building 8, Room 1.12, 8005-139 Faro, Portugal; (S.M.); (A.S.); (A.L.D.S.-C.); (I.D.); (I.G.); (B.S.)
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Andreia Silva
- Centre for Biomedical Research (CBMR), Universidade do Algarve, Campus of Gambelas, Building 8, Room 1.12, 8005-139 Faro, Portugal; (S.M.); (A.S.); (A.L.D.S.-C.); (I.D.); (I.G.); (B.S.)
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ana Luísa De Sousa-Coelho
- Centre for Biomedical Research (CBMR), Universidade do Algarve, Campus of Gambelas, Building 8, Room 1.12, 8005-139 Faro, Portugal; (S.M.); (A.S.); (A.L.D.S.-C.); (I.D.); (I.G.); (B.S.)
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Isabel Duarte
- Centre for Biomedical Research (CBMR), Universidade do Algarve, Campus of Gambelas, Building 8, Room 1.12, 8005-139 Faro, Portugal; (S.M.); (A.S.); (A.L.D.S.-C.); (I.D.); (I.G.); (B.S.)
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Inês Grenho
- Centre for Biomedical Research (CBMR), Universidade do Algarve, Campus of Gambelas, Building 8, Room 1.12, 8005-139 Faro, Portugal; (S.M.); (A.S.); (A.L.D.S.-C.); (I.D.); (I.G.); (B.S.)
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Bruno Santos
- Centre for Biomedical Research (CBMR), Universidade do Algarve, Campus of Gambelas, Building 8, Room 1.12, 8005-139 Faro, Portugal; (S.M.); (A.S.); (A.L.D.S.-C.); (I.D.); (I.G.); (B.S.)
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Victor Mayoral-Varo
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain;
| | - Diego Megias
- Confocal Microscopy Unit, Biotechnology Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain;
| | - Fátima Sánchez-Cabo
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (F.S.-C.); (A.D.)
| | - Ana Dopazo
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (F.S.-C.); (A.D.)
| | - Bibiana I. Ferreira
- Centre for Biomedical Research (CBMR), Universidade do Algarve, Campus of Gambelas, Building 8, Room 1.12, 8005-139 Faro, Portugal; (S.M.); (A.S.); (A.L.D.S.-C.); (I.D.); (I.G.); (B.S.)
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Correspondence: (B.I.F.); (W.L.)
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain;
- Correspondence: (B.I.F.); (W.L.)
| |
Collapse
|
20
|
Fan QZ, Zhou J, Zhu YB, He LJ, Miao DD, Zhang SP, Liu XP, Zhang C. Design, synthesis, and biological evaluation of a novel indoleamine 2,3-dioxigenase 1 (IDO1) and thioredoxin reductase (TrxR) dual inhibitor. Bioorg Chem 2020; 105:104401. [PMID: 33113415 DOI: 10.1016/j.bioorg.2020.104401] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 10/12/2020] [Accepted: 10/17/2020] [Indexed: 12/17/2022]
Abstract
Targeting the Trp-Kyn pathway is an attractive approach for cancer immunotherapy. Thioredoxin reductase (TrxR) enzymes are reactive oxygen species (ROS) modulators that are involved in the tumor cell growth and survival processes. The 4-phenylimidazole scaffold is well-established as useful for indoleamine 2,3-dioxygenase 1 (IDO1) inhibition, while piperlongumine (PL) and its derivatives have been reported to be inhibitors of TrxR. To take advantage of both immunotherapy and TrxR inhibition, we designed a first-generation dual IDO1 and TrxR inhibitor (ZC0101) using the structural combination of 4-phenylimidazole and PL scaffolds. ZC0101 exhibited better dual inhibition against IDO1 and TrxR in vitro and in cell enzyme assays than the uncombined forms of 4-phenylimidazole and PL. It also showed antiproliferative activity in various cancer cell lines, and a selective killing effect between normal and cancer cells. Furthermore, ZC0101 effectively induced apoptosis and ROS accumulation in cancer cells. Knockdown of TrxR1 and IDO1 expression induced cellular enzyme inhibition and ROS accumulation effects during ZC0101 treatment, but only reduced TrxR1 expression was able to improve ZC0101's antiproliferation effect. This proof-of-concept study provides a novel strategy for cancer treatment. ZC0101 represents a promising lead compound for the development of novel antitumor agents that can also be used as a valuable probe to clarify the relationships and mechanisms of cancer immunotherapy and ROS modulators.
Collapse
Affiliation(s)
- Qing-Zhu Fan
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, Anhui 241000, PR China
| | - Ji Zhou
- Center for Reproductive Medicine, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, PR China
| | - Yi-Bao Zhu
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, Anhui 241000, PR China
| | - Lian-Jun He
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, Anhui 241000, PR China
| | - Dong-Dong Miao
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, Anhui 241000, PR China
| | - Sheng-Peng Zhang
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, Anhui 241000, PR China
| | - Xiao-Ping Liu
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, Anhui 241000, PR China.
| | - Chao Zhang
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, Anhui 241000, PR China.
| |
Collapse
|
21
|
Hałas-Wiśniewska M, Zielińska W, Izdebska M, Grzanka A. The Synergistic Effect of Piperlongumine and Sanguinarine on the Non-Small Lung Cancer. Molecules 2020; 25:E3045. [PMID: 32635287 PMCID: PMC7411589 DOI: 10.3390/molecules25133045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cancers are one of the leading causes of deaths nowadays. The development of new treatment schemes for oncological diseases is an interesting direction in experimental medicine. Therefore, the evaluation of the influence of two alkaloids-piperlongumine (PL), sanguinarine (SAN) and their combination-on the basic life processes of the A549 cell line was considered reasonable. METHODS The aim was achieved by analyzing the cytotoxic effects of PL and SAN and their combination in the ratio of 4:1 on the induction of cell death, changes in the distribution of cell cycle phases, reorganization of cytoskeleton and metastatic potential of A549 cells. The versatility of the applied concentration ratio was evaluated in terms of other cancer cell lines: MCF-7, H1299 and HepG2. RESULTS The results obtained from the MTT assay indicated that the interaction between the alkaloids depends on the concentration and type of cells. Additionally, the compounds and their combination did not exhibit a cytotoxic effect against normal cells. The combined effects of PL and SAN increased apoptosis and favored metastasis inhibition. CONCLUSION Selected alkaloids exhibit a cytotoxic effect on A549 cells. In turn, treatment with the combination of PL and SAN in a 4:1 ratio indicates a synergistic effect and is associated with an increase in the level of reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Marta Hałas-Wiśniewska
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Karłowicza 24, 85-092 Bydgoszcz, Poland; (W.Z.); (M.I.); (A.G.)
| | | | | | | |
Collapse
|
22
|
Gao F, Zhou L, Li M, Liu W, Yang S, Li W. Inhibition of ERKs/Akt-Mediated c-Fos Expression Is Required for Piperlongumine-Induced Cyclin D1 Downregulation and Tumor Suppression in Colorectal Cancer Cells. Onco Targets Ther 2020; 13:5591-5603. [PMID: 32606774 PMCID: PMC7304781 DOI: 10.2147/ott.s251295] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Background Deregulation of Cyclin D1 and cell cycle progression plays a critical role in tumorigenesis. The natural compound piperlongumine (PL) exhibits potential anticancer effects in various cancer models, but the underlying mechanism needs further elucidation. Methods The inhibitory effect of PL on colorectal cancer (CRC) cells was determined by anchorage-dependent and -independent assays. The protein level of Cyclin D1 was examined by immunoblot (IB) and immunohistochemical staining (IHC). The mRNA level was determined by qRT-PCR. Phosphorylation of histone H3 was analyzed by immunofluorescence (IF). The cell cycle was examined by flow cytometry. The in vivo antitumor effect was validated by the xenograft mouse model. Results Cyclin D1 was overexpressed in CRC tissues and cells, and was required for maintaining cell growth, colony formation, and in vivo tumorigenesis. PL decreased the protein level of c-Fos, which eventually reduced the transcriptional activity of AP-1 and the mRNA level of Cyclin D1. Mechanism study showed that PL impaired EGF-induced activation of ERK1/2 and Akt signalings, which resulted in a reduction of c-Fos transcription. Furthermore, PL reduced the half-life of c-Fos and caused the ubiquitination-dependent degradation of c-Fos. Finally, the in vivo antitumor effect of PL on CRC cells was examined using a xenograft mouse model. Conclusion Our data indicate that PL is a promising antitumor agent that deserves further study for CRC treatment.
Collapse
Affiliation(s)
- Feng Gao
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, People's Republic of China.,Department of Ultrasonography, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Li Zhou
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Ming Li
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, People's Republic of China.,Changsha Stomatological Hospital, Changsha, Hunan 410004, People's Republic of China.,School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China
| | - Wenbin Liu
- Department of Pathology, Hunan Cancer Hospital, Changsha, Hunan 410013, People's Republic of China
| | - Shuting Yang
- Department of Ultrasonography, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Wei Li
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, People's Republic of China.,Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, People's Republic of China
| |
Collapse
|
23
|
Braicu C, Zanoaga O, Zimta AA, Tigu AB, Kilpatrick KL, Bishayee A, Nabavi SM, Berindan-Neagoe I. Natural compounds modulate the crosstalk between apoptosis- and autophagy-regulated signaling pathways: Controlling the uncontrolled expansion of tumor cells. Semin Cancer Biol 2020; 80:218-236. [PMID: 32502598 DOI: 10.1016/j.semcancer.2020.05.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 02/07/2023]
Abstract
Due to the high number of annual cancer-related deaths, and the economic burden that this malignancy affects today's society, the study of compounds isolated from natural sources should be encouraged. Most cancers are the result of a combined effect of lifestyle, environmental factors, and genetic and hereditary components. Recent literature reveals an increase in the interest for the study of phytochemicals from traditional medicine, this being a valuable resource for modern medicine to identify novel bioactive agents with potential medicinal applications. Phytochemicals are components of traditional medicine that are showing promising application in modern medicine due to their antitumor activities. Recent studies regarding two major mechanisms underlying cancer development and regulation, apoptosis and autophagy, have shown that the signaling pathways of both these processes are significantly interconnected through various mechanisms of crosstalk. Phytochemicals are able to activate pro-autophagic and pro-apoptosis mechanisms. Understanding the molecular mechanism involved in apoptosis-autophagy relationship modulated by phytochemicals plays a key role in development of a new therapeutic strategy for cancer treatment. The purpose of this review is to outline the bioactive properties of the natural phytochemicals with validated antitumor activity, focusing particularly on their role in the regulation of apoptosis and autophagy crosstalk that triggers the uncontrolled expansion of tumor cells. Furthermore, we have also critically discussed the limitations and challenges of existing research strategies and the prospective research directions in this field.
Collapse
Affiliation(s)
- Cornelia Braicu
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 40015, Cluj-Napoca, Romania
| | - Oana Zanoaga
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 40015, Cluj-Napoca, Romania
| | - Alina-Andreea Zimta
- MEDFUTURE-Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 40015, Cluj-Napoca, Romania
| | - Adrian Bogdan Tigu
- MEDFUTURE-Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 40015, Cluj-Napoca, Romania; Babeș-Bolyai University, Faculty of Biology and Geology, 42 Republicii Street, 400015, Cluj-Napoca, Romania
| | | | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, 1435916471, Iran
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 40015, Cluj-Napoca, Romania; Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 400015, Cluj-Napoca, Romania.
| |
Collapse
|
24
|
Khatoon E, Banik K, Harsha C, Sailo BL, Thakur KK, Khwairakpam AD, Vikkurthi R, Devi TB, Gupta SC, Kunnumakkara AB. Phytochemicals in cancer cell chemosensitization: Current knowledge and future perspectives. Semin Cancer Biol 2020; 80:306-339. [DOI: 10.1016/j.semcancer.2020.06.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
|
25
|
Tripathi SK, Biswal BK. Piperlongumine, a potent anticancer phytotherapeutic: Perspectives on contemporary status and future possibilities as an anticancer agent. Pharmacol Res 2020; 156:104772. [PMID: 32283222 DOI: 10.1016/j.phrs.2020.104772] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022]
Abstract
Piperlongumine, a white to beige biologically active alkaloid/amide phytochemical, has high pharmacological relevance as an anticancer agent. Piperlongumine has several biological activities, including selective cytotoxicity against multiple cancer cells of different origins at a preclinical level. Several preclinical studies have documented the anticancer potential of piperlongumine through its targeting of multiple molecular mechanisms, such as cell cycle arrest, anti-angiogenesis, anti- invasive and anti-metastasis pathways, autophagy pathways, and intrinsic apoptotic pathways in vitro and in vivo. Mechanistically, piperlongumine inhibits cancer growth by resulting in the accumulation of intracellular reactive oxygen species, decreasing glutathione and chromosomal damage, or modulating key regulatory proteins, including PI3K, AKT, mTOR, NF-kβ, STATs, and cyclin D1. Furthermore, combined treatment with piperlongumine potentiates the anticancer activity of conventional chemotherapeutics and overcomes resistance to chemo- and radio- therapy. Nanoformulation of piperlongumine has been associated with increased aqueous solubility and bioavailability and lower toxicity, thus enhancing therapeutic efficacy in both preclinical and clinical settings. The current review highlights anticancer studies on the occurrence, chemical properties, chemopreventive mechanisms, toxicity, bioavailability, and pharmaceutical relevance of piperlongumine in vitro and in vivo.
Collapse
Affiliation(s)
- Surya Kant Tripathi
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, 769008, India
| | - Bijesh Kumar Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, 769008, India.
| |
Collapse
|