1
|
Gokdemir GS, Seker U, Demirtas B, Taskin S. Effects of acute carbon monoxide poisoning on liver damage and comparisons of related oxygen therapies in a rat model. Toxicol Mech Methods 2024; 34:845-854. [PMID: 38721843 DOI: 10.1080/15376516.2024.2353887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/20/2024] [Accepted: 05/04/2024] [Indexed: 05/24/2024]
Abstract
Acute carbon monoxide (CO) poisoning may cause liver damage and liver dysfunction. Therefore, in this study, we aimed to compare the efficiency of normobaric oxygen (NBO) and high-flow nasal cannula oxygen (HFNCO) treatments on liver injury. For that purpose, 28 male Wistar albino rats were divided into four groups (Control, CO, CO + NBO, and CO + HFNCO). The control group was allowed to breath room air for 30 min. Acute CO poisoning in CO, CO + NBO, CO + HFNCO was induced by CO exposure for 30 min. Thereafter, NBO group received 100% NBO with reservoir mask for 30 min. HFNCO group received high-flow oxygen through nasal cannula for 30 min. At the end of the experiment, all animals were sacrificed by cardiac puncture under anesthesia. Serum liver function tests were measured. Liver tissue total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI) levels, tissue histomorphology and immunoexpression levels of Bax, Caspase 3, TNF-α, IL-1β, and NF-κB were also examined. Our observations indicated that acute CO poisoning caused significant increases in blood COHb, serum aminotransferase (AST), alanine aminotransferase (ALT0, alkaline phosphatase (ALP), total protein, albumin, and globulin levels but a decrease in albumin to globulin ratio (all, p < 0.05). Furthermore, acute CO poisoning significantly increased the OSI value, and the immunoexpresssion of Bax, Caspase 3, TNF-α, IL-1β, and NF-κB in liver tissue (all, p < 0.05). These pathological changes in serum and liver tissue were alleviated through both of the treatment methods. In conclusion, both the NBO and HFNCO treatments were beneficial to alleviate the acute CO poisoning associated with liver injury and dysfunction.
Collapse
Affiliation(s)
- Gul Sahika Gokdemir
- Department of Physiology, Faculty of Medicine, Mardin Artuklu University, Mardin, Turkey
| | - Ugur Seker
- Department of Histology and Embryology, Faculty of Medicine, Mardin Artuklu University, Mardin, Turkey
| | - Berjan Demirtas
- Vocational School Veterinary Medicine, Plant and Animal Production, Equine and Training Program, İstanbul University-Cerrahpaşa, İstanbul, Turkey
| | - Seyhan Taskin
- Department of Physiology, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| |
Collapse
|
2
|
Grimm PR, Tatomir A, Rosenbaek LL, Kim BY, Li D, Delpire EJ, Fenton RA, Welling PA. Dietary potassium stimulates Ppp1Ca-Ppp1r1a dephosphorylation of kidney NaCl cotransporter and reduces blood pressure. J Clin Invest 2023; 133:e158498. [PMID: 37676724 PMCID: PMC10617769 DOI: 10.1172/jci158498] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 09/06/2023] [Indexed: 09/09/2023] Open
Abstract
Consumption of low dietary potassium, common with ultraprocessed foods, activates the thiazide-sensitive sodium chloride cotransporter (NCC) via the with no (K) lysine kinase/STE20/SPS1-related proline-alanine-rich protein kinase (WNK/SPAK) pathway to induce salt retention and elevate blood pressure (BP). However, it remains unclear how high-potassium "DASH-like" diets (dietary approaches to stop hypertension) inactivate the cotransporter and whether this decreases BP. A transcriptomics screen identified Ppp1Ca, encoding PP1A, as a potassium-upregulated gene, and its negative regulator Ppp1r1a, as a potassium-suppressed gene in the kidney. PP1A directly binds to and dephosphorylates NCC when extracellular potassium is elevated. Using mice genetically engineered to constitutively activate the NCC-regulatory kinase SPAK and thereby eliminate the effects of the WNK/SPAK kinase cascade, we confirmed that PP1A dephosphorylated NCC directly in a potassium-regulated manner. Prior adaptation to a high-potassium diet was required to maximally dephosphorylate NCC and lower BP in constitutively active SPAK mice, and this was associated with potassium-dependent suppression of Ppp1r1a and dephosphorylation of its cognate protein, inhibitory subunit 1 (I1). In conclusion, potassium-dependent activation of PP1A and inhibition of I1 drove NCC dephosphorylation, providing a mechanism to explain how high dietary K+ lowers BP. Shifting signaling of PP1A in favor of activation of WNK/SPAK may provide an improved therapeutic approach for treating salt-sensitive hypertension.
Collapse
Affiliation(s)
- P. Richard Grimm
- Department of Medicine (Nephrology), Johns Hopkins University School of Medicine Baltimore, Maryland, USA
- The LeDucq Potassium in Hypertension Research Network of Excellence is detailed in Supplemental Acknowledgments
| | - Anamaria Tatomir
- Department of Medicine (Nephrology), Johns Hopkins University School of Medicine Baltimore, Maryland, USA
| | - Lena L. Rosenbaek
- The LeDucq Potassium in Hypertension Research Network of Excellence is detailed in Supplemental Acknowledgments
- Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Bo Young Kim
- Department of Medicine (Nephrology), Johns Hopkins University School of Medicine Baltimore, Maryland, USA
- The LeDucq Potassium in Hypertension Research Network of Excellence is detailed in Supplemental Acknowledgments
| | - Dimin Li
- Department of Medicine (Nephrology), Johns Hopkins University School of Medicine Baltimore, Maryland, USA
| | - Eric J. Delpire
- The LeDucq Potassium in Hypertension Research Network of Excellence is detailed in Supplemental Acknowledgments
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennssee, USA
| | - Robert A. Fenton
- The LeDucq Potassium in Hypertension Research Network of Excellence is detailed in Supplemental Acknowledgments
- Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Paul A. Welling
- Department of Medicine (Nephrology), Johns Hopkins University School of Medicine Baltimore, Maryland, USA
- The LeDucq Potassium in Hypertension Research Network of Excellence is detailed in Supplemental Acknowledgments
- Department of Physiology, Johns Hopkins University School of Medicine Baltimore, Maryland, USA
| |
Collapse
|
3
|
Yang Y, Yan M. Mechanisms of Cardiovascular System Injury Induced by COVID-19 in Elderly Patients With Cardiovascular History. Front Cardiovasc Med 2022; 9:859505. [PMID: 35600485 PMCID: PMC9116509 DOI: 10.3389/fcvm.2022.859505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
The coronavirus disease-2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2), represents a great threat to healthcare and socioeconomics worldwide. In addition to respiratory manifestations, COVID-19 promotes cardiac injuries, particularly in elderly patients with cardiovascular history, leading to a higher risk of progression to critical conditions. The SARS-CoV-2 infection is initiated as virus binding to angiotensin-converting enzyme 2 (ACE2), which is highly expressed in the heart, resulting in direct infection and dysregulation of the renin-angiotensin system (RAS). Meanwhile, immune response and hyper-inflammation, as well as endothelial dysfunction and thrombosis implicate in COVID-19 infection. Herein, we provide an overview of the proposed mechanisms of cardiovascular injuries in COVID-19, particularly in elderly patients with pre-existing cardiovascular diseases, aiming to set appropriate management and improve their clinical outcomes.
Collapse
|
4
|
Bakour M, Laaroussi H, Ousaaid D, El Ghouizi A, Es-Safi I, Mechchate H, Lyoussi B. Bee Bread as a Promising Source of Bioactive Molecules and Functional Properties: An Up-To-Date Review. Antibiotics (Basel) 2022; 11:203. [PMID: 35203806 PMCID: PMC8868279 DOI: 10.3390/antibiotics11020203] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
Bee bread is a natural product obtained from the fermentation of bee pollen mixed with bee saliva and flower nectar inside the honeycomb cells of a hive. Bee bread is considered a functional product, having several nutritional virtues and various bioactive molecules with curative or preventive effects. This paper aims to review current knowledge regarding the chemical composition and medicinal properties of bee bread, evaluated in vitro and in vivo, and to highlight the benefits of the diet supplementation of bee bread for human health. Bee bread extracts (distilled water, ethanol, methanol, diethyl ether, and ethyl acetate) have been proven to have antioxidant, antifungal, antibacterial, and antitumoral activities, and they can also inhibit α-amylase and angiotensin I-converting enzyme in vitro. More than 300 compounds have been identified in bee bread from different countries around the world, such as free amino acids, sugars, fatty acids, minerals, organic acids, polyphenols, and vitamins. In vivo studies have revealed the efficiency of bee bread in relieving several pathological cases, such as hyperglycemia, hyperlipidemia, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Meryem Bakour
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdallah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| | - Hassan Laaroussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdallah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| | - Driss Ousaaid
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdallah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| | - Asmae El Ghouizi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdallah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| | - Imane Es-Safi
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, 00014 Helsinki, Finland;
| | - Hamza Mechchate
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, 00014 Helsinki, Finland;
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdallah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| |
Collapse
|
5
|
Role and Mechanism of the Renin-Angiotensin-Aldosterone System in the Onset and Development of Cardiorenal Syndrome. J Renin Angiotensin Aldosterone Syst 2022; 2022:3239057. [PMID: 35111237 PMCID: PMC8803448 DOI: 10.1155/2022/3239057] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/03/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
Cardiorenal syndrome (CRS), a clinical syndrome involving multiple pathological mechanisms, exhibits high morbidity and mortality. According to the primary activity of the disease, CRS can be divided into cardiorenal syndrome (type I and type II), renal heart syndrome (type III and type IV), and secondary heart and kidney disease (type V). The renin-angiotensin-aldosterone system (RAAS) is an important humoral regulatory system of the body that exists widely in various tissues and organs. As a compensatory mechanism, the RAAS is typically activated to participate in the regulation of target organ function. RAAS activation plays a key role in the pathogenesis of CRS. The RAAS induces the onset and development of CRS by mediating oxidative stress, uremic toxin overload, and asymmetric dimethylarginine production. Research on the mechanism of RAAS-induced CRS can provide multiple intervention methods that are of great significance for reducing end-stage organ damage and further improving the quality of life of patients with CRS.
Collapse
|
6
|
Schwarz KG, Pereyra KV, Toledo C, Andrade DC, Díaz HS, Díaz-Jara E, Ortolani D, Rios-Gallardo A, Arias P, Las Heras A, Vera I, Ortiz FC, Inestrosa NC, Vio CP, Del Rio R. Effects of enriched-potassium diet on cardiorespiratory outcomes in experimental non-ischemic chronic heart failure. Biol Res 2021; 54:43. [PMID: 34952651 PMCID: PMC8710008 DOI: 10.1186/s40659-021-00365-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022] Open
Abstract
Background Chronic heart failure (CHF) is a global health problem. Increased sympathetic outflow, cardiac arrhythmogenesis and irregular breathing patterns have all been associated with poor outcomes in CHF. Several studies showed that activation of the renin-angiotensin system (RAS) play a key role in CHF pathophysiology. Interestingly, potassium (K+) supplemented diets showed promising results in normalizing RAS axis and autonomic dysfunction in vascular diseases, lowering cardiovascular risk. Whether subtle increases in dietary K+ consumption may exert similar effects in CHF has not been previously tested. Accordingly, we aimed to evaluate the effects of dietary K+ supplementation on cardiorespiratory alterations in rats with CHF. Methods Adult male Sprague–Dawley rats underwent volume overload to induce non-ischemic CHF. Animals were randomly allocated to normal chow diet (CHF group) or supplemented K+ diet (CHF+K+ group) for 6 weeks. Cardiac arrhythmogenesis, sympathetic outflow, baroreflex sensitivity, breathing disorders, chemoreflex function, respiratory–cardiovascular coupling and cardiac function were evaluated. Results Compared to normal chow diet, K+ supplemented diet in CHF significantly reduced arrhythmia incidence (67.8 ± 15.1 vs. 31.0 ± 3.7 events/hour, CHF vs. CHF+K+), decreased cardiac sympathetic tone (ΔHR to propranolol: − 97.4 ± 9.4 vs. − 60.8 ± 8.3 bpm, CHF vs. CHF+K+), restored baroreflex function and attenuated irregular breathing patterns. Additionally, supplementation of the diet with K+ restores normal central respiratory chemoreflex drive and abrogates pathological cardio-respiratory coupling in CHF rats being the outcome an improved cardiac function. Conclusion Our findings support that dietary K+ supplementation in non-ischemic CHF alleviate cardiorespiratory dysfunction. Supplementary Information The online version contains supplementary material available at 10.1186/s40659-021-00365-z.
Collapse
Affiliation(s)
- Karla G Schwarz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katherin V Pereyra
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - David C Andrade
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Fisiología y Medicina de Altura, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Hugo S Díaz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Esteban Díaz-Jara
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Domiziana Ortolani
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Angélica Rios-Gallardo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Paulina Arias
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexandra Las Heras
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ignacio Vera
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernando C Ortiz
- Mechanisms of Myelin Formation and Repair Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.,Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos P Vio
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile. .,Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
7
|
Angiotensin-Converting Enzyme 2 (ACE2) in the Context of Respiratory Diseases and Its Importance in Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection. Pharmaceuticals (Basel) 2021; 14:ph14080805. [PMID: 34451902 PMCID: PMC8398530 DOI: 10.3390/ph14080805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022] Open
Abstract
Angiotensin-Converting Enzyme 2 (ACE2) is an 805 amino acid protein encoded by the ACE2 gene expressed in various human cells, especially in those located in the epithelia. The primary function of ACE2 is to produce angiotensin (1–7) from angiotensin II (Ang II). The current research has described the importance of ACE2 and Ang (1–7) in alternative routes of the renin-angiotensin system (RAS) that promote the downregulation of fibrosis, inflammation, and oxidative stress processes in a great variety of diseases, such as hypertension, acute lung injury, liver cirrhosis, and kidney abnormalities. Investigations into the recent outbreak of the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have revealed the importance of ACE2 during infection and its role in recognizing viral binding proteins through interactions with specific amino acids of this enzyme. Additionally, the ACE2 expression in several organs has allowed us to understand the clinical picture related to the infection caused by SARS-CoV-2. This review aims to provide context for the functions and importance of ACE2 with regards to SARS-CoV-2 in the general clinical aspect and its impact on other diseases, especially respiratory diseases.
Collapse
|
8
|
Wang Y, Takeshita H, Yamamoto K, Huang Y, Wang C, Nakajima T, Nozato Y, Fujimoto T, Yokoyama S, Hongyo K, Nakagami F, Akasaka H, Takami Y, Takeya Y, Sugimoto K, Rakugi H. A pressor dose of angiotensin II has no influence on the angiotensin-converting enzyme 2 and other molecules associated with SARS-CoV-2 infection in mice. FASEB J 2021; 35:e21419. [PMID: 33566370 PMCID: PMC7995007 DOI: 10.1096/fj.202100016r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023]
Abstract
In the early phase of the Coronavirus disease 2019 (COVID‐19) pandemic, it was postulated that the renin‐angiotensin‐system inhibitors (RASi) increase the infection risk. This was primarily based on numerous reports, which stated that the RASi could increase the organ Angiotensin‐converting enzyme 2 (ACE2), the receptor of Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), in rodents. RASi can theoretically antagonize the potential influence of angiotensin II (Ang II) on ACE2. However, while Ang II decreases the ACE2 levels in cultured cells, there is little evidence that supports this phenomenon in living animals. In this study, we tested whether Ang II or Ang II combined with its antagonist would alter the ACE2 and other molecules associated with the infection of SARS‐CoV‐2. Male C57BL6/J mice were administered vehicle, Ang II (400 ng/kg/min), or Ang II with losartan (10 mg/kg/min) for 2 weeks. ACE2 knockout mice were used as a negative control for the ACE2 assay. We found that both Ang II, which elevated blood pressure by 30 mm Hg, and Ang II with losartan, had no effect on the expression or protein activity of ACE2 in the lung, left ventricle, kidney, and ileum. Likewise, these interventions had no effect on the expression of Transmembrane Protease Serine 2 (TMPRSS2) and Furin, proteases that facilitate the virus‐cell fusion, and the expression or activity of Tumor Necrosis Factor α‐Convertase (TACE) that cleaves cell‐surface ACE2. Collectively, physiological concentrations of Ang II do not modulate the molecules associated with SARS‐CoV‐2 infection. These results support the recent observational studies suggesting that the use of RASi is not a risk factor for COVID‐19.
Collapse
Affiliation(s)
- Yu Wang
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hikari Takeshita
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Koichi Yamamoto
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yibin Huang
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Cheng Wang
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tsuneo Nakajima
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoichi Nozato
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Taku Fujimoto
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Serina Yokoyama
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazuhiro Hongyo
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Futoshi Nakagami
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroshi Akasaka
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoichi Takami
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yasushi Takeya
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ken Sugimoto
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiromi Rakugi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
9
|
Monteonofrio L, Florio MC, AlGhatrif M, Lakatta EG, Capogrossi MC. Aging- and gender-related modulation of RAAS: potential implications in COVID-19 disease. VASCULAR BIOLOGY 2020; 3:R1-R14. [PMID: 33537555 PMCID: PMC7849461 DOI: 10.1530/vb-20-0014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a new infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 is frequently characterized by a marked inflammatory response with severe pneumonia and respiratory failure associated with multiorgan involvement. Some risk factors predispose patients to develop a more severe infection and to an increased mortality; among them, advanced age and male gender have been identified as major and independent risk factors for COVID-19 poor outcome. The renin-angiotensin-aldosterone system (RAAS) is strictly involved in COVID-19 because angiotensin converting enzyme 2 (ACE2) is the host receptor for SARS-CoV-2 and also converts pro-inflammatory angiotensin (Ang) II into anti-inflammatory Ang(1–7). In this review, we have addressed the effect of aging and gender on RAAS with emphasis on ACE2, pro-inflammatory Ang II/Ang II receptor 1 axis and anti-inflammatory Ang(1–7)/Mas receptor axis.
Collapse
Affiliation(s)
- Laura Monteonofrio
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Maria Cristina Florio
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Majd AlGhatrif
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA.,Longitudinal Study Section, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA.,Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Maurizio C Capogrossi
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA.,Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Hammoud SH, Wehbe Z, Abdelhady S, Kobeissy F, Eid AH, El-Yazbi AF. Dysregulation of Angiotensin Converting Enzyme 2 Expression and Function in Comorbid Disease Conditions Possibly Contributes to Coronavirus Infectious Disease 2019 Complication Severity. Mol Pharmacol 2020; 99:17-28. [PMID: 33082267 DOI: 10.1124/molpharm.120.000119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/09/2020] [Indexed: 01/08/2023] Open
Abstract
ACE2 has emerged as a double agent in the COVID-19 ordeal, as it is both physiologically protective and virally conducive. The identification of ACE2 in as many as 72 tissues suggests that extrapulmonary invasion and damage is likely, which indeed has already been demonstrated by cardiovascular and gastrointestinal symptoms. On the other hand, identifying ACE2 dysregulation in patients with comorbidities may offer insight as to why COVID-19 symptoms are often more severe in these individuals. This may be attributed to a pre-existing proinflammatory state that is further propelled with the cytokine storm induced by SARS-CoV-2 infection or the loss of functional ACE2 expression as a result of viral internalization. Here, we aim to characterize the distribution and role of ACE2 in various organs to highlight the scope of damage that may arise upon SARS-CoV-2 invasion. Furthermore, by examining the disruption of ACE2 in several comorbid diseases, we offer insight into potential causes of increased severity of COVID-19 symptoms in certain individuals. SIGNIFICANCE STATEMENT: Cell surface expression of ACE2 determines the tissue susceptibility for coronavirus infectious disease 2019 infection. Comorbid disease conditions altering ACE2 expression could increase the patient's vulnerability for the disease and its complications, either directly, through modulation of viral infection, or indirectly, through alteration of inflammatory status.
Collapse
Affiliation(s)
- Safaa H Hammoud
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon (S.H.); Departments of Biology (Z.W.), Biochemistry and Molecular Genetics (F.K.), and Pharmacology and Toxicology (A.H.E., A.F.E.-Y.), American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy (A.F.E.-Y.) and Faculty of Medicine (S.A.), Alexandria University, Alexandria, Egypt; and Department of Basic Medical Sciences, College of Medicine, and Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Zena Wehbe
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon (S.H.); Departments of Biology (Z.W.), Biochemistry and Molecular Genetics (F.K.), and Pharmacology and Toxicology (A.H.E., A.F.E.-Y.), American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy (A.F.E.-Y.) and Faculty of Medicine (S.A.), Alexandria University, Alexandria, Egypt; and Department of Basic Medical Sciences, College of Medicine, and Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Samar Abdelhady
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon (S.H.); Departments of Biology (Z.W.), Biochemistry and Molecular Genetics (F.K.), and Pharmacology and Toxicology (A.H.E., A.F.E.-Y.), American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy (A.F.E.-Y.) and Faculty of Medicine (S.A.), Alexandria University, Alexandria, Egypt; and Department of Basic Medical Sciences, College of Medicine, and Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Firas Kobeissy
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon (S.H.); Departments of Biology (Z.W.), Biochemistry and Molecular Genetics (F.K.), and Pharmacology and Toxicology (A.H.E., A.F.E.-Y.), American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy (A.F.E.-Y.) and Faculty of Medicine (S.A.), Alexandria University, Alexandria, Egypt; and Department of Basic Medical Sciences, College of Medicine, and Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Ali H Eid
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon (S.H.); Departments of Biology (Z.W.), Biochemistry and Molecular Genetics (F.K.), and Pharmacology and Toxicology (A.H.E., A.F.E.-Y.), American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy (A.F.E.-Y.) and Faculty of Medicine (S.A.), Alexandria University, Alexandria, Egypt; and Department of Basic Medical Sciences, College of Medicine, and Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon (S.H.); Departments of Biology (Z.W.), Biochemistry and Molecular Genetics (F.K.), and Pharmacology and Toxicology (A.H.E., A.F.E.-Y.), American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy (A.F.E.-Y.) and Faculty of Medicine (S.A.), Alexandria University, Alexandria, Egypt; and Department of Basic Medical Sciences, College of Medicine, and Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| |
Collapse
|
11
|
McLachlan CS. The angiotensin-converting enzyme 2 (ACE2) receptor in the prevention and treatment of COVID-19 are distinctly different paradigms. Clin Hypertens 2020; 26:14. [PMID: 32685191 PMCID: PMC7360378 DOI: 10.1186/s40885-020-00147-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023] Open
Abstract
There is current debate concerning the use of angiotensin-converting enzyme (ACE) inhibitors or angiotensin II type 1 receptor blockers (ARBs), for hypertension management, during COVID-19 infection. Specifically, the suggestion has been made that ACE inhibitors or ARBs could theoretically contribute to infection via increasing ACE2 receptor expression and hence increase viral load. The ACE2 receptor is responsible for binding the SAR-CoV2 viral spike and causing COVID-19 infection. What makes the argument somewhat obtuse for ACE inhibitors or ARBs is that ACE2 receptor expression can be increased by compounds that activate or increase the expression of SIRT1. Henceforth common dietary interventions, vitamins and nutrients may directly or indirectly influence the cellular expression of the ACE2 receptor. There are many common compounds that can increase the expression of the ACE2 receptor including Vitamin C, Metformin, Resveratrol, Vitamin B3 and Vitamin D. It is important to acknowledge that down-regulation or blocking the cellular ACE2 receptor will likely be pro-inflammatory and may contribute to end organ pathology and mortality in COVID-19. In conclusion from the perspective of the ACE2 receptor, COVID-19 prevention and treatment are distinctly different. This letter reflects on this current debate and suggests angiotensin-converting enzyme inhibitors and ARBs are likely beneficial during COVID-19 infection for hypertensive and normotensive patients.
Collapse
Affiliation(s)
- Craig Steven McLachlan
- Torrens University Australia, Health Vertical, 5/235 Pyrmont St, Pyrmont, NSW 2009 Australia
| |
Collapse
|
12
|
Samuel O O. Review on multifaceted involvement of perivascular adipose tissue in vascular pathology. Cardiovasc Pathol 2020; 49:107259. [PMID: 32692664 DOI: 10.1016/j.carpath.2020.107259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/27/2020] [Accepted: 06/27/2020] [Indexed: 12/16/2022] Open
Abstract
Perivascular adipose tissue (PVAT) is a fat tissue deposit that encircles the vasculature. PVAT is traditionally known to protect the vasculature from external stimuli that could cause biological stress. In addition to the protective role of PVAT, it secretes certain biologically active substances known as adipokines that induce paracrine effects on proximate blood vessels. These adipokines influence vascular tones. There are different types of PVAT and they are phenotypically and functionally distinct. These are the white and brown PVATs. Under certain conditions, white PVAT could undergo phenotypic switch to attain a brown PVAT-like phenotype. This type of PVAT is referred to as Beige PVAT. The morphology of adipose tissue is influenced by species, age, and sex. These factors play significant roles in adipose tissue mass, functionality, paracrine activity, and predisposition to vascular diseases. The difficulty that is currently experienced in extrapolating animal models to human physiology could be traceable to these factors. Up till now, the involvement of PVAT in the development of vascular pathology is still not well understood. Brown and white PVAT contribute differently to vascular pathology. Thus, the PVAT could be a therapeutic target in curbing certain vascular diseases. In this review, knowledge would be updated on the multifaceted involvement of PVAT in vascular pathology and also explore its vascular therapeutic potential.
Collapse
Affiliation(s)
- Olapoju Samuel O
- EA 7288, Biocommunication en Cardiometabolique (BC2M), Faculté de Pharmacie, Université de Montpellier, Montpellier, France.
| |
Collapse
|
13
|
Vio CP, Gallardo P, Cespedes C, Salas D, Diaz-Elizondo J, Mendez N. Dietary Potassium Downregulates Angiotensin-I Converting Enzyme, Renin, and Angiotensin Converting Enzyme 2. Front Pharmacol 2020; 11:920. [PMID: 32625100 PMCID: PMC7314933 DOI: 10.3389/fphar.2020.00920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 06/05/2020] [Indexed: 12/16/2022] Open
Abstract
Background The importance of dietary potassium in health and disease has been underestimated compared with that placed on dietary sodium. Larger effort has been made on reduction of sodium intake and less on the adequate dietary potassium intake, although natural food contains much more potassium than sodium. The benefits of a potassium-rich diet are known, however, the mechanism by which it exerts its preventive action, remains to be elucidated. With the hypothesis that dietary potassium reduces renal vasoconstrictor components of the renin-angiotensin system in the long-term, we studied the effect of high potassium diet on angiotensin-I converting enzyme, renin, and angiotensin converting enzyme 2. Methods Sprague Dawley male rats on a normal sodium diet received normal potassium (0.9%, NK) or high potassium diet (3%, HK) for 4 weeks. Urine was collected in metabolic cages for electrolytes and urinary volume measurement. Renal tissue was used to analyze angiotensin-I converting enzyme, renin, and angiotensin converting enzyme 2 expression. Protein abundance analysis was done by Western blot; gene expression by mRNA levels by RT-qPCR. Renal distribution of angiotensin-I converting enzyme and renin was done by immunohistochemistry and morphometric analysis in coded samples. Results High potassium diet (4 weeks) reduced the levels of renin, angiotensin-I converting enzyme, and angiotensin converting enzyme 2. Angiotensin-I converting enzyme was located in the brush border of proximal tubules and with HK diet decreased the immunostaining intensity (P < 0.05), decreased the mRNA (P < 0.01) and the protein levels (P < 0.01). Renin localization was restricted to granular cells of the afferent arteriole and HK diet decreased the number of renin positive cells (P < 0.01) and renin mRNA levels (P < 0.01). High potassium intake decreased angiotensin converting enzyme 2 gene expression and protein levels (P < 0.01).No morphological abnormalities were observed in renal tissue during high potassium diet.The reduced expression of angiotensin-I converting enzyme, renin, and angiotensin converting enzyme 2 during potassium supplementation suggest that high dietary potassium intake could modulate these vasoactive enzymes and this effects can contribute to the preventive and antihypertensive effect of potassium.
Collapse
Affiliation(s)
- Carlos P Vio
- Center for Aging and Regeneration CARE UC, Department of Physiology, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastian, Santiago, Chile
| | - Pedro Gallardo
- Facultad de Medicina, Escuela de Medicina, Universidad Finis Terrae, Santiago, Chile
| | - Carlos Cespedes
- Center for Aging and Regeneration CARE UC, Department of Physiology, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastian, Santiago, Chile
| | - Daniela Salas
- Center for Aging and Regeneration CARE UC, Department of Physiology, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jessica Diaz-Elizondo
- Center for Aging and Regeneration CARE UC, Department of Physiology, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Natalia Mendez
- Facultad de Medicina, Institute of Anatomy, Histology and Pathology, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
14
|
Antihypertensive Activity of Eucommia Ulmoides Oliv: Male Flower Extract in Spontaneously Hypertensive Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6432173. [PMID: 32419815 PMCID: PMC7210558 DOI: 10.1155/2020/6432173] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/24/2020] [Accepted: 03/23/2020] [Indexed: 12/18/2022]
Abstract
Eucommia ulmoides Oliv. is a traditional medical plant in Asia; however, it is still unknown whether Eucommia male flowers have an antihypertensive activity. In this study, we found that the aqueous extract of Eucommia ulmoides Oliv. male flowers can lower the blood pressure of SHR in a dose-dependent manner. Mechanistic studies suggested that the aqueous extract of male flowers can promote the mRNA and protein expressions of ACE2 in the kidney of SHR. ELISA assay showed that the plasma levels of ANG II was decreased, while ANG-(1–7) was increased in SHR treated with the aqueous extract of male flowers. ACE2 inhibitor DX600 can reverse the aqueous extract of Eucommia ulmoides Oliv. male flower-induced downregulation of Ang II and upregulation of Ang-(1–7), as well as the reduction of blood pressure in SHR. Moreover, Ang-(1–7)-Mas receptor antagonist A-779 abolished the antihypertensive effects of the aqueous extract of Eucommia ulmoides Oliv. male flower in SHR. The aqueous extract of Eucommia ulmoides Oliv. male flowers exhibited an antihypertensive action through the activation of ACE2-Ang-(1–7)-Mas signaling pathways in spontaneously hypertensive rats.
Collapse
|