1
|
Hussein AA, Okasha H, ElZallat M, Ghoname SI, Habib MR, Hammam OA, El-Dabaa E, Salem MB. Identification and exploration of anticancer activity of novel peptides isolated from the edible bivalve Callista chione in hepatic and colon cancer cell lines. Toxicol Rep 2025; 14:101915. [PMID: 39968051 PMCID: PMC11833620 DOI: 10.1016/j.toxrep.2025.101915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/26/2024] [Accepted: 11/03/2024] [Indexed: 02/20/2025] Open
Abstract
Background The requirement for relevant and safe drugs for cancer treatment is considered a challenge. Recently, marine isolated compounds with various therapeutic targets have attracted many researchers. Aim Isolation and identification of potential anticancer peptides from edible Callista chione soft tissues. Methodology C. chione specimens were collected and peptides were extracted, purified with FPLC, and tested on normal (hepatocytes and VERO) and cancer (HepG2, and HT-29) cells. Bioactive fractions were tested by tandem mass spectrometry. Results Five different fractions were purified according to ionic charges and two fractions (4 and 5) showed a potent anticancer activity with a total anticancer score threshold of ≥ 0.5, and hydrophilicity mean of 1.75 that related to stability and solubility. The apoptotic and autophagy-related markers were significantly up-regulated in both HepG2 and HT-29 cells treated with IC50 of bioactive peptides' fractions 4 and 5, explaining their underlying mechanism of action. Conclusion Natural source peptides derived from the soft tissue of C. chione could be exploited for the treatment of cancers and a deep in silico study will be performed for further investigation and deep function identification.
Collapse
Affiliation(s)
- Ahmed A.A. Hussein
- Departments of Medical Malacology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza 12411, Egypt
| | - Hend Okasha
- Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza 12411, Egypt
| | - Mohamed ElZallat
- Immunology Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza 12411, Egypt
| | - Samah I. Ghoname
- Departments of Medical Malacology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza 12411, Egypt
| | - Mohamed R. Habib
- Departments of Medical Malacology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza 12411, Egypt
| | - Olfat A. Hammam
- Pathology Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza 12411, Egypt
| | - Ehab El-Dabaa
- Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza 12411, Egypt
| | - Maha B. Salem
- Pharmacology Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza 12411, Egypt
| |
Collapse
|
2
|
Yasmeen N, Ahmad Chaudhary A, K Niraj RR, Lakhawat SS, Sharma PK, Kumar V. Screening of phytochemicals from Clerodendrum inerme (L.) Gaertn as potential anti-breast cancer compounds targeting EGFR: an in-silico approach. J Biomol Struct Dyn 2025; 43:2781-2823. [PMID: 38141177 DOI: 10.1080/07391102.2023.2294379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/04/2023] [Indexed: 12/25/2023]
Abstract
Breast cancer (BC) is the most prevalent malignancy among women around the world. The epidermal growth factor receptor (EGFR) is a tyrosine kinase receptor (RTK) of the ErbB/HER family. It is essential for triggering the cellular signaling cascades that control cell growth and survival. However, perturbations in EGFR signaling lead to cancer development and progression. Hence, EGFR is regarded as a prominent therapeutic target for breast cancer. Therefore, in the current investigation, EGFR was targeted with phytochemicals from Clerodendrum inerme (L.) Gaertn (C. inerme). A total of 121 phytochemicals identified by gas chromatography-mass spectrometry (GC-MS) analysis were screened against EGFR through molecular docking, ADMET analyses (Absorption, Distribution, Metabolism, Excretion, and Toxicity), PASS predictions, and molecular dynamics simulation, which revealed three potential hit compounds with CIDs 10586 [i.e. alpha-bisabolol (-6.4 kcal/mol)], 550281 [i.e. 2,(4,4-Trimethyl-3-hydroxymethyl-5a-(3-methyl-but-2-enyl)-cyclohexene) (-6.5 kcal/mol)], and 161271 [i.e. salvigenin (-7.4 kcal/mol)]. The FDA-approved drug gefitinib was used to compare the inhibitory effects of the phytochemicals. The top selected compounds exhibited good ADMET properties and obeyed Lipinski's rule of five (ROF). The molecular docking analysis showed that salvigenin was the best among the three compounds and formed bonds with the key residue Met 793. Furthermore, the molecular mechanics generalized born surface area (MMGBSA) calculations, molecular dynamics simulation, and normal mode analysis validated the binding affinity of the compounds and also revealed the strong stability and compactness of phytochemicals at the docked site. Additionally, DFT and DOS analyses were done to study the reactivity of the compounds and to further validate the selected phytochemicals. These results suggest that the identified phytochemicals possess high inhibitory potential against the target EGFR and can treat breast cancer. However, further in vitro and in vivo investigations are warranted towards the development of these constituents into novel anti-cancer drugs.
Collapse
Affiliation(s)
- Nusrath Yasmeen
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | | | | | | | - Vikram Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
- Amity Institute of Pharmacy, Amity University Rajasthan, Jaipur, India
| |
Collapse
|
3
|
Long J, Ye P, Yuan W, Yang Q, Wang Z, Xiao H, Xie Z, Lei X, Yang X, Deng X, Tang G. Research progress of flavonoids targeting estrogen receptor in the treatment of breast cancer. Bioorg Med Chem 2025; 120:118106. [PMID: 39938393 DOI: 10.1016/j.bmc.2025.118106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/22/2025] [Accepted: 02/06/2025] [Indexed: 02/14/2025]
Abstract
Breast cancer (BC) stands as the most prevalent malignancy among women. Targeting the estrogen receptor (ER) or ER pathway is one of the important approaches for ER+ BC treatment. As a class of phytoestrogens, flavonoids possess notable anti-tumor properties and hold immense potential in regulating ER signaling. In this review, we reported the recent advances in both in vitro and in vivo studies of flavonoids and their synthetic derivatives targeting the ER signaling pathway, including the target and mechanism of action of these molecules, as well as their structure-activity relationship. Based on the available literature, the beneficial effects of flavonoids as ER targeting agents are promising but they require further in vitro and in vivo studies to enable its translation from bench to bedside. This review will provide valuable guidance and insights for the future development of drugs targeting the ER pathway.
Collapse
Affiliation(s)
- Jianling Long
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Pengju Ye
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Weixi Yuan
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qixian Yang
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhe Wang
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang 421001 Hunan, China
| | | | - Zhizhong Xie
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyong Lei
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyan Yang
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiangping Deng
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Guotao Tang
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
4
|
Mostafa MAH, Khojah HMJ. Nanoparticle-based delivery systems for phytochemicals in cancer therapy: molecular mechanisms, clinical evidence, and emerging trends. Drug Dev Ind Pharm 2025:1-17. [PMID: 40116905 DOI: 10.1080/03639045.2025.2483425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/16/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025]
Abstract
OBJECTIVE This review examines recent advancements in nanoparticle-based delivery systems for phytochemicals, focusing on their role in overcoming multidrug resistance, improving therapeutic efficacy, and facilitating clinical translation. SIGNIFICANCE This review highlights recent advances in nanoparticle-enabled phytochemical delivery to enhance bioavailability, improve therapeutic outcomes, and enable targeted applications. By comparing various nanoparticle systems, formulation methods, and efficacy data, it identifies gaps in current research and guides the development of more effective, next-generation phytochemical-loaded nanocarriers. METHODS A systematic review of literature published between 2000 and 2024 was conducted using PubMed, Scopus, and Web of Science. Articles focusing on nanoparticle-based phytochemical delivery in cancer therapy were included. KEY FINDINGS Compounds such as curcumin, resveratrol, quercetin, and epigallocatechin gallate demonstrate enhanced anti-cancer efficacy when encapsulated in nanoparticles, leading to improved bioavailability, increased tumor cell targeting, and reduced toxicity. Clinical trials indicate tumor regression and fewer adverse effects. Emerging approaches-such as nanogels, hybrid nanoparticles, and combination therapies with immune checkpoint inhibitors-further refine treatment efficacy. CONCLUSIONS Nanoparticle-based delivery systems significantly improve the therapeutic potential of phytochemicals, making them promising candidates for safer, more effective cancer treatments. However, challenges related to regulatory guidelines, scalability, and long-term safety must be addressed to fully realize their clinical potential.
Collapse
Affiliation(s)
- Mahmoud A H Mostafa
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Madinah, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University (Assiut Branch), Assiut, Egypt
| | - Hani M J Khojah
- Department of Pharmacy Practice, College of Pharmacy, Taibah University, Madinah, Saudi Arabia
| |
Collapse
|
5
|
Sharma G, Panwar R, Saini S, Tuli HS, Wadhwa K, Pahwa R. Emerging phytochemical-based nanocarriers: redefining the perspectives of breast cancer therapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04003-3. [PMID: 40137964 DOI: 10.1007/s00210-025-04003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 02/28/2025] [Indexed: 03/29/2025]
Abstract
Breast cancer is recognized as the most prevalent condition impacting women globally, despite several advancements in diagnosis and treatment. Existing therapeutic interventions including surgical procedures, radiation therapy, and chemotherapy often produce harmful effects on healthy tissues, trigger chemo-resistance, and augment the risk of relapse. In response to several unmet challenges, substantial research has been conducted to explore the therapeutic potential of natural compounds for breast cancer therapy. Progress in phytochemistry and pharmacology has facilitated the identification of diverse herbal bioactives with favorable safety profiles and multi-target mechanisms of action against breast cancer cells. Several phytochemicals like flavonoids and tannins have shown significant anticancer potential against breast cancer in diverse preclinical models. However, challenges like limited cellular absorption, low water solubility, and high molecular weight hinder their effective translation into clinical applications. Therefore, the development of novel therapies is imperative for overcoming these hurdles in breast cancer treatment effectively. Nanotechnology has reflected considerable perspective in tackling diverse challenges by encapsulating phytoconstituents within various nanocarriers including polymeric nanoparticles, lipidic nanoparticles, nanoemulsions, nanogels, gold nanoparticles, and silver nanoparticles. This manuscript emphasizes the recent advancements in phytochemical-loaded nanocarriers efficiently tailored for breast cancer therapy along with patents, current challenges, and future perspectives in this avenue.
Collapse
Affiliation(s)
- Gulshan Sharma
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Rohil Panwar
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Sanskriti Saini
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Hardeep Singh Tuli
- Department of Bio-Science and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Karan Wadhwa
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| | - Rakesh Pahwa
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
| |
Collapse
|
6
|
Shao KY, Luo SD, Huang EY, Chang TM, Botcha L, Sehar M, Liu JF, Chuang PK. Acetylshikonin induces cell necroptosis via mediating mitochondrial function and oxidative stress-regulated signaling in human Oral Cancer cells. Bioorg Chem 2025; 159:108396. [PMID: 40168882 DOI: 10.1016/j.bioorg.2025.108396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/23/2025] [Accepted: 03/17/2025] [Indexed: 04/03/2025]
Abstract
Human oral squamous cell carcinoma (OSCC) represents a significant global health challenge, with conventional treatments showing limited efficacy in improving patient survival rates. To investigate the therapeutic potential of acetylshikonin on OSCC, we conducted comprehensive analyses including cell viability assays, flow cytometry, and molecular pathway investigations. Our findings demonstrate that acetylshikonin significantly inhibits OSCC cell proliferation with IC50 values of 3.81 μM and 5.87 μM in HSC3 and SCC4 cells respectively. Flow cytometry analysis revealed that acetylshikonin treatment significantly increased reactive oxygen species (ROS) production and decreased mitochondrial membrane potential in OSCC cells. Additionally, Western blot analysis showed enhanced phosphorylation of RIPK1, RIPK3, and MLKL proteins, indicating activation of the necroptotic pathway. The critical role of necroptosis was further confirmed using specific inhibitors (GSK872, Necrostatin-1, and 7-CL-O Nec-1), which significantly attenuated acetylshikonin-induced cell death. Transmission electron microscopy revealed distinct ultrastructural changes in cellular organelles, while decreased GPX4 expression suggested potential cross-activation of ferroptotic pathways. These data demonstrate that acetylshikonin suppresses OSCC growth through selective activation of oxidative stress-mediated necroptosis and mitochondrial dysfunction, identifying it as a promising natural compound for OSCC therapy through its ability to activate alternative cell death pathways and overcome traditional therapy limitations.
Collapse
Affiliation(s)
- Kung-Yu Shao
- Oral-Maxillofacial Surgery Division, Department of Dentistry, Shuang Ho Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
| | - Sheng-Dean Luo
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Taiwan; School of Traditional Chinese Medicine, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; School of Medicine, College of Medicine, National SunYat-sen University, Kaohsiung, Taiwan
| | - Eng-Yen Huang
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Taiwan; Department of Radiation Oncology & Proton and Radiation Therapy Center, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City, Taiwan; Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Tsung-Ming Chang
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Lavanya Botcha
- Institute of Biomedical Sciences, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Misbah Sehar
- Institute of Biomedical Sciences, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ju-Fang Liu
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Po-Kai Chuang
- Institute of Biomedical Sciences, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan.
| |
Collapse
|
7
|
Moges GW, Manahelohe GM, Assege MA, Tasew BS, Molla DK, Belew AA. Phytochemical profiles and biological activity of Myrsine africana L.: a comprehensive review. Front Pharmacol 2025; 16:1565656. [PMID: 40183106 PMCID: PMC11965677 DOI: 10.3389/fphar.2025.1565656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/28/2025] [Indexed: 04/05/2025] Open
Abstract
Myrsine africana L. is a member of the Myrsinaceae family, which encompasses more than 1,000 species and 35 genera predominantly found in tropical and subtropical regions. This plant is abundant in Africa and Asia, and has been traditionally utilized for its aromatic properties in tea, spices, appetizers, carminatives, and flavoring agents. Despite its wide-ranging applications, a comprehensive review of its phytochemical potential and biological effects has not yet been conducted. This study aims to fill that gap by reviewing the phytochemical composition and biological activities of M. africana. Literature was gathered using databases such as Google Scholar, PubMed, Scopus, and Web of Science. The wide range of uses of M. africana can be attributed to its rich phytochemicals, including alkaloids, flavonoids, phenols, terpenoids, and saponins. Among its significant biological activities, M. africana is known for its anti-inflammatory and antioxidant properties. Furthermore, it shows potential in antispasmodic, antityrosinase, antibacterial, anti-aging, and anticancer applications. Additionally, it is used to treat conditions, such as malaria, helminthosis, wounds, tuberculosis, and gastrointestinal complications. Some of the isolated compounds from different parts of M. africana include methylvilangin (11), methylanhydrovilangin (12), 2-hydroxychrysophanol (13), myrsinene (25), myrsigenin (26), myrsininone A (27), myrsininone B (28), and myrsinoside B (30), as well as various other flavonoid compounds. This review aims to systematically explore the phytochemical profiles and associated biological activities of M. africana, highlighting key compounds and their pharmacological implications. By bringing together information, it emphasizes the potential of M. africana in drug discovery and future research.
Collapse
Affiliation(s)
- Getaneh Worku Moges
- Department of Chemistry, College of Natural and Computational Sciences, University of Gondar, Gondar, Ethiopia
| | | | - Melesse Ababay Assege
- Department of Chemistry, College of Natural and Computational Sciences, University of Gondar, Gondar, Ethiopia
| | - Banchamlak Sewachen Tasew
- Department of Chemistry, College of Natural and Computational Sciences, University of Gondar, Gondar, Ethiopia
| | - Desilal Kokebie Molla
- Department of Biology, College of Natural and Computational Sciences, University of Gondar, Gondar, Ethiopia
| | - Aderaw Anteneh Belew
- Department of Chemistry, College of Natural and Computational Sciences, Jigjiga University, Jigjiga, Ethiopia
| |
Collapse
|
8
|
Nizami ZN, Al Azzani M, Khaldi S, Wali AF, Magramane R, Samad SA, Eid AH, Arafat K, Al Dhaheri Y, Attoub S, Iratni R. Rhus coriaria (Sumac) induces autophagic cell death and inhibits mTOR, p38MAPK and STAT3 pathways in 5fluorouracil-resistant colorectal cancer cells. Front Pharmacol 2025; 16:1542204. [PMID: 40176890 PMCID: PMC11962434 DOI: 10.3389/fphar.2025.1542204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction Colorectal cancer is a leading cause of cancer related-death worldwide, and resistance to 5-fluorouracil (5FU, a key component of chemotherapy regimens, is a major clinical concern. We have previously elucidated the effects of Rhus coriaria ethanolic extract (RCE) in triple-negative breast cancer, CRC, and pancreatic cancer cells. Here, we explored the anticancer effects of RCE in parental (HCT-116-WT) and 5FU-resistant HCT-116 (HCT-116-5FU-R) CRC cells. Methods MTT assay was used to assess cell viability. Muse analyzer was used to assess cell viability, cell cycle distribution, and apoptosis. Additionally, colony formation and growth assays and western blots were performed. In vivo effects of RCE were assessed by an in ovo chick embryo tumor growth assay. Results We found that RCE inhibited the viability and colony formation and growth capacities of HCT-116-WT and HCT-116-5FU-R cells. The antiproliferative effects were attributed to DNA damage-mediated impairment of cell cycle at S phase, and induction of Beclin-1-independent autophagy in both cell lines. Mechanistically, inhibition of the mTOR, STAT3 and p38 MAPK pathways was implicated in the latter. Additionally, RCE induced caspase-7-independent apoptosis in HCT-116-WT cells. However, HCT-116-5FU-R cells were resistant to apoptosis through upregulation of survivin, and downregulation of Bax. Using autophagy and proteasome inhibitors, we clarified that autophagy and the proteasome pathway contributed to RCE-mediated cell death in HCT-116-WT and HCT-116-5FU-R cells. Lastly, we confirmed RCE inhibited the growth of both HCT-116-WT and HCT-116-5FU-R xenografts in a chick embryo model. Discussion Collectively, our findings highlight that RCE is a source of phytochemicals that can be used as anticancer agents for 5FU-resistant CRC.
Collapse
Affiliation(s)
- Zohra Nausheen Nizami
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Mazoun Al Azzani
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Samah Khaldi
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Adil Farooq Wali
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Rym Magramane
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Shamaa Abdul Samad
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Kholoud Arafat
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Yusra Al Dhaheri
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Samir Attoub
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
9
|
Hernandez-Unzueta I, Telleria-Gonzalez U, Aransay AM, Martin Rodriguez JE, Sanz E, Márquez J. Unravelling the antitumor mechanism of Ocoxin through cancer cell genomics. Front Pharmacol 2025; 16:1540217. [PMID: 40176904 PMCID: PMC11961970 DOI: 10.3389/fphar.2025.1540217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Cancer is one of the leading causes of death worldwide. Many therapies are being used to treat this disease, however, new treatments are now being implemented, since they are not always effective and their secondary effects represent one of the main reasons for cancer patients' loss of life quality during the progression of the disease. In this scenario, Ocoxin is a mixture of plant extracts, amino acids, vitamins and minerals, known for its antioxidant, anti-inflammatory and immunoregulatory properties, which has shown to exert antitumor effects in many cancers. The aim of this study is to elucidate the mechanism of action of the compound in colorectal cancer, triple negative breast cancer, pancreatic cancer and prostate cancer. Analyses performed through RNA sequencing revealed that the main effect of Ocoxin appears to be the alteration of cell metabolism, especially inducing the process of ferroptosis. Nevertheless, the modulation of the cell cycle was also remarkable. Ocoxin altered 13 genes in common in all the four cancers that were not only associated to metabolism and cell cycle but were also involved in the integrated stress response and unfolded protein response, suggesting that the compound causes the induction of cell death through several pathways. Although the mechanisms vary according to the type of cancer, this study highlights the potential of Ocoxin as an adjunctive treatment to improve outcomes in cancer therapy.
Collapse
Affiliation(s)
- Iera Hernandez-Unzueta
- Cell Biology and Histology Department, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain
| | - Uxue Telleria-Gonzalez
- Cell Biology and Histology Department, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain
| | - Ana María Aransay
- Genome Analysis Platform, CIC Biogune, Derio, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Joana Márquez
- Cell Biology and Histology Department, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain
| |
Collapse
|
10
|
Chaudhary B, Arya P, Sharma V, Kumar P, Singla D, Grewal AS. Targeting anti-apoptotic mechanisms in tumour cells: Strategies for enhancing Cancer therapy. Bioorg Chem 2025; 159:108388. [PMID: 40107036 DOI: 10.1016/j.bioorg.2025.108388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/05/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
Anti-cancer drug's cytotoxicity is determined by their ability to induce predetermined cell demise, commonly called apoptosis. The cancer-causing cells are able to evade cell death, which has been affiliated with both malignancy as well as resistance to cancer treatments. In order to avoid cell death, cancerous tumour cells often produce an abundance of anti-apoptotic proteins, becoming "dependent" on them. Consequently, protein inhibitors of cell death may prove to be beneficial as pharmacological targets for the future creation of cancer therapies. This article examines the molecular routes of apoptosis, its clinical manifestations, anti-cancer therapy options that target the intrinsic mechanism of apoptosis, proteins that prevent cell death, and members of the B-lymphoma-2 subset. In addition, novel approaches to cell death are highlighted, including how curcumin mitigates chemotherapy-induced apoptosis in healthy tissues and the various ways melatonin modifies apoptosis to improve cancer treatment efficacy, particularly through the TNF superfamily. Cancer treatment-induced increases in anti-apoptotic proteins lead to drug resistance; yet, ligands that trigger cell death by inhibiting these proteins are expected to improve chemotherapy's efficacy. The potential of frequency-modulated dietary phytochemicals as a cancer therapeutic pathway, including autophagy and apoptosis, is also explored. This approach may be more efficient than inhibition alone in overcoming drug resistance. Consequently, this method has the potential to allow for lower medication concentrations, reducing cytotoxicity and unwanted side effects.
Collapse
Affiliation(s)
- Benu Chaudhary
- Shri Ram College of Pharmacy, Ramba, Karnal, Haryana, India
| | - Preeti Arya
- Shri Ram College of Pharmacy, Ramba, Karnal, Haryana, India
| | - Vikas Sharma
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar, Haryana, India
| | - Parveen Kumar
- NIMS Institute of Pharmacy, NIMS University, Jaipur, Rajasthan, India
| | - Deepak Singla
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar, Haryana, India
| | | |
Collapse
|
11
|
Ramsridhar S, Rajkumar C, Veeraraghavan VP, Francis AP, Balasubramaniam M, Bharkavi I. From cell lines to animal models: "plant- derived chemotherapeutics unlocking new frontiers against oral squamous cell carcinoma"-a comprehensive systematic review. Discov Oncol 2025; 16:340. [PMID: 40097871 PMCID: PMC11914638 DOI: 10.1007/s12672-025-02057-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND AND AIM Despite progress in traditional treatment methods, the overall survival rate for oral squamous cell carcinoma (OSCC) remains limited. Consequently, it is essential to investigate alternative therapeutic strategies to enhance patient outcomes. This review highlights the potential role of plant extracts as chemo preventive agents in oral cancer treatment. METHODS A systematic review was conducted following PRISMA guidelines, involving an extensive literature search from databases such as PubMed, Scopus, Embase, Web of science, Cochrane and CINAHL which included studies from 2010 to 2024 that explored the anticancer potential of medicinal plants for OSCC treatment. Data extraction focused on plant species, parts used, extract type, active components, dosage, and cancer cell lines or animal models used. Risk of bias was assessed using the OHAT tool for animal studies and the ROBINS-I tool for in vitro studies. RESULTS A total of 12 in vitro and animal studies were included, examining plants such as Allium sativum (garlic), Crocus sativus (saffron), Curcuma longa (turmeric), Scutellariabaicalensis (Baikal skullcap), etc., These studies demonstrated that bioactive components like allicin, curcumin, and baicalin significantly inhibited OSCC cell proliferation and induced apoptosis. However, there was substantial variability in the dose concentrations required, ranging from 1 µg/mL for garlic extract to 50 mg/mL for saffron nanoparticles. The risk of bias assessment indicated that four studies had a moderate risk, while one had a low risk of bias, indicating methodological rigor. CONCLUSION Plant extracts such as Curcuma longa and Vitis vinifera present a promising, less toxic alternative for OSCC treatment, with the potential to be integrated into conventional chemotherapeutic regimens. While in-vitro and animal studies are encouraging, further clinical trials among humans are necessary to confirm their efficacy and safety in clinical settings.
Collapse
Affiliation(s)
- Saranya Ramsridhar
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Department of Oral Pathology, Sathyabama Dental College and Hospital, Sathyabama Institute of Science and Technology, Chennai, India.
| | - Chandini Rajkumar
- Department of Oral Pathology, Sathyabama Dental College and Hospital, Sathyabama Institute of Science and Technology, Chennai, India
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Arul Prakash Francis
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Murali Balasubramaniam
- Department of Oral Pathology, Sathyabama Dental College and Hospital, Sathyabama Institute of Science and Technology, Chennai, India
| | - Indu Bharkavi
- Department of Oral Pathology, Sathyabama Dental College and Hospital, Sathyabama Institute of Science and Technology, Chennai, India
| |
Collapse
|
12
|
Oršolić N, Jembrek MJ. Targeting Oxidative Stress for Disease. Int J Mol Sci 2025; 26:2692. [PMID: 40141334 PMCID: PMC11942285 DOI: 10.3390/ijms26062692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Oxidative stress (OS) refers to a metabolic imbalance caused by the excessive production of reactive oxygen species (ROS) and an insufficient antioxidant defense [...].
Collapse
Affiliation(s)
- Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia
| | - Maja Jazvinšćak Jembrek
- Croatia Division of Molecular Medicine, Laboratory for Protein Dynamics, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia;
- School of Medicine, Catholic University of Croatia, Ilica 244, HR-10000 Zagreb, Croatia
| |
Collapse
|
13
|
Imtiaz I, Schloss J, Bugarcic A. Interplay Between Traditional and Scientific Knowledge: Phytoconstituents and Their Roles in Lung and Colorectal Cancer Signaling Pathways. Biomolecules 2025; 15:380. [PMID: 40149916 PMCID: PMC11940637 DOI: 10.3390/biom15030380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/27/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Natural plant products have been used for cancer treatment since ancient times and continue to play a vital role in modern anticancer drug development. However, only a small fraction of identified medicinal plants has been thoroughly investigated, particularly for their effects on cellular pathways in lung and colorectal cancers, two under-researched cancers with poor prognostic outcomes (lung cancers). This review focuses on the lung and colorectal cancer signaling pathways modulated by bioactive compounds from eleven traditional medicinal plants: Curcuma longa, Astragalus membranaceus, Glycyrrhiza glabra, Althaea officinalis, Echinacea purpurea, Sanguinaria canadensis, Codonopsis pilosula, Hydrastis canadensis, Lobelia inflata, Scutellaria baicalensis, and Zingiber officinale. These plants were selected based on their documented use in traditional medicine and modern clinical practice. Selection criteria involved cross-referencing herbs identified in a scoping review of traditional cancer treatments and findings from an international survey on herbal medicine currently used for lung and colorectal cancer management by our research group and the availability of existing literature on their anticancer properties. The review identifies several isolated phytoconstituents from these plants that exhibit anticancer properties by modulating key signaling pathways such as PI3K/Akt/mTOR, RAS/RAF/MAPK, Wnt/β-catenin, and TGF-β in vitro. Notable constituents include sanguinarine, berberine, hydrastine, lobeline, curcumin, gingerol, shogaol, caffeic acid, echinacoside, cichoric acid, glycyrrhizin, 18-β-glycyrrhetinic acid, astragaloside IV, lobetyolin, licochalcone A, baicalein, baicalin, wogonin, and glycyrol. Curcumin and baicalin show preclinical effectiveness but face bioavailability challenges, which may be overcome by combining them with piperine or using oral extracts to enhance gut microbiome conversion, integrating traditional knowledge with modern strategies for improved outcomes. Furthermore, herbal extracts from Echinacea, Glycyrrhiza, and Codonopsis, identified in traditional knowledge, are currently in clinical trials. Notably, curcumin and baicalin also modulate miRNA pathways, highlighting a promising intersection of modern science and traditional medicine. Thus, the development of anticancer therapeutics continues to benefit from the synergy of traditional knowledge, scientific innovation, and technological advancements.
Collapse
Affiliation(s)
| | | | - Andrea Bugarcic
- National Centre for Naturopathic Medicine, Faculty of Health, Southern Cross University, Military Road, Lismore, NSW 2480, Australia; (I.I.); (J.S.)
| |
Collapse
|
14
|
Ferdous UT, Nurdin A, Ismail S, Shaari K, Norhana Balia Yusof Z. A comparative study on antioxidant properties, total phenolics, total flavonoid contents, and cytotoxic properties of marine green microalgae and diatoms. J Genet Eng Biotechnol 2025; 23:100456. [PMID: 40074430 PMCID: PMC11795137 DOI: 10.1016/j.jgeb.2024.100456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/10/2024] [Accepted: 12/23/2024] [Indexed: 03/14/2025]
Abstract
Despite having valuable and novel metabolites, the marine microalgae species are still not thoroughly investigated for their pharmaceutical and nutraceutical importance. Therefore, this study was focused on investigating the crude extracts of marine green microalgae species, Tetraselmis sp., Nannochloropsis sp., and diatoms Chaetoceros sp., and Thalassiosira sp., isolated from the Malaysian coastal region in terms of their antioxidant activity, total phenolics, total flavonoid contents and cytotoxicity against human breast cancer cells, MCF-7. Among twenty-eight crude extracts, Tetraselmis ethanol and ethyl acetate extract showed the highest amount of total phenolic (19.87 mg GAE/g), and total flavonoid content (38.58 mg QE/g of extract), respectively. From the antioxidant assays, methanol and ethyl acetate extract of Tetraselmis sp. exhibited significantly higher (p < 0.05) antioxidant activities, revealed through DPPH (54.41 ± 1.18 mg Trolox Equivalent Antioxidant Capacity or TEAC/g extract) and ABTS (41.57 ± 0.83 mg TEAC/g extract) radical scavenging activities, respectively than the rest. Ethyl acetate extract of Tetraselmis sp. also showed high ferric reducing power (113.46 ± 4.83 mg TEAC/g extract). On the contrary, methanol and ethyl acetate extract of Chaetoceros sp. showed the highest cytotoxicity towards MCF-7 and reduced the cell viability to 21.26 % and 21.56 %, respectively. The data suggest that marine diatom Chaetoceros sp. has a good cytotoxic effect on MCF-7, while marine green microalga Tetraselmis sp. has good radical scavenging and ferric reduction capabilities, warranting further investigation along with their metabolic profiling, cancer cell killing mechanism and extensive in vivo study.
Collapse
Affiliation(s)
- Umme Tamanna Ferdous
- Center for Biosystems and Machines (IRC-BSM), King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Armania Nurdin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Laboratory of UPM-MAKNA Cancer Research (CANRES), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Saila Ismail
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Khozirah Shaari
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Zetty Norhana Balia Yusof
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Bioprocessing and Biomanufacturing Research Complex, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
15
|
Kwon MJ, Raut PK, Jang JH, Chun KS. Isoliquiritigenin Induces Apoptosis via ROS-Mediated Inhibition of p38/mTOR/STAT3 Pathway in Human Melanoma Cells. Biomol Ther (Seoul) 2025; 33:378-387. [PMID: 39933948 PMCID: PMC11893486 DOI: 10.4062/biomolther.2024.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 02/13/2025] Open
Abstract
Isoliquiritigenin (ISL), a phenolic compound derived from licorice, exhibits various biological activities, including anti-inflammatory, anti-viral, anti-tumor, and antioxidant effects. However, the molecular mechanisms underlying its anti-cancer effects are not well understood in SK-MEL-28 melanoma cells. Melanoma, a highly aggressive and treatment-resistant cancer, remains a significant health challenge. This study investigates the anti-cancer effects of ISL, focusing on identifying reactive oxygen species (ROS)-mediated apoptosis mechanisms on SK-MEL-28 melanoma cells. Our results show that ISL treatment induces apoptosis in SK-MEL-28 cells, as evidenced by the cleavage of caspase-9, -7, -3, and PARP. ISL increased Bax expression, decreased Bcl-2 expression, and promoted cytochrome C release into the cytosol. ISL also reduced the expression of cell cycle markers, including cyclin D1, D3, and survivin. Notably, ISL treatment markedly increased intracellular ROS levels and pretreatment with N-acetyl cysteine, a ROS scavenger, abrogated the ISL-induced inhibition of the p38/mTOR/STAT3 pathway and prevented apoptosis. Moreover, ISL significantly diminished the constitutive phosphorylation of mTOR and STAT3 in SK-MEL-28 cells by blocking the phosphorylation of p38 MAPK, an upstream kinase of mTOR. Pharmacological inhibition of mTOR attenuated the STAT3 signaling, indicating that mTOR acts as an upstream kinase of STAT3 in these cells. Collectively, these findings demonstrate that ISL inhibits SK-MEL-28 cell growth by downregulating cell survival proteins and inducing apoptosis through ROS generation.
Collapse
Affiliation(s)
- Mi Jeong Kwon
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Pawan Kumar Raut
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Jeong-Hoon Jang
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
16
|
Dey S, Dinakar YH, R S, Jain V, Jain R. Navigating the therapeutic landscape for breast cancer: targeting breast cancer stem cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2387-2406. [PMID: 39441235 DOI: 10.1007/s00210-024-03542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Breast cancer is a common and deadly malignancy that affects women globally, and breast cancer stem cells (BCSCs) play an important role in tumorigenesis, development, metastasis, and recurrence. Traditional therapies often fail to eliminate BCSCs, leading to treatment resistance and relapse. This review explores the therapeutic strategies which are designed to target BCSCs, including inhibition of key signaling pathway and targeting receptor. This paper also explores the approaches to targeting BCSCs including chemotherapy, phytomedicines, and nanotechnology. Nanotechnology has gained a lot of importance in cancer therapy because of its ability to deliver therapeutic agents with more precision and minimal side effects. Various chemotherapeutic drugs, siRNAs, or gene editing tools are delivered efficiently with the use of nanocarriers which target pathways, receptors, and proteins associated with BCSCs. Over the past few years, stimuli-responsive and receptor-targeted nanocarriers have been explored for better therapeutic effects. In recent times, strategies such as chimeric antigen receptor (CAR) T-cell therapy, ablation therapy, and cell-free therapies are explored for targeting these stem cells. This review provides a recent developmental overview of strategies to attack BCSCs from conventional chemotherapeutic agents to nanotechnological platforms such as polymeric, lipidic, and metal-based nanoparticles and advanced technologies like CAR T cell therapies.
Collapse
Affiliation(s)
- Soudeep Dey
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Yirivinti Hayagreeva Dinakar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Soundarya R
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India.
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India.
| |
Collapse
|
17
|
Pandey P, Verma M, Sanghvi G, R R, Joshi KK, V K, Ray S, Ramniwas S, Singh A, Lakhanpal S, Khan F. Plant-derived terpenoids modulating cancer cell metabolism and cross-linked signaling pathways: an updated reviews. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03937-y. [PMID: 40019530 DOI: 10.1007/s00210-025-03937-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 02/16/2025] [Indexed: 03/01/2025]
Abstract
Cancer is a critical health issue that remains a predominant cause of mortality globally. It is a complex disease that may effectively regulate many signaling pathways and modify the metabolism of the body to evade the immune system. Understanding neoplastic metabolic reprogramming as a hallmark of cancer has facilitated the creation of innovative metabolism-targeted treatment strategies. Various signaling cascades, such as the PI3K/Akt/mTOR, ERK, JAK/STAT, MAPK/p38, NF-κB/Nrf2, and apoptotic pathways, are commonly involved in this process. It is now widely recognized that an inadequate response and the subsequent development of resistance are frequently caused by the highly selective blockage of these pathways in tumor cells. Consequently, to enhance the overall efficacy of anticancer agents, it is crucial to employ multi-target compounds that can concurrently inhibit multiple vital processes within tumor cells. The utilization of plant-derived bioactive compounds for this purpose is particularly promising, owing to their varied structures and numerous targets. Among these bioactive compounds, terpenoids have exhibited significant anticancer efficacy by targeting various altered signaling pathways. Thus, this review examines the terpenoid class of plant-derived compounds exhibiting potential anticancer activity, including their impact on metabolism and interconnected deregulated signaling pathways in human tumor cells. Accordingly, current research will help in the rational design and critical evaluation of innovative anticancer therapeutics utilizing plant-derived terpenoids for the modulation of cross-linked signaling pathways of cancer metabolism.
Collapse
Affiliation(s)
- Pratibha Pandey
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
- Chitkara Centre for Research and Development, Chitkara University, Himachal, Pradesh, 174103, India
| | - Meenakshi Verma
- University Centre of Research and Development, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Gaurav Sanghvi
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Roopashree R
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, Uttarakhand, India
- Graphic Era Deemed to Be University, Dehradun, Uttarakhand, India
| | - Kavitha V
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Subhashree Ray
- Department of Biochemistry, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Seema Ramniwas
- University Centre of Research and Development, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Ajay Singh
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Fahad Khan
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India.
| |
Collapse
|
18
|
Burus A, Ozcan M, Canpinar H, Bozdemir O, Zeybek ND, Bayazit Y. The effect of the combination therapy with chlorophyllin, a glutathione transferase P1-1 inhibitor, and docetaxel on triple-negative breast cancer invasion and metastasis in vivo/in vitro. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03929-y. [PMID: 40014124 DOI: 10.1007/s00210-025-03929-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/13/2025] [Indexed: 02/28/2025]
Abstract
The expression of glutathione S-transferase P1 (GSTP1) enzyme increases in cancer cells, leading to anticancer drug resistance. The antioxidant chlorophyllin has an inhibitory effect on GSTP1. In this study, we investigated the effect of chlorophyllin and its combined administration with the chemotherapeutic agent docetaxel on metastatic processes. For this purpose, both the 4T1 triple-negative breast cancer cell line and metastatic animal model were used. The MTT, flow cytometry, and wound healing assays were used to investigate cell viability, cell cycle, and cell migration, respectively. Total gelatinase activity, GST activity, and glutathione levels in cell and liver tissue lysates measured by colorimetric methods. Micrometastases were evaluated histochemically in liver tissue sections. As a result, the coadministration of chlorophyllin and docetaxel significantly inhibited cell migration in vitro. There was a significant decrease in the total gelatinase activity in vivo. We found that only combined treatment reduced the micrometastatic lesions in the liver tissues, though this reduction was not statistically significant. In conclusion, the coadministration of chlorophyllin and docetaxel may have a potential role in controlling metastatic processes by suppressing cell migration, gelatinase activity, and micrometastasis formation in triple-negative breast cancers.
Collapse
Affiliation(s)
- Ayse Burus
- Department of Medical Biochemistry, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| | - Mehmet Ozcan
- Department of Medical Biochemistry, Zonguldak Bulent Ecevit University Faculty of Medicine, Zonguldak, Turkey
| | - Hande Canpinar
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Ozlem Bozdemir
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara, Turkey
| | - Naciye Dilara Zeybek
- Department of Histology and Embryology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Yasemin Bayazit
- Department of Medical Biochemistry, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
19
|
Ansari P, Reberio AD, Ansari NJ, Kumar S, Khan JT, Chowdhury S, Abd El-Mordy FM, Hannan JMA, Flatt PR, Abdel-Wahab YHA, Seidel V. Therapeutic Potential of Medicinal Plants and Their Phytoconstituents in Diabetes, Cancer, Infections, Cardiovascular Diseases, Inflammation and Gastrointestinal Disorders. Biomedicines 2025; 13:454. [PMID: 40002867 PMCID: PMC11853317 DOI: 10.3390/biomedicines13020454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/04/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Conditions like diabetes mellitus (DM), cancer, infections, inflammation, cardiovascular diseases (CVDs), and gastrointestinal (GI) disorders continue to have a major global impact on mortality and morbidity. Medicinal plants have been used since ancient times in ethnomedicine (e.g., Ayurveda, Unani, Traditional Chinese Medicine, and European Traditional Medicine) for the treatment of a wide range of disorders. Plants are a rich source of diverse phytoconstituents with antidiabetic, anticancer, antimicrobial, antihypertensive, antioxidant, antihyperlipidemic, cardioprotective, immunomodulatory, and/or anti-inflammatory activities. This review focuses on the 35 plants most commonly reported for the treatment of these major disorders, with a particular emphasis on their traditional uses, phytoconstituent contents, pharmacological properties, and modes of action. Active phytomolecules with therapeutic potential include cucurbitane triterpenoids, diosgenin, and limonoids (azadiradione and gedunin), which exhibit antidiabetic properties, with cucurbitane triterpenoids specifically activating Glucose Transporter Type 4 (GLUT4) translocation. Capsaicin and curcumin demonstrate anticancer activity by deactivating NF-κB and arresting the cell cycle in the G2 phase. Antimicrobial activities have been observed for piperine, reserpine, berberine, dictamnine, chelerythrine, and allitridin, with the latter two triggering bacterial cell lysis. Quercetin, catechin, and genistein exhibit anti-inflammatory properties, with genistein specifically suppressing CD8+ cytotoxic T cell function. Ginsenoside Rg1 and ginsenoside Rg3 demonstrate potential for treating cardiovascular diseases, with ginsenoside Rg1 activating PPARα promoter, and the PI3K/Akt pathway. In contrast, ternatin, tannins, and quercitrin exhibit potential in gastrointestinal disorders, with quercitrin regulating arachidonic acid metabolism by suppressing cyclooxygenase (COX) and lipoxygenase activity. Further studies are warranted to fully investigate the clinical therapeutic benefits of these plants and their phytoconstituents, as well as to elucidate their underlying molecular mechanisms of action.
Collapse
Affiliation(s)
- Prawej Ansari
- Department of Pharmacology, National Medical College and Teaching Hospital, Parsa, Birgunj 44300, Nepal
- Comprehensive Diabetes Center, Department of Genetics, Heersink School of Medicine, University of Alabama, Birmingham (UAB), Birmingham, AL 35233, USA;
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh (J.M.A.H.)
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (P.R.F.); (Y.H.A.A.-W.)
| | - Alexa D. Reberio
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh (J.M.A.H.)
| | - Nushrat J. Ansari
- Department of Radiology, National Medical College and Teaching Hospital, Parsa, Birgunj 44300, Nepal;
| | - Sandeep Kumar
- Comprehensive Diabetes Center, Department of Genetics, Heersink School of Medicine, University of Alabama, Birmingham (UAB), Birmingham, AL 35233, USA;
| | - Joyeeta T. Khan
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh (J.M.A.H.)
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, USA
| | - Suraiya Chowdhury
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh (J.M.A.H.)
| | - Fatma Mohamed Abd El-Mordy
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo 11754, Egypt;
| | - J. M. A. Hannan
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh (J.M.A.H.)
| | - Peter R. Flatt
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (P.R.F.); (Y.H.A.A.-W.)
| | - Yasser H. A. Abdel-Wahab
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (P.R.F.); (Y.H.A.A.-W.)
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| |
Collapse
|
20
|
Mehdikhani F, Hajimehdipoor H, Tansaz M, Maresca M, Rajabi S. Sesquiterpene Lactones as Promising Phytochemicals to Cease Metastatic Propagation of Cancer. Biomolecules 2025; 15:268. [PMID: 40001571 PMCID: PMC11852507 DOI: 10.3390/biom15020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/03/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Cancer metastasis remains the most challenging issue in cancer therapy. Recent reports show that cancer metastasis accounts for over 90% of cancer-associated deaths in the world. Metastasis is a multi-step process by which cancer cells spread to distant tissues and organs beyond the primary site. The metastatic propagation of different cancers is under the surveillance of several regulating processes and factors related to cellular signaling pathways. Plant-derived phytochemicals are bioactive components of plants with a variety of biological and medicinal activities. Several phytochemicals have been shown to target various molecular factors in cancer cells to tackle metastasis. Sesquiterpene lactones, as a diverse group of plant-derived phytochemicals with a variety of biological activities, have been shown to suppress the promotion and progression of different cancer types by acting on multiple cell-signaling pathways. This review article briefly describes the process of metastasis and its components. Then, sesquiterpene lactones with the ability to target and inhibit invasion, migration, and metastasis along with the molecular mechanisms of their effects on different cancers are described in detail.
Collapse
Affiliation(s)
- Fatemeh Mehdikhani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran;
| | - Homa Hajimehdipoor
- Department of Traditional Pharmacy, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1516745811, Iran;
| | - Mojgan Tansaz
- Department of Traditional Medicine, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1516745811, Iran;
| | - Marc Maresca
- Aix Marseille University, CNRS, Centrale Med, ISM2, 13013 Marseille, France
| | - Sadegh Rajabi
- Traditional Medicine and Materia Medica Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1516745811, Iran
| |
Collapse
|
21
|
Frazzini S, Rossi L. Anticancer Properties of Macroalgae: A Comprehensive Review. Mar Drugs 2025; 23:70. [PMID: 39997194 PMCID: PMC11857751 DOI: 10.3390/md23020070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
In recent years, the exploration of bioactive molecules derived from natural sources has gained interest in several application fields. Among these, macroalgae have garnered significant attention due to their functional properties, which make them interesting in therapeutic applications, including cancer treatment. Cancer constitutes a significant global health burden, and the side effects of existing treatment modalities underscore the necessity for the exploration of novel therapeutic models that, in line with the goal of reducing drug treatments, take advantage of natural compounds. This review explores the anticancer properties of macroalgae, focusing on their bioactive compounds and mechanisms of action. The key findings suggest that macroalgae possess a rich array of bioactive compounds, including polysaccharides (e.g., fucoidans and alginates), polyphenols (e.g., phlorotannins), and terpenoids, which exhibit diverse anticancer activities, such as the inhibition of cell proliferation, angiogenesis, induction of apoptosis, and modulation of the immune system. This review provides an overview of the current understanding of macroalgae's anticancer potential, highlighting the most promising compounds and their mechanisms of action. While preclinical studies have shown promising results, further research is necessary to translate these findings into effective clinical applications.
Collapse
Affiliation(s)
- Sara Frazzini
- Department of Veterinary Medicine and Animal Sciences—DIVAS, University of Milan, via dell’Università 6, 26900 Lodi, Italy;
| | | |
Collapse
|
22
|
Konappa N, Patil RH, Kariyappa AS, Krishnamurthy S, Ramachandrappa NS, Krishnappa R, Chowdappa S. Green synthesis of silver nanoparticles using Amomum nilgiricum leaf extracts: preparation, physicochemical characterization and ameliorative effect against human cancer cell lines. Cytotechnology 2025; 77:16. [PMID: 39669689 PMCID: PMC11631834 DOI: 10.1007/s10616-024-00674-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/28/2024] [Indexed: 12/14/2024] Open
Abstract
The present study to production of silver nanoparticles (AgNPs) by leaf extracts of A. nilgiricum and to evaluate the activity of anticancer by using AgNPs against cancer cell lines such as MCF-7, HEPG2, H9C2, HEK293 and H1975. The synthesized AgNPs were characterized by using UV-Vis spectroscopy, EDS, FT-IR, XRD, DLS, SEM and HRTEM with SAED patterns. The surface plasmon resonance (SPR) of AgNPs formed a peak centered at 427 nm by UV-Vis analysis. FTIR analysis reveals that existence of functional groups subjected to silver ions reduction to metallic silver. Crystalline form of the AgNPs was assessed by XRD analysis, four spectral peaks at 111, 200, 220, and 311 were formed and zeta potential peak was found at 28.5 mV indicating the higher stability. The size average diameter of the AgNPs was between 27 and 30 nm by TEM and SEM analysis was reveals the morphology of AgNPs as elongated, irregular and aggregated and some particles are spherical. EDX analysis confirmed the elemental composition of AgNPs with 81.43% Ag. The average diameter of AgNPs was found 21.49 nm in diameter and width was about 12.01 nm by DLS analysis. Cytotoxicity of AgNPs was investigated by using MTT, SRB assay and comet assay was performed as a genotoxicity. The results revealed that AgNPs decreased the viability of cancer cells in a concentration dependent pattern (50 to 350 µg/ml). The influence of AgNPs on cell cycle stop was studied on H1975, HEP-G2 and MCF-7 cells and found that AgNPs could induce sub G0 cell cycle arrest. The AgNPs was also induced DNA fragmentation confirms the DNA damage in nanoparticles treated cell lines. The anticancer action of nanoparticles was analyzed using proapoptotic and antiapoptotic caspase 8 and caspase 3 mRNA expression levels. Finally the results suggested that AgNPs is an effective anticancer agent which induces apoptosis in H1975, HEP-G2 and MCF-7 cells. Based on our studies, further identification of the major compounds of leaf extracts is acceptable. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-024-00674-7.
Collapse
Affiliation(s)
- Narasimhamurthy Konappa
- Department of Microbiology and Biotechnology, Jnanabharathi Campus, Bangalore University, Bengaluru, Karnataka 560 056 India
| | - Rajeshwari H. Patil
- Department of Microbiology and Biotechnology, Jnanabharathi Campus, Bangalore University, Bengaluru, Karnataka 560 056 India
| | - Anupama S. Kariyappa
- Department of Microbiology and Biotechnology, Jnanabharathi Campus, Bangalore University, Bengaluru, Karnataka 560 056 India
| | - Soumya Krishnamurthy
- Department of Microbiology, Field Marshal K. M. Cariappa College, A Constituent College of Mangalore University, Madikeri, Karnataka 571201 India
| | | | - Rahul Krishnappa
- Department of Microbiology and Biotechnology, Jnanabharathi Campus, Bangalore University, Bengaluru, Karnataka 560 056 India
| | - Srinivas Chowdappa
- Department of Microbiology and Biotechnology, Jnanabharathi Campus, Bangalore University, Bengaluru, Karnataka 560 056 India
| |
Collapse
|
23
|
Loo YS, Yusoh NA, Lim WF, Ng CS, Zahid NI, Azmi IDM, Madheswaran T, Lee TY. Phytochemical-based nanosystems: recent advances and emerging application in antiviral photodynamic therapy. Nanomedicine (Lond) 2025; 20:401-416. [PMID: 39848784 PMCID: PMC11812329 DOI: 10.1080/17435889.2025.2452151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 01/08/2025] [Indexed: 01/25/2025] Open
Abstract
Phytochemicals are typically natural bioactive compounds or metabolites produced by plants. Phytochemical-loaded nanocarrier systems, designed to overcome bioavailability limitations and enhance therapeutic effects, have garnered significant attention in recent years. The coronavirus disease 2019 (COVID-19) pandemic has intensified interest in the therapeutic application of phytochemicals to combat viral infections. This review explores nanoparticle-based treatment strategies incorporating phytochemicals for antiviral application, highlighting their demonstrated antiviral mechanisms. It specifically examines the antiviral activities of phytochemical-loaded nanosystems against (i) influenza virus (IAV), respiratory syncytial virus (RSV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); (ii) mosquito-borne viruses [dengue (DENV), Zika (ZIKV), and Chikungunya (CHIKV)]; and (iii) sexually transmitted/blood borne viruses [e.g. herpes simplex virus (HSV), human papillomavirus (HPV), and human immunodeficiency virus (HIV)]. Furthermore, this review highlights the emerging role of these nanosystems in photodynamic therapy (PDT)-mediated attenuation of viral proliferation, and offers a perspective on the future directions of research in this promising area of multimodal therapeutic approach.
Collapse
Affiliation(s)
- Yan Shan Loo
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nur Aininie Yusoh
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan, China
| | - Wai Feng Lim
- Sunway Medical Centre, Subang Jaya, Selangor, Malaysia
| | - Chen Seng Ng
- School of Science, Monash University Malaysia, Bandar Sunway, Subang Jaya, Selangor, Malaysia
| | - N. Idayu Zahid
- Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Intan Diana Mat Azmi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Centre for Foundation Studies in Science of Universiti Putra Malaysia, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, IMU University, Kuala Lumpur, Malaysia
| | - Tze Yan Lee
- Clinical Laboratory Science Section, Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang, Selangor, Malaysia
| |
Collapse
|
24
|
Joković N, Pešić S, Vitorović J, Bogdanović A, Sharifi-Rad J, Calina D. Glucosinolates and Their Hydrolytic Derivatives: Promising Phytochemicals With Anticancer Potential. Phytother Res 2025; 39:1035-1089. [PMID: 39726346 DOI: 10.1002/ptr.8419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/29/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Recent research has increasingly focused on phytochemicals as promising anticancer agents, with glucosinolates (GSLs) and their hydrolytic derivatives playing a central role. These sulfur-containing compounds, found in plants of the Brassicales order, are converted by myrosinase enzymes into biologically active products, primarily isothiocyanates (ITCs) and indoles, which exhibit significant anticancer properties. Indole-3-carbinol, diindolylmethane, sulforaphane (SFN), phenethyl isothiocyanate (PEITC), benzyl isothiocyanate, and allyl isothiocyanate have shown potent anticancer effects in animal models, particularly in breast, prostate, lung, melanoma, bladder, hepatoma, and gastrointestinal cancers. Clinical studies further support the chemopreventive effects of SFN and PEITC, particularly in detoxifying carcinogens and altering biochemical markers in cancer patients. These compounds have demonstrated good bioavailability, low toxicity, and minimal adverse effects, supporting their potential therapeutic application. Their anticancer mechanisms include the modulation of reactive oxygen species, suppression of cancer-related signaling pathways, and direct interaction with tumor cell proteins. Additionally, semi-synthetic derivatives of GSLs have been developed to enhance anticancer efficacy. In conclusion, GSLs and their derivatives offer significant potential as both chemopreventive and therapeutic agents, warranting further clinical investigation to optimize their application in cancer treatment.
Collapse
Affiliation(s)
- Nataša Joković
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Strahinja Pešić
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Jelena Vitorović
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Andrija Bogdanović
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, Ecuador
- Department of Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
25
|
Zhou T, Niu Y, Li Y. Advances in research on malignant tumors and targeted agents for TOP2A (Review). Mol Med Rep 2025; 31:50. [PMID: 39670307 DOI: 10.3892/mmr.2024.13415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/28/2024] [Indexed: 12/14/2024] Open
Abstract
The DNA topoisomerase isoform topoisomerase IIα (TOP2A) is essential for the condensation and segregation of cellular mitotic chromosomes and the structural maintenance. It has been demonstrated that TOP2A is highly expressed in various malignancies, including lung adenocarcinoma (LUAD), hepatocellular carcinoma (HCC) and breast cancer (BC), associating with poor prognosis and aggressive tumor behavior. Additionally, TOP2A has emerged as a promising target for cancer therapy, with widespread clinical application of associated chemotherapeutic agents. The present study explored the impact of TOP2A on malignant tumor growth and the advancements in research on its targeted drugs. The fundamental mechanisms of TOP2A have been detailed, its specific roles in tumor cells are analyzed, and its potential as a biomarker for tumor prognosis and therapeutic targeting is highlighted. Additionally, the present review compiles findings from the latest clinical trials of relevant targeted agents, information on newly developed inhibitors, and discusses future research directions and clinical application strategies in cancer therapy, aiming to propose novel ideas and methods.
Collapse
Affiliation(s)
- Tao Zhou
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi 030032, P.R. China
| | - Yiting Niu
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi 030032, P.R. China
| | - Yanjun Li
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi 030032, P.R. China
| |
Collapse
|
26
|
Bhuiyan MR, Ahmed KS, Reza MS, Hossain H, Siam SMM, Nayan S, Jafrin S, Shuvo SR, Ud Daula AFMS. Prediction of angiogenesis suppression by myricetin from Aeginetia indica via inhibiting VEGFR2 signaling pathway using computer-aided analysis. Heliyon 2025; 11:e41749. [PMID: 39897831 PMCID: PMC11786634 DOI: 10.1016/j.heliyon.2025.e41749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 02/04/2025] Open
Abstract
Vascular endothelial growth factor receptor-2 (VEGFR2) plays a pivotal role in promoting angiogenesis and contributing to the growth and progression of renal cancer. Hence, the current investigation was undertaken with the aim of identifying safe and potent phytochemicals from Aeginetia indica whole plant extract (AiWE) that can efficiently suppress the overexpression of VEGFR2. HPLC analysis identified and quantified 11 polyphenols in considerable amounts in AiWE. All the compounds showed good binding energies with VEGFR2 in the molecular docking study, except catechin hydrate and rutin hydrate. However, among the polyphenols, myricetin exhibited an almost similar hydrogen bonding pattern with the active site of VEGFR2. The all-atom molecular dynamic simulation revealed that myricetin showed a very stable interaction with the active site of VEGFR2 throughout the simulation. Based on these results, it is suggested that myricetin may inhibit angiogenesis by suppressing the VEGFR2 signaling, thereby impeding the growth and progression of renal cancer.
Collapse
Affiliation(s)
- Marjanur Rahman Bhuiyan
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali, 3814, Bangladesh
| | - Khondoker Shahin Ahmed
- Chemical Research Division, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
- Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Md Sharif Reza
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali, 3814, Bangladesh
| | - Hemayet Hossain
- Chemical Research Division, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Syed Mumtahin Mannan Siam
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali, 3814, Bangladesh
| | - Shahriar Nayan
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali, 3814, Bangladesh
| | - Sarah Jafrin
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali, 3814, Bangladesh
| | - Sadikur Rahman Shuvo
- Department of Microbiology, Noakhali Science and Technology University, Sonapur, Noakhali, Bangladesh
| | - A F M Shahid Ud Daula
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali, 3814, Bangladesh
| |
Collapse
|
27
|
Öner S, Kadı A, Tekman E, Kararenk AC, Özer EB, Ergin KN, Yuca H, Arslan ME, Duman R, Şahin AA, Pinar NM, Atila A, Bona GE, Karakaya S. Morphological, anatomical, and bioactive properties of Hypericum scabrum L.: effects on diabetes mellitus, Alzheimer's disease, and HDFa fibroblasts and U87-MG cancer cells. PROTOPLASMA 2025:10.1007/s00709-025-02037-1. [PMID: 39885008 DOI: 10.1007/s00709-025-02037-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 01/14/2025] [Indexed: 02/01/2025]
Abstract
Diabetes mellitus (DM) and cancer are multifactorial diseases with significant health consequences, and their relationship with aging makes them particularly challenging. Epidemiological data suggests that individuals with DM are more susceptible to certain cancers. This study examined the bioactive properties of Hypericum scabrum extracts, including methanol, hexane, and others, focusing on their inhibitory effects on key enzymes associated with DM and neurodegenerative diseases, such as acetylcholinesterase, butyrylcholinesterase, α-amylase, and α-glucosidase. Additionally, the impact of these extracts on human fibroblast (HDFa) and glioblastoma (U87MG) cancer cells was evaluated. The methanol extract was analyzed for elemental composition using ICP-MS, secondary metabolites, and amino acids via LC-MS/MS and underwent morphological and anatomical characterization. The methanol extract demonstrated notable inhibitory activity, with an IC50 value of < 1 µg/mL against α-glucosidase, surpassing acarbose in efficacy. The flower essential oil exhibited the highest inhibition (79.95%) of butyrylcholinesterase and the strongest acetylcholinesterase inhibition (21.62%). Elemental analysis revealed high concentrations of Na and K, while quinic acid and proline were identified as major metabolites, with proline concentrations reaching 494.0482 nmol/mL in the aerial part extract. The anticancer assays revealed higher cytotoxicity in U87MG glioblastoma cells compared to HDFa fibroblasts, suggesting potential applications for cancer therapy. The plant grows 20-50 cm tall, with yellow flowers and ovoid-ribbed capsules containing brown, reniform seeds. Its leaves are amphistomatic and ornamented, while stems feature striate cuticles and paracytic stomata. The pollen grains are microreticulate with syncolporate apertures. These results underscore the promising therapeutic potential of H. scabrum in managing DM, cancer, and neurodegenerative diseases, with its ability to inhibit key enzymes and show selective cytotoxicity against cancer cells.
Collapse
Affiliation(s)
- Sena Öner
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Türkiye
| | - Abdulrahim Kadı
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Türkiye
| | - Enes Tekman
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Atatürk University, Erzurum, Türkiye
- Ankara University Graduate School of Health Sciences, Ankara, Türkiye
| | - Ayşe Cemre Kararenk
- Department of Pharmacognosy, Faculty of Pharmacy, Atatürk University, Erzurum, Türkiye
| | - Elif Beyza Özer
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Atatürk University, Erzurum, Türkiye
| | - Kübra Nalkıran Ergin
- Department of Pharmacognosy, Faculty of Pharmacy, Atatürk University, Erzurum, Türkiye
| | - Hafize Yuca
- Department of Pharmacognosy, Faculty of Pharmacy, Atatürk University, Erzurum, Türkiye
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Türkiye
| | - Resul Duman
- Department of Biology, Faculty of Science, Ankara University, Ankara, Turkey
| | - Aydan Acar Şahin
- Department of Biology, Faculty of Science, Ankara University, Ankara, Turkey
| | - Nur Münevver Pinar
- Department of Biology, Faculty of Science, Ankara University, Ankara, Turkey
| | - Alptuğ Atila
- Department of Analytical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Türkiye
| | - Gülnur Ekşi Bona
- Department of Pharmaceutical Botany, Faculty of Pharmacy, İstanbul-Cerrahpaşa University, İstanbul, Türkiye
| | - Songül Karakaya
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Atatürk University, Erzurum, Türkiye.
| |
Collapse
|
28
|
Sharma G, Badruddeen, Akhtar J, Khan MI, Ahmad M, Sharma PK. "Methyl jasmonate: bridging plant defense mechanisms and human therapeutics". NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03752-x. [PMID: 39847055 DOI: 10.1007/s00210-024-03752-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
A volatile organic substance produced from jasmonic acid, methyl jasmonate (MJ/MeJA), is an important plant hormone involved in stress responses and plant defense. Apart from its role in plants, MJ has garnered significant attention because of its pharmacological effects and possible therapeutic use in human health. This thorough analysis looks into the many biological actions of MJ, such as its antioxidant, anti-inflammatory, and anti-cancer effects. The underlying mechanism of these actions is examined, emphasizing MJ's ability to modulate important signaling pathways, cause cancer cells to undergo apoptosis, and boost immunological responses. Furthermore, MJ's capacity to manage long-term illnesses like cancer and neurological conditions like Parkinson's and Alzheimer's is examined. Preclinical and clinical research are beginning to provide evidence that MJ may be a useful medicinal drug. Nevertheless, more research is needed to fully understand its mode of action, enhance its administration methods, and evaluate its efficacy and safety in humans. This review highlights MJ's therapeutic promise and supports earlier research into its pharmacological capabilities and possible medical applications. This abstract highlights methyl jasmonate's pharmacological effects and therapeutic potential by providing a concise overview of the main topics covered in a thorough review.
Collapse
Affiliation(s)
- Garima Sharma
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P., 226026, India
| | - Badruddeen
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P., 226026, India.
| | - Juber Akhtar
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P., 226026, India
| | - Mohammad Irfan Khan
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P., 226026, India
| | - Mohammad Ahmad
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P., 226026, India
| | - Prakash Kumar Sharma
- Department of Anesthesiology, Hind Institute of Medical Sciences, Safedabad, Lucknow, U.P., 225001, India
| |
Collapse
|
29
|
Srirangan P, Sabina EP. Protective effects of herbal compounds against cyclophosphamide-induced organ toxicity: a pathway-centered approach. Drug Chem Toxicol 2025:1-43. [PMID: 39847469 DOI: 10.1080/01480545.2025.2455442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/24/2024] [Accepted: 01/14/2025] [Indexed: 01/25/2025]
Abstract
Cyclophosphamide is a key component of numerous chemotherapeutic protocols, demonstrating broad-spectrum efficacy against various malignancies and non-cancerous conditions. This review examines CPM's metabolic pathways, therapeutic applications, and its resulting organ-specific toxicities. Despite its clinical benefits in treating nephrotic syndrome, encephalomyelitis, breast cancer, ovarian cancer, and other diseases, CPM is associated with significant adverse effects on the kidneys, liver, heart, lungs, and intestines. The discussion delves into the molecular mechanisms underlying these toxicities, highlighting dysregulation in key signaling pathways, including Nrf2, NF-κB, MAPK/ERK, and AKT. In addressing these challenges, recent studies have identified various herbal drugs and phytochemicals capable of mitigating CPM-induced toxicity. Notable compounds such as cinnamaldehyde, baicalin, quercetin, and curcumin have demonstrated protective effects. Integrating these herbal formulations with CPM therapy is proposed to enhance patient safety and treatment efficacy. This review underscores the influence of CPM on apoptosis and inflammation pathways, which lead to alterations in organ-specific biomarkers. Phytochemicals may exert protective effects by restoring disrupted signaling pathways and normalizing altered biomarkers. The compilation of phytochemicals presented in this review serves as a valuable resource for researchers exploring other herbal products with potential protective effects against CPM toxicity. A significant gap in the current literature is the lack of clinical trials evaluating phytochemicals that mitigate CPM toxicity in vivo. Rigorous clinical studies are necessary to establish the efficacy and safety of herbal formulations in cancer treatment. Such research will clarify the role of natural remedies in complementing conventional therapies, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Prathap Srirangan
- Department of Biotechnology, School of Biosciences and Technology, VIT University, Vellore, India
| | - Evan Prince Sabina
- Department of Biotechnology, School of Biosciences and Technology, VIT University, Vellore, India
| |
Collapse
|
30
|
Sharma U, Sahni PK, Sharma B, Gupta M, Kaur D, Mathkor DM, Haque S, Khatoon S, Tuli HS, Mishra A, Ahmad F. Silymarin: a promising modulator of apoptosis and survival signaling in cancer. Discov Oncol 2025; 16:66. [PMID: 39836338 PMCID: PMC11751200 DOI: 10.1007/s12672-025-01800-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
Cancer, one of the deadliest diseases, has remained the epicenter of biological research for more than seven decades. Yet all the efforts for a perfect therapeutic cure come with certain limitations. The use of medicinal plants and their phytochemicals as therapeutics has received much attention in recent years. Silymarin, a polyphenolic flavonoid with a variety of anti-cancerous properties, was isolated from the plant Silybum marianum. The present review centres on the function of silymarin in controlling important signalling pathways related to apoptosis and survival, such as the JAK/STAT pathway, PI3K/Akt/mTOR, Bcl-2/Bax, and Fas/FasL. It is emphasised that silymarin's capacity to target these pathways is a key mechanism behind its anticancer effects against a variety of malignancies. By upregulating pro-apoptotic and downregulating anti-apoptotic proteins, silymarin controls a series of events that result in tumor suppression and cell death in a variety of cancer types. The low bioavailability and limited therapeutic efficacy of silymarin are improved by the application of various nano-delivery systems. As efficient carriers, liposomes, polymeric micelles, lipid- and metal-based nanoparticles, increase the solubility and distribution of silymarin in target tissues. Lastly, a number of preclinical studies that provide a basis for upcoming therapeutic interventions are highlighted in the review, providing encouraging directions for additional research and advancement.
Collapse
Affiliation(s)
- Ujjawal Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bhatinda, 151001, India
| | - Praveen Kumar Sahni
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bhatinda, 151001, India
| | - Bunty Sharma
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Damandeep Kaur
- University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Darin Mansor Mathkor
- Department of Nursing, College of Nursing and Health Sciences, Jazan University, 45142, Jazan, Saudi Arabia
| | - Shafiul Haque
- Department of Nursing, College of Nursing and Health Sciences, Jazan University, 45142, Jazan, Saudi Arabia
- Universidad Espiritu Santo, Samborondon, Ecuador
| | - Sabiha Khatoon
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Astha Mishra
- Department of Optometry, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab, India
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India.
| |
Collapse
|
31
|
Kangra K, Kakkar S, Mittal V, Kumar V, Aggarwal N, Chopra H, Malik T, Garg V. Incredible use of plant-derived bioactives as anticancer agents. RSC Adv 2025; 15:1721-1746. [PMID: 39835210 PMCID: PMC11744461 DOI: 10.1039/d4ra05089d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/31/2024] [Indexed: 01/22/2025] Open
Abstract
Cancer is a major global concern. Despite considerable advancements in cancer therapy and control, there are still large gaps and requirements for development. In recent years, various naturally occurring anticancer drugs have been derived from natural resources, such as alkaloids, glycosides, terpenes, terpenoids, flavones, and polyphenols. Plant-derived substances exhibit their anticancer potential through antiproliferative activity, cytotoxicity, apoptosis, angiogenesis and cell cycle arrest. Natural compounds can affect the molecular activity of cells through various signaling pathways, like the cell cycle pathway, STAT-3 pathway, PI3K/Akt, and Ras/MAP-kinase pathways. Capsaicin, ouabain, and lycopene show their anticancer potential through the STAT-3 pathway in breast, colorectal, pancreatic, lung, cervical, ovarian and colon cancers. Epigallocatechin gallate and emodin target the JNK protein in skin, breast, and lung cancers, while berberine, evodiamine, lycorine, and astragalin exhibit anticancer activity against breast, liver, prostate, pancreatic and skin cancers and leukemia through the PI3K/Akt and Ras/MAP-kinase pathways. In vitro/in vivo investigations revealed that secondary metabolites suppress cancer cells by causing DNA damage and activating apoptosis-inducing enzymes. After a meticulous literature review, the anti-cancer potential, mode of action, and clinical trials of 144 bioactive compounds and their synthetic analogues are included in the present work, which could pave the way for using plant-derived bioactives as anticancer agents.
Collapse
Affiliation(s)
- Kiran Kangra
- Department of Pharmaceutical Sciences, Maharshi Dayanand University Rohtak 124001 India
| | - Saloni Kakkar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University Rohtak 124001 India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University Rohtak 124001 India
| | - Virender Kumar
- College of Pharmacy, Pandit Bhagwat Dayal Sharma University of Health Sciences Rohtak 124001 India
| | - Navidha Aggarwal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University) Mullana Ambala 133207 Haryana India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences Chennai 602105 Tamil Nadu India
| | - Tabarak Malik
- Department of Biomedical Sciences, Jimma University Jimma Ethiopia
- Division of Research & Development, Lovely Professional University Phagwara Punjab-144411 India
| | - Vandana Garg
- Department of Pharmaceutical Sciences, Maharshi Dayanand University Rohtak 124001 India
| |
Collapse
|
32
|
Spandana KJ, Rodrigues WJ, Ghate SD, Rao RSP, Chandrashekar KR, Bhagya N. In Vitro Cytotoxic Potential and Integrated Network Pharmacology, Molecular Docking and Molecular Dynamic Approaches to Decipher the Mechanism of Gymnostachyum febrifugum Benth., in the Treatment of Breast Cancer. Appl Biochem Biotechnol 2025:10.1007/s12010-024-05173-1. [PMID: 39798052 DOI: 10.1007/s12010-024-05173-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2024] [Indexed: 01/13/2025]
Abstract
Gymnostachyum febrifugum, a less-known ethnomedicinal plant from the Western Ghats of India, is used to treat various diseases and serves as an antioxidant and antibacterial herb. The present study aims to profile the cytotoxic phytochemicals in G. febrifugum roots using GC-MS/MS, in vitro confirmation of cytotoxic potential against breast cancer and an in silico study to understand the mechanism of action. Phytochemical profiling using GC-MS/MS showed the presence of eight cytotoxic molecules with lupeol in high abundance. A potent cytotoxic effect of G. febrifugum roots against breast cancer was also observed with antiproliferation, antimigration, inhibition in colony formation and death of breast cancer cells. Further, the cytotoxic potential of the plant was confirmed with the apoptosis of cells as observed in the flow cytometry. In silico network pharmacology, GO and KEGG analysis suggested the modulation of proteins of MAPK, PI3K-AKT and apoptosis pathways by lupeol to induce cytotoxicity in breast cancer. Further, dynamic simulation revealed MAPK and AKT as the major targets for lupeol. Our studies comprehensively elucidated the role of lupeol, a major phytochemical in G. febrifugum to induce cytotoxicity against breast cancer by targeting major cancer signaling pathways, providing a promising strategy and scientific basis to explore lupeol in targeted cancer therapy.
Collapse
Affiliation(s)
- K J Spandana
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India
| | - Wilson Joel Rodrigues
- JSS Academy of Higher Education and Research, (Deemed to be University), Shivarathreeshwara Nagara, Mysuru, 570015, Karnataka, India
| | - Sudeep D Ghate
- Central Research Laboratory, NITTE (Deemed to be University), K.S. Hegde Medical Academy, Mangalore, 575018, India
- Center for Bioinformatics, NITTE (Deemed to be University), Mangalore, 575018, India
| | - R Shyama Prasad Rao
- Central Research Laboratory, NITTE (Deemed to be University), K.S. Hegde Medical Academy, Mangalore, 575018, India
- Center for Bioinformatics, NITTE (Deemed to be University), Mangalore, 575018, India
| | - K R Chandrashekar
- Yenepoya Pharmacy and Ayush Research Centre (YEN PARC), Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka, 575018, India
| | - N Bhagya
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India.
| |
Collapse
|
33
|
Khalid H, Sattar F, Ahmad I, Junior VFDP, Nishan U, Ullah R, Dib H, Omari KW, Shah M. Computer-assisted discovery of natural inhibitors for platelet-derived growth factor alpha as novel therapeutics for thyroid cancer. Front Pharmacol 2025; 15:1512864. [PMID: 39850565 PMCID: PMC11754405 DOI: 10.3389/fphar.2024.1512864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
Platelet-derived growth factor alpha (PDGFRA) plays a significant role in various malignant tumors. PDGFRA expression boosts thyroid cancer cell proliferation and metastasis. Radiorefractory thyroid cancer is poorly differentiated, very aggressive, and resistant to radioiodine therapy. Thus, novel anticancer drugs that inhibit its metastasis are urgently required. In this context, we proposed the PDGFRA inhibitors by an optimized structure-based drug design approach. We performed a virtual screening of metabolites derived from anticancer medicinal plants (Swertia chirayita, Myristica fragrans, and Datura metel) and successfully identified seven hits, namely cis-Grossamide K, Daturafoliside O, N-cis-feruloyltyramine, Maceneolignan H, Erythro-2-(4-allyl-2, 6-dimethoxyphenoxy)-1-(3, 4, 5-trimethoxyphenyl) propan-1, 3-diol, Myrifralignan C, and stigmasteryl-3-O-β-glucoside as potential PDGFRA inhibitors. Not only the top 7 hits exhibited higher docking scores in docking simulation but also optimal drug-likeness and non-toxic profiles in pharmacokinetics analysis among 119 compounds. Our top hits are non-mutagenic, can cross the blood-brain barrier, and inhibit p-glycoprotein, while the N-cis-feruloyltyramine has the potential to become a lead compound. The protein-ligand stability of the top 3 hits, namely cis-Grossamide K, Daturafoliside O, and N-cis-feruloyltyramine, and their interactions at the potential binding site of target protein were confirmed through molecular dynamic simulations. We also analyzed pharmacophoric features for stable binding in the PDGFRA active site. These drug candidates were further characterized to predict their biological activity spectra in the human body and medicinal characteristics to know their extensive behavior in laboratory testing. This study necessitates the in-vitro and in-vivo studies to confirm the potential of our hits for the discovery of novel therapeutics against the thyroid cancer.
Collapse
Affiliation(s)
- Hira Khalid
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Farah Sattar
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Iqra Ahmad
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Valdir Ferreira de Paula Junior
- Postgraduate Program in Veterinary Sciences, Faculty of Veterinary Medicine, State University of Ceara, Fortaleza, Brazil
- Department of Animal Science, Federal University of Ceara, Fortaleza, Brazil
| | - Umar Nishan
- Hainan International Joint Research Center of Marine Advanced Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Department of Chemistry, Kohat University of Science and Technology, Kohat, Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hanna Dib
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Khaled W. Omari
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
- Department of Animal Science, Federal University of Ceara, Fortaleza, Brazil
| |
Collapse
|
34
|
Bhuia MS, Chowdhury R, Afroz M, Akbor MS, Al Hasan MS, Ferdous J, Hasan R, de Alencar MVOB, Mubarak MS, Islam MT. Therapeutic Efficacy Studies on the Monoterpenoid Hinokitiol in the Treatment of Different Types of Cancer. Chem Biodivers 2025:e202401904. [PMID: 39776341 DOI: 10.1002/cbdv.202401904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/10/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025]
Abstract
Hinokitiol (HK), a monoterpenoid that naturally occurs in plants belonging to the Cupressaceae family, possesses important biological activities, including an anticancer effect. This review summarizes its anticancer potential and draws possible molecular interventions. In addition, it evaluates the biopharmaceutical, toxicological properties, and clinical application of HK to establish its viability for future advancement as a dependable anticancer medication. The assessment is based on the most recent information available from various databases. Findings demonstrate that HK possesses substantial therapeutic advantages against diverse types of cancer (colon, cervical, breast, bone, endometrial, liver, prostate, oral, and skin) through various molecular mechanisms. HK induces oxidative stress, cytotoxicity, apoptosis, cell-cycle arrest at the G and S phases, and autophagy through modulation of phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), p38/ERK/MAPK, nuclear factor kappa B, and c-Jun N-terminal kinase signaling pathways. Furthermore, this compound exhibits good oral bioavailability with excellent plasma clearance. Clinical uses of HK demonstrate therapeutic advantages without any significant negative effects. A thorough study of the pertinent data suggests that HK may serve as a viable candidate for developing novel cancer therapies. Consequently, more extensive studies are necessary to evaluate its cancer treatment efficacy, safety, and possible long-term hazards.
Collapse
Affiliation(s)
- Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd, Gopalganj, Dhaka, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd, Gopalganj, Dhaka, Bangladesh
| | - Meher Afroz
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, Bangladesh
| | - Md Showkot Akbor
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, Bangladesh
| | - Md Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd, Gopalganj, Dhaka, Bangladesh
| | - Jannatul Ferdous
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, Bangladesh
| | - Rubel Hasan
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd, Gopalganj, Dhaka, Bangladesh
| | | | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd, Gopalganj, Dhaka, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna, Dhaka, Bangladesh
| |
Collapse
|
35
|
Wali AF, Pillai JR, Talath S, Shivappa P, Sridhar SB, El-Tanani M, Rangraze IR, Mohamed OI, Al Ani NN. Phytochemicals in Breast Cancer Prevention and Treatment: A Comprehensive Review. Curr Issues Mol Biol 2025; 47:30. [PMID: 39852145 PMCID: PMC11764082 DOI: 10.3390/cimb47010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/26/2024] [Accepted: 12/29/2024] [Indexed: 01/26/2025] Open
Abstract
Extensive investigation has been conducted on plant-based resources for their pharmacological usefulness, including various cancer types. The scope of this review is wider than several studies with a particular focus on breast cancer, which is an international health concern while studying sources of flavonoids, carotenoids, polyphenols, saponins, phenolic compounds, terpenoids, and glycosides apart from focusing on nursing. Important findings from prior studies are synthesized to explore these compounds' sources, mechanisms of action, complementary and synergistic effects, and associated side effects. It was reviewed that the exposure to certain doses of catechins, piperlongumine, lycopene, isoflavones and cucurbitacinfor a sufficient period can provide profound anticancer benefits through biological events such as cell cycle arrest, cells undergoing apoptosis and disruption of signaling pathways including, but not limited to JAK-STAT3, HER2-integrin, and MAPK. Besides, the study also covers the potential adverse effects of these phytochemicals. Regarding mechanisms, the widest attention is paid to Complementary and synergistic strategies are discussed which indicate that it would be realistic to alter the dosage and delivery systems of liposomes, nanoparticles, nanoemulsions, and films to enhance efficacy. Future research directions include refining these delivery approaches, further elucidating molecular mechanisms, and conducting clinical trials to validate findings. These efforts could significantly advance the role of phytocompounds in breast cancer management.
Collapse
Affiliation(s)
- Adil Farooq Wali
- Department of Pharmaceutical Chemistry, College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Jayachithra Ramakrishna Pillai
- Department of Pharmaceutical Chemistry, College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Pooja Shivappa
- Translational Medicinal Research Centre, Department of Biochemistry, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Sathvik Belagodu Sridhar
- Department of Clinical Pharmacy & Pharmacology, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Mohamed El-Tanani
- RAK College of Pharmacy, RAK Medical and Health Science University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Imran Rashid Rangraze
- RAK College of Medical Sciences, RAK Medical and Health Science University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Omnia Ibrahim Mohamed
- Department of General Education, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates; (O.I.M.); (N.N.A.A.)
| | - Nowar Nizar Al Ani
- Department of General Education, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates; (O.I.M.); (N.N.A.A.)
| |
Collapse
|
36
|
Lakshmanan J, Jaganathan VL, Zhang B, Werner G, Allen TS, Schultz DJ, Klinge CM, Harbrecht BG. Anticancer Properties Against Select Cancer Cell Lines and Metabolomics Analysis of Tender Coconut Water. Anticancer Agents Med Chem 2025; 25:207-221. [PMID: 39411967 PMCID: PMC11965954 DOI: 10.2174/0118715206327789241008162423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 02/25/2025]
Abstract
BACKGROUND Tender Coconut Water (TCW) is a nutrient-rich dietary supplement that contains bioactive secondary metabolites and phytohormones with anti-oxidative and anti-inflammatory properties. Studies on TCW's anti-cancer properties are limited and the mechanism of its anti-cancer effects have not been defined. OBJECTIVE In the present study, we investigate TCW for its anti-cancer properties and, using untargeted metabolomics, we identify components form TCW with potential anti-cancer activity. METHODOLOGY Cell viability assay, BrdU incorporation assay, soft-agar assay, flow-cytometery, and Western blotting were used to analyze TCW's anticancer properties and to identify mechanism of action. Liquid chromatography- Tandem Mass Spectroscopy (LC-MS/MS) was used to identify TCW components. RESULTS TCW decreased the viability and anchorage-independent growth of HepG2 hepatocellular carcinoma (HCC) cells and caused S-phase cell cycle arrest. TCW inhibited AKT and ERK phosphorylation leading to reduced ZEB1 protein, increased E-cadherin, and reduced N-cadherin protein expression in HepG2 cells, thus reversing the 'epithelial-to-mesenchymal' (EMT) transition. TCW also decreased the viability of Hep3B hepatoma, HCT-15 colon, MCF-7 and T47D luminal A breast cancer (BC) and MDA-MB-231 and MDA-MB-468 triplenegative BC cells. Importantly, TCW did not inhibit the viability of MCF-10A normal breast epithelial cells. Untargeted metabolomics analysis of TCW identified 271 metabolites, primarily lipids and lipid-like molecules, phenylpropanoids and polyketides, and organic oxygen compounds. We demonstrate that three components from TCW: 3-hydroxy-1-(4-hydroxyphenyl)propan-1-one, iondole-3-carbox aldehyde and caffeic acid inhibit the growth of cancer cells. CONCLUSION TCW and its components exhibit anti-cancer effects. TCW inhibits the viability of HepG2 hepatocellular carcinoma cells by reversing the EMT process through inhibition of AKT and ERK signalling.
Collapse
Affiliation(s)
- Jaganathan Lakshmanan
- Dr. Hiram C. Polk, Jr., MD, Department of Surgery, and Price Institute of Surgical Research, School of Medicine, University of Louisville, Louisville, KY, 40202, United States
| | - Vaitheesh L. Jaganathan
- Dr. Hiram C. Polk, Jr., MD, Department of Surgery, and Price Institute of Surgical Research, School of Medicine, University of Louisville, Louisville, KY, 40202, United States
| | - Boachun Zhang
- Dr. Hiram C. Polk, Jr., MD, Department of Surgery, and Price Institute of Surgical Research, School of Medicine, University of Louisville, Louisville, KY, 40202, United States
| | - Grace Werner
- Dr. Hiram C. Polk, Jr., MD, Department of Surgery, and Price Institute of Surgical Research, School of Medicine, University of Louisville, Louisville, KY, 40202, United States
| | - Tyler S. Allen
- Dr. Hiram C. Polk, Jr., MD, Department of Surgery, and Price Institute of Surgical Research, School of Medicine, University of Louisville, Louisville, KY, 40202, United States
| | - David J. Schultz
- Department of Biology, School of Medicine, University of Louisville, Louisville, KY, 40292, United States
| | - Carolyn M. Klinge
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, 40202, United States
| | - Brian G. Harbrecht
- Dr. Hiram C. Polk, Jr., MD, Department of Surgery, and Price Institute of Surgical Research, School of Medicine, University of Louisville, Louisville, KY, 40202, United States
| |
Collapse
|
37
|
Aldoghachi FEH, Oraibi A, Hamid Mohsen N, Hassan SS. Repurposing Phytochemicals against Breast Cancer (MCF-7) using Classical Structure-Based Drug Design. Curr Drug Discov Technol 2025; 22:e280324228430. [PMID: 38551041 DOI: 10.2174/0115701638295736240315105737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND The significant public health effect of breast cancer is demonstrated by its high global prevalence and the potential for severe health consequences. The suppression of the proliferative effects facilitated by the estrogen receptor alpha (ERα) in the MCF-7 cell line is significant for breast cancer therapy. OBJECTIVE The current work involves in-silico techniques for identifying potential inhibitors of ERα. METHODS The method combines QSAR models based on machine learning with molecular docking to identify potential binders for the ERα. Further, molecular dynamics simulation studied the stability of the complexes, and ADMET analysis validated the compound's properties. RESULTS Two compounds (162412 and 443440) showed significant binding affinities with ERα, with binding energies comparable to the established binder RL4. The ADMET qualities showed advantageous characteristics resembling pharmaceutical drugs. The stable binding of these ligands in the active region of ERα during dynamic conditions was confirmed by molecular dynamics simulations. RMSD plots and conformational stability supported the ligands' persistent occupancy in the protein's binding site. After simulation, two hydrogen bonds were found within the protein-ligand complexes of 162412 and 443440, with binding free energy values of -27.32 kcal/mol and -25.00 kcal/mol. CONCLUSION The study suggests that compounds 162412 and 443440 could be useful for developing innovative anti-ERα medicines. However, more research is needed to prove the compounds' breast cancer treatment efficacy. This will help develop new treatments for ERα-associated breast cancer.
Collapse
Affiliation(s)
| | - Amjad Oraibi
- Department of Pharmacy, Al-Manara College for Medical Sciences, Amarah, Iraq
| | | | | |
Collapse
|
38
|
Bhutta ZA, Choi KC. Phytochemicals as Novel Therapeutics for Triple-Negative Breast Cancer: A Comprehensive Review of Current Knowledge. Phytother Res 2025; 39:364-396. [PMID: 39533509 DOI: 10.1002/ptr.8376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/10/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Triple-negative breast cancer is a characteristic subtype of breast cancer that lacks the estrogen receptor, human epidermal growth factor receptor 2, and progesterone receptor. Because of its highly diverse subtypes, increased metastasis capability, and poor prognosis, the risk of mortality for people with triple-negative breast cancers is high as compared with other cancers. Chemotherapy is currently playing a major role in treating triple-negative breast cancer patients; however, poor prognosis due to drug resistance is causing serious concern. Recent studies on several phytochemicals derived from various plants being used in Traditional Chinese Medicine, Traditional Korean Medicine, Ayurveda (Traditional Indian Medicine), and so on, have demonstrated to be a promising agent as a viable therapy against triple-negative breast cancer. Phytochemicals categorized as alkaloids, polyphenols, terpenoids, phytosterols, and organosulfur compounds have been demonstrated to reduce cancer cell proliferation and metastasis by activating various molecular pathways, thereby reducing the spread of triple-negative breast cancer. This review analyzes the molecular mechanisms by which various phytochemicals fight triple-negative breast cancer and offers a perspective on the difficulties and potential prospects for treating triple-negative breast cancer with various phytochemicals.
Collapse
Affiliation(s)
- Zeeshan Ahmad Bhutta
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
39
|
Nalla K, Chatterjee B, Poyya J, Swain A, Ghosh K, Pan A, Joshi CG, Manavathi B, Kanade SR. Epigallocatechin-3-gallate inhibit the protein arginine methyltransferase 5 and enhancer of Zeste homolog 2 in breast cancer both in vitro and in vivo. Arch Biochem Biophys 2025; 763:110223. [PMID: 39581340 DOI: 10.1016/j.abb.2024.110223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/07/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
PURPOSE Histone methyltransferases are enzymes that selectively methylate lysine or arginine residues on both histone and non-histone proteins, categorized into lysine methyltransferases and arginine methyltransferases. Notably, EZH2 and PRMT5 are known for catalyzing trimethylation of H3 at K27 and symmetric dimethylation of H4 at R3, respectively. These methylation events are recognized as characteristic histone-repressive marks in cancer. The over expression of PRMT5 and EZH2 were reported in various cancers and recognized as a drug target. The study aims to explore the inhibitory potential of phytocompound, Epigallocatechin-3-gallate (EGCG), against PRMT5 and EZH2 in the breast cancer model. METHODS Screening of an array of phytocompounds was conducted through a combination of in-silico and in-vitro assays. Interactions between EGCG and human PRMT5: MEP50 and EZH2 were evaluated using molecular docking. Binding efficiency was validated, by Surface Plasmon Resonance studies and inhibitory potential was accessed by in vitro methylation followed by western blots, ELISA, and cell-based assays. In-vivo efficacy of EGCG was carried on cell line derived mice xenograft model. RESULTS EGCG demonstrated robust interactions with PRMT5:MEP50 complex and EZH2, particularly within the SAM binding site. Surface Plasmon Resonance analysis revealed strong binding affinity in nanomolar concentrations, particularly with PRMT5-MEP50 compared to EZH2. In-vitro assays confirmed EGCG's ability to inhibit PRMT5 and EZH2, leading to a decrease in their catalytic products, namely H4R3me2s and H3K27me3, respectively. EGCG treatment induced both autophagy and apoptosis invitro. In-vivo studies demonstrated significant reductions in tumor size and the proliferation marker ki67, accompanied by a decrease in histone repressive marks. CONCLUSION The findings suggest that EGCG effectively inhibits PRMT5 and EZH2, underscoring its potential for combined therapeutic strategies in cancer treatment.
Collapse
Affiliation(s)
- Kirankumar Nalla
- Department of Plant Sciences, School of Life Sciences University of Hyderabad PO Central University Gachibowli, Hyderabad Telangana, 500046, India
| | - Biji Chatterjee
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Centre, Houston, TX, USA
| | - Jagadeesha Poyya
- SDM Research Institute for Biomedical Sciences, A Constituent Unit of Shri Dharmasthala, Manjunatheshwara University, Dharwad, 580009, Karnataka, India
| | - Aishwarya Swain
- Department for Bioinformatics, Pondicherry University, Puducherry, 605014, India
| | - Krishna Ghosh
- Department of Anaesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Centre, Houston, TX, USA
| | - Archana Pan
- Department for Bioinformatics, Pondicherry University, Puducherry, 605014, India
| | - Chandrashekhar G Joshi
- Department of Studies in Biochemistry, Mangalore University PG Centre, Jnana Kaveri, Chikka Aluvara, Thorenoor Post Kushalnagar, Somawarpet TQ, Kodagu, 571232, India
| | - Bramanandam Manavathi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad PO Central University Gachibowli, Hyderabad Telangana 500046, India
| | - Santosh R Kanade
- Department of Plant Sciences, School of Life Sciences University of Hyderabad PO Central University Gachibowli, Hyderabad Telangana, 500046, India.
| |
Collapse
|
40
|
Chakraborty A, Midde A, Chakraborty P, Adhikary S, Kumar S, Arri N, Chandra Das N, Sen Gupta PS, Banerjee A, Mukherjee S. Revisiting Luteolin Against the Mediators of Human Metastatic Colorectal Carcinoma: A Biomolecular Approach. J Cell Biochem 2025; 126:e30654. [PMID: 39300917 DOI: 10.1002/jcb.30654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Metastatic colorectal carcinoma (mCRC) is one of the prevalent subtypes of human cancers and is caused by the alterations of various lifestyle and diet-associated factors. β-catenin, GSK-3β, PI3K-α, AKT1, and NF-κB p50 are known to be the critical regulators of tumorigenesis and immunopathogenesis of mCRC. Unfortunately, current drugs have limited efficacy, side effects and can lead to chemoresistance. Therefore, searching for a nontoxic, efficacious anti-mCRC agent is crucial and of utmost interest. The present study demonstrates the identification of a productive and nontoxic anti-mCRC agent through a five-targets (β-catenin, GSK-3β, PI3K-α, AKT1, and p50)-based and three-tier (binding affinity, pharmacokinetics, and pharmacophore) screening strategy involving a series of 30 phytocompounds having a background of anti-inflammatory/anti-mCRC efficacy alongside 5-fluorouracil (FU), a reference drug. Luteolin (a phyto-flavonoid) was eventually rendered as the most potent and safe phytocompound. This inference was verified through three rounds of validation. Firstly, luteolin was found to be effective against the different mCRC cell lines (HCT-15, HCT-116, DLD-1, and HT-29) without hampering the viability of non-tumorigenic ones (RWPE-1). Secondly, luteolin was found to curtail the clonogenicity of CRC cells, and finally, it also disrupted the formation of colospheroids, a characteristic of metastasis. While studying the mechanistic insights, luteolin was found to inhibit β-catenin activity (a key regulator of mCRC) through direct physical interactions, promoting its degradation by activating GSK3-β and ceasing its activation by inactivating AKT1 and PI3K-α. Luteolin also inhibited p50 activity, which could be useful in mitigating mCRC-associated proinflammatory milieu. In conclusion, our study provides evidence on the efficacy of luteolin against the critical key regulators of immunopathogenesis of mCRC and recommends further studies in animal models to determine the effectiveness efficacy of this natural compound for treating mCRC in the future.
Collapse
Affiliation(s)
- Ankita Chakraborty
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Advaitha Midde
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Pritha Chakraborty
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Sourin Adhikary
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
- Food Toxicology Laboratory, Food, Drug, and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Simran Kumar
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Navpreet Arri
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nabarun Chandra Das
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Parth Sarthi Sen Gupta
- School of Biosciences and Bioengineering, D. Y. Patil International University, Pune, Maharashtra, India
| | - Aditi Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Suprabhat Mukherjee
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| |
Collapse
|
41
|
Elbadawi M, Efferth T. In Vivo and Clinical Studies of Natural Products Targeting the Hallmarks of Cancer. Handb Exp Pharmacol 2025; 287:95-121. [PMID: 38797749 DOI: 10.1007/164_2024_716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Despite more than 200 approved anticancer agents, cancer remains a leading cause of death worldwide due to disease complexity, tumour heterogeneity, drug toxicity, and the emergence of drug resistance. Accordingly, the development of chemotherapeutic agents with higher efficacy, a better safety profile, and the capability of bypassing drug resistance would be a cornerstone in cancer therapy. Natural products have played a pivotal role in the field of drug discovery, especially for the pharmacotherapy of cancer, infectious, and chronic diseases. Owing to their distinctive structures and multiple mechanistic activities, natural products and their derivatives have been utilized for decades in cancer treatment protocols. In this review, we delve into the potential of natural products as anticancer agents by targeting cancer's hallmarks, including sustained proliferative signalling, evading growth suppression, resisting apoptosis and cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. We highlight the molecular mechanisms of some natural products, in vivo studies, and promising clinical trials. This review emphasizes the significance of natural products in fighting cancer and the need for further studies to uncover their fully therapeutic potential.
Collapse
Affiliation(s)
- Mohamed Elbadawi
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
42
|
Tolentino S, Monteiro MM, Saldanha-Araújo F, Cunha-Filho M, Gratieri T, Guerra ENS, Gelfuso GM. Bioadhesive Chitosan Films Loading Curcumin for Safe and Effective Skin Cancer Topical Treatment. Pharmaceutics 2024; 17:18. [PMID: 39861668 PMCID: PMC11768514 DOI: 10.3390/pharmaceutics17010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: This study aimed to evaluate the safety and efficacy of chitosan-based bioadhesive films for facilitating the topical delivery of curcumin in skin cancer treatment, addressing the pharmacokinetic limitations associated with oral administration. Methods: The films, which incorporated curcumin, were formulated using varying proportions of chitosan, polyvinyl alcohol, Poloxamer® 407, and propylene glycol. These films were assessed for stability, drug release, in vitro skin permeation, cell viability (with and without radiotherapy), and skin irritation. Results: The films demonstrated physical stability and preserved curcumin content at room temperature for 90 days. Drug release was effectively controlled during the first 8 h, with release rates ranging from 51.6 ± 4.8% to 65.6 ± 13.0%. The films also enhanced drug penetration into the skin compared to a curcumin solution used as a control (stratum corneum: 1.3 ± 0.1 to 1.9 ± 0.8 µg/cm²; deeper skin layers: 1.7 ± 0.1 to 2.7 ± 0.2 µg/cm²). A cytotoxicity test on metastatic melanoma cells showed that curcumin at topical doses exerted activity similar to that delivered via the skin. Furthermore, curcumin alone was more effective in inhibiting tumor cells than radiotherapy alone (p < 0.01), with no additional benefit observed when curcumin was combined with radiotherapy. Finally, irritation tests confirmed that the films were safe for topical application. Conclusion: The developed chitosan-based bioadhesive films represent a promising alternative for the topical treatment of skin tumors using curcumin.
Collapse
Affiliation(s)
- Seila Tolentino
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, Brasília 70910-900, Brazil; (S.T.); (M.C.-F.); (T.G.)
| | - Mylene M. Monteiro
- Laboratory of Oral Histopathology, University of Brasilia, Brasília 70910-900, Brazil; (M.M.M.); (E.N.S.G.)
| | - Felipe Saldanha-Araújo
- Laboratory of Hematology and Stem Cells (LHCT), School of Health Sciences, University of Brasília, Brasília 70910-900, Brazil;
| | - Marcilio Cunha-Filho
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, Brasília 70910-900, Brazil; (S.T.); (M.C.-F.); (T.G.)
| | - Tais Gratieri
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, Brasília 70910-900, Brazil; (S.T.); (M.C.-F.); (T.G.)
| | - Eliete N. Silva Guerra
- Laboratory of Oral Histopathology, University of Brasilia, Brasília 70910-900, Brazil; (M.M.M.); (E.N.S.G.)
| | - Guilherme M. Gelfuso
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, Brasília 70910-900, Brazil; (S.T.); (M.C.-F.); (T.G.)
| |
Collapse
|
43
|
Lakshmi S, Priya S. Molecular insights into epoxyazadiradione induced death in triple-negative breast cancer cells: A system biology approach. Gene 2024; 930:148814. [PMID: 39116958 DOI: 10.1016/j.gene.2024.148814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Epoxyazadiradione is an important limonoid with immense pharmacological potential. We have reported previously that epoxyazadiradione (EAD) induces apoptosis in triple negative breast cancer cells (MDA-MB 231) by modulating diverse cellular targets. Here, we identify the key genes/pathways responsible for this effect through next-generation sequencing of the transcriptome from EAD treated cells and integrated molecular data analysis using bioinformatics. In silico analysis indicated that EAD displayed favourable drug-like properties and could target multiple macromolecules relevant to TNBC. RNA sequencing revealed that EAD treatment results in the differential expression of 1838 genes in MDA-MB 231 cells, with 752 downregulated and 1086 upregulated. Gene set enrichment analysis of these genes suggested that EAD disrupts protein folding in the endoplasmic reticulum, triggering the unfolded protein response (UPR) and potentially leading to cell death. EAD also induced oxidative stress and DNA damage, downregulated pathways linked to metabolism, cell cycle progression, pro-survival signalling, cell adhesion, motility and inflammatory response. The identification of protein cluster and hub genes were also done. The validation of the identified hub genes gave an inverse correlation between their expression in EAD treated cells and TNBC patient samples. Thus, the identified hub genes could be explored as therapeutic or diagnostic markers for TNBC. Hence, EAD appears to be a promising therapeutic candidate for TNBC by targeting various hallmarks of cancer, including cell death resistance, uncontrolled proliferation and metastasis. To conclude, the identified pathways and validated targets for EAD will provide a roadmap for further in vivo studies and preclinical/clinical validation required for potential drug development.
Collapse
Affiliation(s)
- Sreerenjini Lakshmi
- Biochemistry Section, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sulochana Priya
- Biochemistry Section, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
44
|
Mandal T, Shukla D, Pattanayak S, Barman R, Ashraf R, Dixit AK, Kumar S, Kumar D, Srivastava AK. Ellagic Acid Induces DNA Damage and Apoptosis in Cancer Stem-like Cells and Overcomes Cisplatin Resistance. ACS OMEGA 2024; 9:48988-49000. [PMID: 39713677 PMCID: PMC11656259 DOI: 10.1021/acsomega.3c08819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 12/24/2024]
Abstract
Cancer stem cells (CSCs) are responsible for chemoresistance and tumor relapse in many solid malignancies, including lung and ovarian cancer. Ellagic acid (EA), a natural polyphenol, exhibits anticancer effects on various human malignancies. However, its impact and mechanism of action on cancer stem-like cells (CSLCs) are only partially understood. In this study, we evaluated the therapeutic potential and underlying molecular mechanism of EA isolated from tropical mango against CSLCs. Herein, we observed that EA treatment reduces the stem-like phenotypes in cancer cells, thereby lowering the cell survival and self-renewal potential of ovarian and lung CSLCs. Additionally, EA treatment limits the populations of lung and ovarian CSLCs characterized by CD133+ and CD44+CD117+, respectively. A mechanistic investigation showed that EA treatment induces ROS generation by altering mitochondrial dynamics, causing changes in the levels of Drp1 and Mfn2, which lead to an increased level of accumulation of DNA damage and eventually trigger apoptosis in CSLCs. Moreover, pretreatment with EA sensitizes CSLCs to cisplatin treatment by enhancing DNA damage accumulation and impairing the DNA repair ability of the CSLCs. Furthermore, EA pretreatment significantly reduces cisplatin-induced mutation frequency and improves drug retention in CSLCs, potentially suppressing the development of acquired drug resistance. Taken together, our results demonstrate an unreported finding that EA inhibits CSLCs by targeting mitochondrial function and triggering apoptosis. Thus, EA can be used either alone or in combination with other chemotherepeutic drugs for the management of cancer.
Collapse
Affiliation(s)
- Tanima Mandal
- Cancer
Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal 700032, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Devendra Shukla
- Cancer
Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal 700032, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subhamoy Pattanayak
- Organic
and Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, Kolkata, West Bengal 700032, India
| | - Raju Barman
- Organic
and Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, Kolkata, West Bengal 700032, India
| | - Rahail Ashraf
- Division
of Biology, Indian Institute of Science
Education & Research Tirupati, Tirupati, Andhra Pradesh 517507, India
| | - Amit Kumar Dixit
- CCRAS-Central
Ayurveda Research Institute, Kolkata, West Bengal 700091, India
| | - Sanjay Kumar
- Division
of Biology, Indian Institute of Science
Education & Research Tirupati, Tirupati, Andhra Pradesh 517507, India
| | - Deepak Kumar
- Organic
and Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, Kolkata, West Bengal 700032, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amit Kumar Srivastava
- Cancer
Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal 700032, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
45
|
Suha H, Tasnim SA, Rahman S, Alodhayb A, Albrithen H, Poirier RA, Uddin KM. Evaluating the Anticancer Properties of Novel Piscidinol A Derivatives: Insights from DFT, Molecular Docking, and Molecular Dynamics Studies. ACS OMEGA 2024; 9:49639-49661. [PMID: 39713673 PMCID: PMC11656217 DOI: 10.1021/acsomega.4c07808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/03/2024] [Accepted: 11/19/2024] [Indexed: 12/24/2024]
Abstract
Cancer is characterized by uncontrolled cell growth and spreading throughout the body. This study employed computational approaches to investigate 18 naturally derived anticancer piscidinol A derivatives (1-18) as potential therapeutics. By examining their interactions with 15 essential target proteins (HIF-1α, RanGAP, FOXM1, PARP2, HER2, ERα, NGF, FAS, GRP78, PRDX2, SCF complex, EGFR, Bcl-xL, ERG, and HSP70) and comparing them with established drugs such as camptothecin, docetaxel, etoposide, irinotecan, paclitaxel, and teniposide, compound 10 emerged as noteworthy. In molecular dynamics simulations, the protein with the strongest binding to the crucial 1A52 protein exceeded druglikeness criteria and displayed extraordinary stability within the enzyme's pocket over varied temperatures (300-320 K). Additionally, density functional theory was used to calculate dipole moments and molecular orbital characteristics, as well as analyze the thermodynamic stability of the putative anticancer derivatives. This finding reveals a well-defined, potentially therapeutic relationship supported by theoretical analysis, which is in good agreement with subsequent assessments of their potential in vitro cytotoxic effects of piscidinol A derivatives (6-18) against various cancer cell lines. Future in vivo and clinical studies are required to validate these findings further. Compound 10 thus emerges as an intriguing contender in the fight against cancer.
Collapse
Affiliation(s)
- Humaera
Noor Suha
- Department
of Biochemistry and Microbiology, North
South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Syed Ahmed Tasnim
- Department
of Biochemistry and Microbiology, North
South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Shofiur Rahman
- Biological
and Environmental Sensing Research Unit, King Abdullah Institute for
Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah Alodhayb
- Biological
and Environmental Sensing Research Unit, King Abdullah Institute for
Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
- Department
of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hamad Albrithen
- Biological
and Environmental Sensing Research Unit, King Abdullah Institute for
Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
- Department
of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Raymond A. Poirier
- Department
of Chemistry, Memorial University, St. John’s, Newfoundland
and Labrador A1C 5S7, Canada
| | - Kabir M. Uddin
- Department
of Biochemistry and Microbiology, North
South University, Bashundhara, Dhaka 1229, Bangladesh
| |
Collapse
|
46
|
Ritika, Liao ZY, Chen PY, Rao NV, Mathew J, Sharma R, Grewal AS, Singh G, Mehan S, Liou JP, Pan CH, Nepali K. Rationally designed febuxostat-based hydroxamic acid and its pH-Responsive nanoformulation elicits anti-tumor activity. Eur J Med Chem 2024; 279:116866. [PMID: 39293244 DOI: 10.1016/j.ejmech.2024.116866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/29/2024] [Accepted: 09/08/2024] [Indexed: 09/20/2024]
Abstract
Attempts to furnish antitumor structural templates that can prevent the occurrence of drug-induced hyperuricemia spurred us to generate xanthine oxidase inhibitor-based hydroxamic acids and anilides. Specifically, the design strategy involved the insertion of febuxostat (xanthine oxidase inhibitor) as a surface recognition part of the HDAC inhibitor pharmacophore model. Investigation outcomes revealed that hydroxamic acid 4 elicited remarkable antileukemic effects mediated via HDAC isoform inhibition. Delightfully, the adduct retained xanthine oxidase inhibitory activity, though xanthine oxidase inhibition was not the underlying mechanism of its cell growth inhibitory effects. Also, compound 4 demonstrated significant in-vivo anti-hyperuricemic (PO-induced hyperuricemia model) and antitumor activity in an HL-60 xenograft mice model. Compound 4 was conjugated with poly (ethylene glycol) poly(aspartic acid) block copolymer to furnish pH-responsive nanoparticles (NPs) in pursuit of circumventing its cytotoxicity towards the normal cell lines. SEM analysis revealed that NPs had uniform size distributions, while TEM analysis ascertained the spherical shape of NPs, indicating their ability to undergo self-assembly. HDAC inhibitor 4 was liberated from the matrix due to the polymeric nanoformulation's pH-responsiveness, and the NPs demonstrated selective cancer cell targeting ability.
Collapse
Affiliation(s)
- Ritika
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Zi-Yi Liao
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
| | - Pin-Yu Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
| | - N Vijayakamasewara Rao
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan
| | - Jacob Mathew
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
| | - Ajmer Singh Grewal
- Department of Pharmaceutical Sciences, Guru Gobind Singh College of Pharmacy, Near Guru Nanak Khalsa College, Yamuna Nagar, 135001, Haryana, India
| | - Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India; Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan
| | - Chun Hsu Pan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan.
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan.
| |
Collapse
|
47
|
Gowda BJ, Ahmed MG, Thakur RRS, Donnelly RF, Vora LK. Microneedles as an Emerging Platform for Transdermal Delivery of Phytochemicals. Mol Pharm 2024; 21:6007-6033. [PMID: 39470172 PMCID: PMC11615954 DOI: 10.1021/acs.molpharmaceut.4c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Phytochemicals, which are predominantly found in plants, hold substantial medicinal value. Despite their potential, challenges such as poor oral bioavailability and instability in the gastrointestinal tract have limited their therapeutic use. Traditional intra/transdermal drug delivery systems offer some advantages over oral administration but still suffer from issues such as limited penetration depth, slow drug release rates, and inconsistent drug absorption. In contrast, microneedles (MNs) represent a significant advancement in intra/transdermal drug delivery by providing precise control over phytochemical delivery and enhanced penetration capabilities. By circumventing skin barriers, MNs directly access dermal layers rich in blood vessels and lymphatics, thus facilitating efficient phytochemical delivery. This review extensively discusses the obstacles of traditional oral delivery and the benefits of intra/transdermal delivery routes with a particular focus on the transformative potential of MNs for phytochemical delivery. This review explores the complexities of delivering phytochemicals through intra/transdermal routes, the development and types of MNs as innovative delivery tools, and the optimal design and properties of MNs for effective phytochemical delivery. Additionally, this review examines the versatile applications of MN-mediated phytochemical delivery, including its role in administering phytophotosensitizers for photodynamic therapy, and concludes with insights into relevant patents and future perspectives.
Collapse
Affiliation(s)
- B.H. Jaswanth Gowda
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, Belfast BT9 7BL, United
Kingdom
- Department
of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Mohammed Gulzar Ahmed
- Department
of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Raghu Raj Singh Thakur
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, Belfast BT9 7BL, United
Kingdom
| | - Ryan F. Donnelly
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, Belfast BT9 7BL, United
Kingdom
| | - Lalitkumar K. Vora
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, Belfast BT9 7BL, United
Kingdom
| |
Collapse
|
48
|
Liu Y, Yu X, Shen H, Hong Y, Hu G, Niu W, Ge J, Xuan J, Qin JJ, Li Q. Mechanisms of traditional Chinese medicine in the treatment and prevention of gastric cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156003. [PMID: 39305742 DOI: 10.1016/j.phymed.2024.156003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Gastric cancer (GC) ranks as the fifth most prevalent malignancy worldwide. Conventional treatments, including radiotherapy and chemotherapy, often induce severe side effects and significant adverse reactions, and they may also result in drug resistance. Consequently, there is a critical need for the development of new therapeutic agents. Traditional Chinese Medicine (TCM) and natural products are being extensively researched due to their low toxicity, multi-targeted approaches, and diverse pathways. Scholars are increasingly focusing on identifying active anticancer components within TCM. PURPOSE This review aims to summarise research conducted over the past 14 years on the treatment of GC using TCM. The focus is on therapeutic targets, mechanisms, and efficacy of Chinese medicine and natural products, including monomer compounds, extracts or analogues, and active ingredients. METHODS Relevant articles on TCM and GC were retrieved from PubMed using appropriate keywords. The collected articles were screened and classified according to the types of TCM, with an emphasis on the molecular mechanisms underlying the treatment of GC. RESULTS The research on TCM indicates that TCM and natural products can effectively inhibit the metastasis, proliferation, and invasion of tumour cells. They can also induce apoptosis, autophagy and improve the chemosensitivity of drug-resistant cells. Additionally, injections derived from Chinese herbal medicine, when used as an adjunct to conventional chemotherapy, can significantly improve the prognosis of GC patients by reducing chemotherapy toxicity. CONCLUSION This review summarises the progress of TCM treatment of GC over the past 14 years, and discusses its therapeutic application of GC, which proves that TCM is a promising treatment strategy for GC in the future.
Collapse
Affiliation(s)
- Yanyang Liu
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China; Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuefei Yu
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China
| | - Huize Shen
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yangjian Hong
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China; Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Gaofeng Hu
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China; Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenyuan Niu
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jiaming Ge
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China; Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Xuan
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China; Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiang-Jiang Qin
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| | - Qinglin Li
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China.
| |
Collapse
|
49
|
Gibbs RJ, Chambers AC, Hill DJ. The emerging role of Fusobacteria in carcinogenesis. Eur J Clin Invest 2024; 54 Suppl 2:e14353. [PMID: 39674881 DOI: 10.1111/eci.14353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/04/2024] [Indexed: 12/17/2024]
Abstract
The Fusobacterium genus comprises Gram-negative, obligate anaerobic bacteria that typically reside in the periodontium of the oral cavity, gastrointestinal tract, and female genital tract. The association of Fusobacterial spp. with colorectal tumours is widely accepted, with further evidence that this pathogen may also be implicated in the development of other malignancies. Fusobacterial spp. influence malignant cell behaviours and the tumour microenvironment in various ways, which can be related to the multiple surface adhesins expressed. These adhesins include Fap2 (fibroblast-activated protein 2), CpbF (CEACAM binding protein of Fusobacteria), FadA (Fusobacterium adhesin A) and FomA (Fusobacterial outer membrane protein A). This review outlines the influence of Fusobacteria in promoting cancer initiation and progression, impacts of therapeutic outcomes and discusses potential therapeutic interventions where appropriate.
Collapse
|
50
|
Mgijima T, Sibuyi NRS, Fadaka AO, Meyer S, Madiehe AM, Meyer M, Onani MO. Wound healing effects of biogenic gold nanoparticles synthesized using red wine extracts. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:399-410. [PMID: 39069752 DOI: 10.1080/21691401.2024.2383583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/13/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024]
Abstract
Gold nanoparticles (AuNPs) were synthesized using three red wine extracts (RW-Es); by varying temperature, pH, concentrations of RW-Es and gold salt. The RW-AuNPs were characterized by UV-vis, transmission electron microscopy (TEM), dynamic light scattering (DLS), and the Fourier Transform Infra-red Spectroscopy (FT-IR). Their stability was evaluated in water, foetal bovine serum (FBS), phosphate-buffered saline (PBS), and Dulbecco's Modified Eagle Medium (DMEM) by UV-Vis. The effect of the RW-Es and RW-AuNPs on KMST-6 cell cell viability was evaluated by MTT assay; and their wound healing effects were monitored by scratch assay. RW-AuNPs synthesis was observed by colour change, and confirmed by UV-Vis spectrum, with an absorption peak around 550 nm. The hydrodynamic sizes of the RW-AuNPs ranged between 10 and 100 nm. Polyphenols, carboxylic acids, and amino acids are some of functional groups in the RW-Es that were involved in the reduction of RW-AuNPs. The RW-AuNPs were stable in test solutions and showed no cytotoxicity to the KMST-6 cells up to 72 h. AuNPs synthesized from Pinotage and Cabernet Sauvignon enhanced proliferation of KMST-6 cells and showed potential as wound healing agents. Further studies are required to investigate the molecular mechanisms involved in the potential wound-healing effect of the RW-AuNPs.
Collapse
Affiliation(s)
- Tswellang Mgijima
- Organometallics and Nanomaterials, Department of Chemical Sciences, University of the Western Cape, Bellville, South Africa
| | - Nicole R S Sibuyi
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC) Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
- Health Platform, Advanced Materials Division, Mintek, Randburg, South Africa
| | - Adewale O Fadaka
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC) Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Samantha Meyer
- Phytotherapy Research Group, Department of Biomedical Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Abram M Madiehe
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC) Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Mervin Meyer
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC) Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Martin O Onani
- Organometallics and Nanomaterials, Department of Chemical Sciences, University of the Western Cape, Bellville, South Africa
| |
Collapse
|