1
|
Head DJ, Raman JD. An evaluation of mitomycin-containing reverse thermal gel for the treatment of low-grade upper tract urothelial carcinoma. Expert Rev Anticancer Ther 2024; 24:943-948. [PMID: 39129535 DOI: 10.1080/14737140.2024.2391361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/16/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION Endoscopic management of upper tract urothelial carcinoma (UTUC) is increasingly relevant with greater detection of low-grade disease and guidelines recommending kidney preservation for low-risk disease. Historically, laser or thermal ablation has served as the primary tool for endoscopic management of UTUC, however, chemoablation is rapidly being developed to serve as a primary or adjuvant treatment option, which warrants review. AREAS COVERED The current literature was reviewed to compare the outcomes and clinical utility of endoscopic treatment modalities for low-grade UTUC, with a focus on mitomycin-containing reverse thermal gel (UGN-101). EXPERT OPINION The overall outcomes of mitomycin-containing gel therapy are promising, but adverse effects such as ureteral stricture call for careful consideration when using this treatment. We believe it is reasonable to consider use of mitomycin-containing gel as an adjuvant chemotherapy with endoscopic laser resection of low-grade upper tract urothelial carcinoma.
Collapse
Affiliation(s)
- Dennis J Head
- Department of Urology, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Jay D Raman
- Department of Urology, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
2
|
Asero V, Scornajenghi CM, Krajewski W, Szydełko T, Malkiewicz B, Nowak Ł, Gallioli A, Basran S, Chung BI, Del Giudice F. Comment on: "Animal model assessment of a new design for a coated mitomycin-eluting biodegradable ureteral stent for intracavitary instillation as an adjuvant therapy in upper urothelial carcinoma". Minerva Urol Nephrol 2023; 75:401-403. [PMID: 37221829 DOI: 10.23736/s2724-6051.23.05354-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Affiliation(s)
- Vincenzo Asero
- Department of Maternal-Infant and Urological Sciences, Umberto I Polyclinic Hospital, Sapienza University, Rome, Italy
| | - Carlo M Scornajenghi
- Department of Maternal-Infant and Urological Sciences, Umberto I Polyclinic Hospital, Sapienza University, Rome, Italy
| | - Wojciech Krajewski
- Department of Urology and Oncological Urology, Wrocław Medical University, Wrocław, Poland
| | - Tomasz Szydełko
- Department of Urology and Oncological Urology, Wrocław Medical University, Wrocław, Poland
| | - Bartosz Malkiewicz
- Department of Urology and Oncological Urology, Wrocław Medical University, Wrocław, Poland
| | - Łukasz Nowak
- Department of Urology and Oncological Urology, Wrocław Medical University, Wrocław, Poland
| | | | - Satvir Basran
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - Benjamin I Chung
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - Francesco Del Giudice
- Department of Maternal-Infant and Urological Sciences, Umberto I Polyclinic Hospital, Sapienza University, Rome, Italy -
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
3
|
Wierzbicka A, Krakos M, Wilczek P, Bociaga D. A comprehensive review on hydrogel materials in urology: Problems, methods, and new opportunities. J Biomed Mater Res B Appl Biomater 2023; 111:730-756. [PMID: 36237176 DOI: 10.1002/jbm.b.35179] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/07/2022] [Accepted: 09/22/2022] [Indexed: 01/21/2023]
Abstract
Hydrogel materials provide an extremely promising group of materials that can find an increasingly wide range of use in treating urinary system conditions due to their unique properties. The present review describes achievements to date in terms of the use and development prospects of hydrogel materials applications in the treatment and reconstruction of the urinary system organs, which among others include: hydrogel systems of intravesical drug delivery, ureteral stents design, treatment of vesicoureteral reflux, urinary bladder and urethral defects reconstruction, design of modern urinary catheters and also solutions applied in urinary incontinence therapy (Figure 4). In addition, hydrogel materials find increasingly growing applications in the construction of educational simulation models of organs and specific conditions of the urinary system, which enable the education of medical personnel. Numerous research efforts are underway to expand the existing treatment methods and reconstruction of the urinary system based on hydrogel materials. After conducting the further necessary research, many of the innovative solutions developed to date have high application potential.
Collapse
Affiliation(s)
- Adrianna Wierzbicka
- Faculty of Mechanical Engineering, Institute of Materials Science and Engineering, Lodz University of Technology, Lodz, Poland
| | - Marek Krakos
- Department of Pediatric Surgery and Urology, Hospital of J. Korczak, Lodz, Poland.,Department of Pediatric Nephrology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Piotr Wilczek
- Faculty of Health Sciences, Calisia University, Kalisz, Poland.,Heart Prostheses Institute, Prof. Z. Religa Foundation of Cardiac Surgery Development, Zabrze, Poland
| | - Dorota Bociaga
- Faculty of Mechanical Engineering, Institute of Materials Science and Engineering, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
4
|
Assessment of a Coated Mitomycin-Releasing Biodegradable Ureteral Stent as an Adjuvant Therapy in Upper Urothelial Carcinoma: A Comparative In Vitro Study. Polymers (Basel) 2022; 14:polym14153059. [PMID: 35956574 PMCID: PMC9370495 DOI: 10.3390/polym14153059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/16/2022] Open
Abstract
A major limitation of the treatment of low-grade upper tract urothelial carcinoma is the difficulty of intracavitary instillation of adjuvant therapy. Therefore, the aim of this in vitro study was to develop and to assess a new design of biodegradable ureteral stent coated with a silk fibroin matrix for the controlled release of mitomycin C as a chemotherapeutic drug. For this purpose, we assessed the coating of a biodegradable ureteral stent, BraidStent®, with silk fibroin and subsequently loaded the polymeric matrix with two formulations of mitomycin to evaluate its degradation rate, the concentration of mitomycin released, and changes in the pH and the weight of the stent. Our results confirm that the silk fibroin matrix is able to coat the biodegradable stent and release mitomycin for between 6 and 12 h in the urinary environment. There was a significant delay in the degradation rate of silk fibroin and mitomycin-coated stents compared to bare biodegradable stents, from 6–7 weeks to 13–14 weeks. The present study has shown the feasibility of using mitomycin C-loaded silk fibroin for the coating of biodegradable urinary stents. The addition of mitomycin C to the coating of silk fibroin biodegradable stents could be an attractive approach for intracavitary instillation in the upper urinary tract.
Collapse
|
5
|
Biodegradable polymeric conduits: Platform materials for guided nerve regeneration and vascular tissue engineering. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Abdelkader H, Fathalla Z, Seyfoddin A, Farahani M, Thrimawithana T, Allahham A, Alani AWG, Al-Kinani AA, Alany RG. Polymeric long-acting drug delivery systems (LADDS) for treatment of chronic diseases: Inserts, patches, wafers, and implants. Adv Drug Deliv Rev 2021; 177:113957. [PMID: 34481032 DOI: 10.1016/j.addr.2021.113957] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/13/2021] [Accepted: 08/29/2021] [Indexed: 02/07/2023]
Abstract
Non-oral long-acting drug delivery systems (LADDS) encompass a range of technologies for precisely delivering drug molecules into target tissues either through the systemic circulation or via localized injections for treating chronic diseases like diabetes, cancer, and brain disorders as well as for age-related eye diseases. LADDS have been shown to prolong drug release from 24 h up to 3 years depending on characteristics of the drug and delivery system. LADDS can offer potentially safer, more effective, and patient friendly treatment options compared to more invasive modes of drug administration such as repeated injections or minor surgical intervention. Whilst there is no single technology or definition that can comprehensively embrace LADDS; for the purposes of this review, these systems include solid implants, inserts, transdermal patches, wafers and in situ forming delivery systems. This review covers common chronic illnesses, where candidate drugs have been incorporated into LADDS, examples of marketed long-acting pharmaceuticals, as well as newly emerging technologies, used in the fabrication of LADDS.
Collapse
Affiliation(s)
- Hamdy Abdelkader
- Pharmaceutics Department, Faculty of Pharmacy, Minia University, Minia, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Deraya University, New Minia City, Minia, Egypt
| | - Zeinab Fathalla
- Pharmaceutics Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Ali Seyfoddin
- Drug Delivery Research Group, Faculty of Health and Environmental Sciences, School of Science, Auckland University of Technology, New Zealand
| | - Mojtaba Farahani
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Thilini Thrimawithana
- Discipline of Pharmacy, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Ayman Allahham
- Discipline of Pharmacy, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Adam W G Alani
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Moody Avenue, RLSB, Portland, OR, United States; Biomedical Engineering Department, Oregon Health & Science University, 2730 S. Moody Avenue, RLSB, Portland, OR, United States; Knight Cancer Institute, Oregon Health & Science University, 2730 S. Moody Avenue, RLSB, Portland, OR, United States
| | - Ali A Al-Kinani
- Drug Discovery, Delivery and Patient Care Theme (DDDPC), Faculty of Science, Engineering and Computing, Kingston University London, Penrhyn Road, Kingston upon Thames, UK.
| | - Raid G Alany
- Drug Discovery, Delivery and Patient Care Theme (DDDPC), Faculty of Science, Engineering and Computing, Kingston University London, Penrhyn Road, Kingston upon Thames, UK; School of Pharmacy, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
7
|
Functional Properties of Polyurethane Ureteral Stents with PLGA and Papaverine Hydrochloride Coating. Int J Mol Sci 2021; 22:ijms22147705. [PMID: 34299324 PMCID: PMC8307159 DOI: 10.3390/ijms22147705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022] Open
Abstract
Despite the obvious benefits of using ureteral stents to drain the ureters, there is also a risk of complications from 80-90%. The presence of a foreign body in the human body causes disturbances in its proper functioning. It can lead to biofilm formation on the stent surface, which may favor the development of urinary tract infections or the formation of encrustation, as well as stent fragmentation, complicating its subsequent removal. In this work, the effect of the polymeric coating containing the active substance-papaverine hydrochloride on the functional properties of ureteral stents significant for clinical practice were assessed. Methods: The most commonly clinically used polyurethane ureteral Double-J stent was selected for the study. Using the dip-coating method, the surface of the stent was coated with a poly(D,L-lactide-glycolide) (PLGA) coating containing the papaverine hydrochloride (PAP). In particular, strength properties, retention strength of the stent ends, dynamic frictional force, and the fluoroscopic visibility of the stent during X-ray imaging were determined. Results: The analysis of the test results indicates the usefulness of a biodegradable polymer coating containing the active substance for the modification of the surface of polyurethane ureteral stents. The stents coated with PLGA+PAP coating compared to polyurethane stents are characterized by more favorable strength properties, the smaller value of the dynamic frictional force, without reducing the fluoroscopic visibility.
Collapse
|