1
|
Gładysz MZ, Ubels D, Koch M, Amirsadeghi A, Alleblas F, van Vliet S, Kamperman M, Siebring J, Nagelkerke A, Włodarczyk-Biegun MK. Melt Electrowriting of Polyhydroxyalkanoates for Enzymatically Degradable Scaffolds. Adv Healthc Mater 2025; 14:e2401504. [PMID: 39533454 DOI: 10.1002/adhm.202401504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/12/2024] [Indexed: 11/16/2024]
Abstract
Melt electrowriting (MEW) enables precise scaffold fabrication for biomedical applications. With a limited number of processable materials with short and tunable degradation times, polyhydroxyalkanoates (PHAs) present an interesting option. Here, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and a blend of PHBV and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (PHBV+P34HB) are successfully melt electrowritten into scaffolds with various architectures. PHBV+P34HB exhibits greater thermal stability, making it a superior printing material compared to PHBV in MEW. The PHBV+P34HB scaffolds subjected to enzymatic degradation show tunable degradation times, governed by enzyme dilution, incubation time, and scaffold surface area. PHBV+P34HB scaffolds seeded with human dermal fibroblasts (HDFs), demonstrate enhanced cell adherence, proliferation, and spreading. The HDFs, when exposed to the enzyme solutions and enzymatic degradation residues, show good viability and proliferation rates. Additionally, HDFs grown on enzymatically pre-incubated scaffolds do not show any difference in behavior compared those grown on control scaffolds. It is concluded that PHAs, as biobased materials with enzymatically tunable degradability rates, are an important addition to the already limited set of materials available for MEW technology.
Collapse
Affiliation(s)
- Magdalena Z Gładysz
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
- Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, P.O. Box 196, XB20, Groningen, 9700 AD, The Netherlands
| | - Didi Ubels
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Marcus Koch
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Armin Amirsadeghi
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Frederique Alleblas
- Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, P.O. Box 196, XB20, Groningen, 9700 AD, The Netherlands
| | - Sander van Vliet
- Bioconversion and Fermentation Technology, Research Centre Biobased Economy, Hanze University of Applied Sciences, Zernikeplein 11, Groningen, 9747 AS, The Netherlands
| | - Marleen Kamperman
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Jeroen Siebring
- Bioconversion and Fermentation Technology, Research Centre Biobased Economy, Hanze University of Applied Sciences, Zernikeplein 11, Groningen, 9747 AS, The Netherlands
| | - Anika Nagelkerke
- Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, P.O. Box 196, XB20, Groningen, 9700 AD, The Netherlands
| | - Małgorzata K Włodarczyk-Biegun
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, Gliwice, 44-100, Poland
| |
Collapse
|
2
|
Wu X, Koch M, Martínez FPP, Schirhagl R, Włodarczyk‐Biegun MK. Quantum Sensing Unravels Antioxidant Efficacy Within PCL/Matrigel Skin Equivalents. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403729. [PMID: 39246220 PMCID: PMC11618742 DOI: 10.1002/smll.202403729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/27/2024] [Indexed: 09/10/2024]
Abstract
Skin equivalents (SE) that recapitulate biological and mechanical characteristics of the native tissue are promising platforms for assessing cosmetics and studying fundamental biological processes. Methods to achieve SEs with well-organized structure, and ideal biological and mechanical properties are limited. Here, the combination of melt electrowritten PCL scaffolds and cell-laden Matrigel to fabricate SE is described. The PCL scaffold provides ideal structural and mechanical properties, preventing deformation of the model. The model consists of a top layer for seeding keratinocytes to mimic the epidermis, and a bottom layer of Matrigel-based dermal compartment with fibroblasts. The compressive modulus and the biological properties after 3-day coculture indicate a close resemblance with the native skin. Using the SE, a testing system to study the damage caused by UVA irradiation and evaluate antioxidant efficacy is established. The effectiveness of Tea polyphenols (TPs) and L-ascorbic acid (Laa) is compared based on free radical generation. TPs are demonstrated to be more effective in downregulating free radical generation. Further, T1 relaxometry is used to detect the generation of free radicals at a single-cell level, which allows tracking of the same cell before and after UVA treatment.
Collapse
Affiliation(s)
- Xixi Wu
- Department of Biomedical EngineeringUniversity Medical Centre Groningen and University of GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Marcus Koch
- INM – Leibniz Institute for New MaterialsCampus D2 266123SaarbrueckenGermany
| | - Felipe P. Perona Martínez
- Department of Biomedical EngineeringUniversity Medical Centre Groningen and University of GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Romana Schirhagl
- Department of Biomedical EngineeringUniversity Medical Centre Groningen and University of GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Małgorzata K. Włodarczyk‐Biegun
- Polymer ScienceZernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
- Biotechnology CentreThe Silesian University of TechnologyKrzywoustego 8Gliwice44‐100Poland
| |
Collapse
|
3
|
Wang Z, Huang W, Jin S, Gao F, Sun T, He Y, Jiang X, Wang H. Hyaluronic acid/chitin thermosensitive hydrogel loaded with TGF-β1 promotes meniscus repair in rabbit meniscus full-thickness tear model. J Orthop Surg Res 2024; 19:683. [PMID: 39438973 PMCID: PMC11520169 DOI: 10.1186/s13018-024-05144-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024] Open
Abstract
Repair of the damaged meniscus is a scientific challenge owing to the poor self-healing potential of the white area of the meniscus. Tissue engineering provides a new method for the repair of meniscus injuries. In this study, we explored the superiority of 2% hyaluronic acid chitin hydrogel in temperature sensitivity, in vitro degradation, biocompatibility, cell adhesion, and other biological characteristics, and investigated the advantages of hyaluronic acid (HA) and Transforming Growth Factor β1 (TGF-β1) in promoting cell proliferation and a matrix formation phenotype. The hydrogel loaded with HA and TGF-β1 promoted cell proliferation. The HA + TGF-β1 mixed group showed the highest glycosaminoglycan (GAG) content and promoted cell migration. Hydroxypropyl chitin (HPCH), HA, and TGF-β1 were combined to form a composite hydrogel with a concentration of 2% after physical cross-linking, and this was injected into a rabbit model of a meniscus full-thickness tear. After 12 weeks of implantation, the TGF-β1 + HA/HPCH composite hydrogel was significantly better than HPCH, HA/HPCH, TGF-β1 + HPCH, and the control group in promoting meniscus repair. In addition, the new meniscus tissue of the TGF-β1 + HA/HPCH composite hydrogel had a tissue structure and biochemical content similar to that of the normal meniscus tissue.
Collapse
Affiliation(s)
- Ze Wang
- Department of Orthopedics, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430015, People's Republic of China
| | - Wei Huang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Shengyang Jin
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China
| | - Fei Gao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Tingfang Sun
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Yu He
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Hong Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
| |
Collapse
|
4
|
Li ZB, Liu J, Xu YN, Sun XM, Peng YH, Zhao Q, Lin YA, Huang YR, Ren L. Hydrophilic, Porous, Fiber-Reinforced Collagen-Based Membrane for Corneal Repair. Macromol Biosci 2024; 24:e2300449. [PMID: 38178686 DOI: 10.1002/mabi.202300449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Indexed: 01/06/2024]
Abstract
Collagen membrane with outstanding biocompatibility exhibits immense potential in the field of corneal repair and reconstruction, but the poor mechanical properties limit its clinical application. Polycaprolactone (PCL) is a biodegradable polymer widely explored for application in corneal reconstruction due to its excellent mechanical properties, biocompatibility, easy processability, and flexibility. In this study, a PCL/collagen composite membrane with reinforced mechanical properties is developed. The membrane has a strong composite structure with collagen by utilizing a porous and hydrophilic PCL scaffold, maintaining its integrity even after immersion. The suture retention and mechanical tests demonstrate that compared with the pure collagen membrane, the prepared membrane has a greater tensile strength and twice the modulus of elasticity. Further, the suture retention strength is improved by almost two times. In addition, the membrane remains fully intact on the implant bed in an in vitro corneal defect model. Moreover, the membrane can be tightly sutured to a rabbit corneal defect, progressively achieve epithelialization, and remain unchanged during observation. Overall, the PCL/collagen composite membrane is a promising candidate as a suturable corneal restoration material in clinical keratoplasty.
Collapse
Affiliation(s)
- Zhi-Biao Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Jia Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Ying-Ni Xu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Xiao-Min Sun
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Yue-Hai Peng
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
- Bio-land Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, P. R. China
- Guangzhou Proud Seeing Biotechnology Co., Ltd, Guangzhou, 510300, P. R. China
| | - Qi Zhao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Yong-An Lin
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Yong-Rui Huang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Li Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Bio-land Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, P. R. China
- Guangzhou Proud Seeing Biotechnology Co., Ltd, Guangzhou, 510300, P. R. China
| |
Collapse
|
5
|
Bandyopadhyay A, Ghibhela B, Shome S, Hoque S, Nandi SK, Mandal BB. Photo-Polymerizable Autologous Growth-Factor Loaded Silk-Based Biomaterial-Inks toward 3D Printing-Based Regeneration of Meniscus Tears. Adv Biol (Weinh) 2024; 8:e2300710. [PMID: 38402426 DOI: 10.1002/adbi.202300710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/13/2024] [Indexed: 02/26/2024]
Abstract
Meniscus tears in the avascular region undergoing partial or full meniscectomy lead to knee osteoarthritis and concurrent lifestyle hindrances in the young and aged alike. Here they reported ingenious photo-polymerizable autologous growth factor loaded 3D printed scaffolds to potentially treat meniscal defects . A shear-thinning photo-crosslinkable silk fibroin methacrylate-gelatin methacrylate-polyethylene glycol dimethacrylate biomaterial-ink is formulated and loaded with freeze-dried growth factor rich plasma (GFRP) . The biomaterial-ink exhibits optimal rheological properties and shape fidelity for 3D printing. Initial evaluation revealed that the 3D printed scaffolds mimic mechanical characteristics of meniscus, possess favourable porosity and swelling characteristics, and demonstrate sustained GFRP release. GFRP laden 3D scaffolds are screened with human neo-natal stem cells in vitro and biomaterial-ink comprising of 25 mg mL-1 of GFRP (GFRP25) is found to be amicable for meniscus tissue engineering. GFRP25 ink demonstrated rigorous rheological compliance, and printed constructs demonstrated long term degradability (>6 weeks), GFRP release (>5 weeks), and mechanical durability (3 weeks). GFRP25 scaffolds aided in proliferation of seeded human neo-natal stem cellsand their meniscus-specific fibrochondrogenic differentiation . GFRP25 constructs show amenable inflammatory response in vitro and in vivo. GFRP25 biomaterial-ink and printed GFRP25 scaffolds could be potential patient-specific treatment modalities for meniscal defects.
Collapse
Affiliation(s)
- Ashutosh Bandyopadhyay
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Baishali Ghibhela
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sayanti Shome
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Samsamul Hoque
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, 700037, India
| | - Samit K Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, 700037, India
| | - Biman B Mandal
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| |
Collapse
|
6
|
Bandyopadhyay A, Ghibhela B, Mandal BB. Current advances in engineering meniscal tissues: insights into 3D printing, injectable hydrogels and physical stimulation based strategies. Biofabrication 2024; 16:022006. [PMID: 38277686 DOI: 10.1088/1758-5090/ad22f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/26/2024] [Indexed: 01/28/2024]
Abstract
The knee meniscus is the cushioning fibro-cartilage tissue present in between the femoral condyles and tibial plateau of the knee joint. It is largely avascular in nature and suffers from a wide range of tears and injuries caused by accidents, trauma, active lifestyle of the populace and old age of individuals. Healing of the meniscus is especially difficult due to its avascularity and hence requires invasive arthroscopic approaches such as surgical resection, suturing or implantation. Though various tissue engineering approaches are proposed for the treatment of meniscus tears, three-dimensional (3D) printing/bioprinting, injectable hydrogels and physical stimulation involving modalities are gaining forefront in the past decade. A plethora of new printing approaches such as direct light photopolymerization and volumetric printing, injectable biomaterials loaded with growth factors and physical stimulation such as low-intensity ultrasound approaches are being added to the treatment portfolio along with the contemporary tear mitigation measures. This review discusses on the necessary design considerations, approaches for 3D modeling and design practices for meniscal tear treatments within the scope of tissue engineering and regeneration. Also, the suitable materials, cell sources, growth factors, fixation and lubrication strategies, mechanical stimulation approaches, 3D printing strategies and injectable hydrogels for meniscal tear management have been elaborated. We have also summarized potential technologies and the potential framework that could be the herald of the future of meniscus tissue engineering and repair approaches.
Collapse
Affiliation(s)
- Ashutosh Bandyopadhyay
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Baishali Ghibhela
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Biman B Mandal
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
7
|
Bader N, Abu Ammar A. Incorporating surfactants into PCL microneedles for sustained release of a hydrophilic model drug. Int J Pharm 2024; 652:123826. [PMID: 38253267 DOI: 10.1016/j.ijpharm.2024.123826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/29/2023] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
Polymeric microneedles (MNs) are widely used for sustained drug release due to their distinct advantages over other types of MNs. Poly-ε-caprolactone (PCL) stands out as a biodegradable and biocompatible hydrophobic polymer commonly employed in drug delivery applications. This study explores the impact of surfactants on the encapsulation and release rate of a model hydrophilic drug, minoxidil (MXD), from PCL MNs. Three nonionic surfactants, Tween 80, Span 60, and polyethylene glycol (PEG), were integrated into PCL MNs at varying concentrations. Compared to the other types of surfactants, PEG-containing PCL MNs exhibit enhanced insertion capabilities into a skin-simulant parafilm model and increased mechanical strength, suggesting facile penetration into the stratum corneum. Furthermore, MXD-PEG MNs show the highest encapsulation efficiency and are further characterized using FTIR, DSC and XRD. Their mechanical strength against different static forces was measured. The MNs exhibit a sustained release pattern over 20 days. Eventually, MXD-PEG MNs were subjected to penetration testing using chicken skin and required minimal insertion forces with no observed MN failure during experimentation even after compression with the maximum force applied (32 N per patch). Taken together, the present work demonstrates the feasibility of incorporating nonionic surfactants like PEG into the tips of hydrophobic PCL MNs for sustained delivery of a model hydrophilic drug. This formulation strategy can be used to improve patient compliance by allowing self-administration and achieving prolonged drug release.
Collapse
Affiliation(s)
- Nadeen Bader
- Department of Pharmaceutical Engineering, Azrieli College of Engineering Jerusalem, Jerusalem 9103501, Israel
| | - Aiman Abu Ammar
- Department of Pharmaceutical Engineering, Azrieli College of Engineering Jerusalem, Jerusalem 9103501, Israel.
| |
Collapse
|
8
|
Uboldi M, Chiappa A, Rossi M, Briatico-Vangosa F, Melocchi A, Zema L. Development of a multi-component gastroretentive expandable drug delivery system (GREDDS) for personalized administration of metformin. Expert Opin Drug Deliv 2024; 21:131-149. [PMID: 38088371 DOI: 10.1080/17425247.2023.2294884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
OBJECTIVES Efficacy and compliance of type II diabetes treatment would greatly benefit from dosage forms providing controlled release of metformin in the upper gastrointestinal tract. In this respect, the feasibility of a new system ensuring stomach-retention and personalized release of this drug at its absorption window for multiple days was investigated. METHODS The system proposed comprised of a drug-containing core and a viscoelastic umbrella-like skeleton, which were manufactured by melt-casting and 3D printing. Prototypes, alone or upon assembly and insertion into commercially-available capsules, were characterized for key parameters: thermo-mechanical properties, accelerated stability, degradation, drug release, deployment performance, and resistance to simulated gastric contractions. RESULTS Each part of the system was successfully manufactured using purposely-selected materials and the performance of final prototypes matched the desired one. This included: i) easy folding of the skeleton against the core in the collapsed administered shape, ii) rapid recovery of the cumbersome configuration at the target site, even upon storage, and iii) prolonged release of metformin. CONCLUSIONS Composition, geometry, and performance of the system developed in this work were deemed acceptable for stomach-retention and prolonged as well as customizable release of metformin in its absorption window, laying promising bases for further development steps.
Collapse
Affiliation(s)
- Marco Uboldi
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Arianna Chiappa
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Milano, Italy
| | - Margherita Rossi
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Milano, Italy
| | - Francesco Briatico-Vangosa
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Milano, Italy
| | - Alice Melocchi
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Lucia Zema
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
9
|
Alexeeva OV, Olkhov AA, Konstantinova ML, Podmasterev VV, Petrova TV, Martirosyan LY, Karyagina OK, Kozlov SS, Lomakin SM, Tretyakov IV, Siracusa V, Iordanskii AL. A Novel Approach for Glycero-(9,10-trioxolane)-Trialeate Incorporation into Poly(lactic acid)/Poly(ɛ-caprolactone) Blends for Biomedicine and Packaging. Polymers (Basel) 2023; 16:128. [PMID: 38201793 PMCID: PMC10780447 DOI: 10.3390/polym16010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
The product of ozonolysis, glycero-(9,10-trioxolane)-trioleate (ozonide of oleic acid triglyceride, [OTOA]), was incorporated into polylactic acid/polycaprolactone (PLA/PCL) blend films in the amount of 1, 5, 10, 20, 30 and 40% w/w. The morphological, mechanical, thermal and antibacterial properties of the biodegradable PLA/PCL films after the OTOA addition were studied. According to DSC and XRD data, the degree of crystallinity of the PLA/PCL + OTOA films showed a general decreasing trend with an increase in OTOA content. Thus, a significant decrease from 34.0% for the reference PLA/PCL film to 15.7% for the PLA/PCL + 40% OTOA film was established using DSC. Observed results could be explained by the plasticizing effect of OTOA. On the other hand, the PLA/PCL film with 20% OTOA does not follow this trend, showing an increase in crystallinity both via DSC (20.3%) and XRD (34.6%). OTOA molecules, acting as a plasticizer, reduce the entropic barrier for nuclei formation, leading to large number of PLA spherulites in the plasticized PLA/PCL matrix. In addition, OTOA molecules could decrease the local melt viscosity at the vicinity of the growing lamellae, leading to faster crystal growth. Morphological analysis showed that the structure of the films with an OTOA concentration above 20% drastically changed. Specifically, an interface between the PLA/PCL matrix and OTOA was formed, thereby forming a capsule with the embedded antibacterial agent. The moisture permeability of the resulting PLA/PCL + OTOA films decreased due to the formation of uniformly distributed hydrophobic amorphous zones that prevented water penetration. This architecture affects the tensile characteristics of the films: strength decreases to 5.6 MPa, elastic modulus E by 40%. The behavior of film elasticity is associated with the redistribution of amorphous regions in the matrix. Additionally, PLA/PCL + OTOA films with 20, 30 and 40% of OTOA showed good antibacterial properties on Pseudomonas aeruginosa, Raoultella terrigena (Klebsiella terrigena) and Agrobacterium tumefaciens, making the developed films potentially promising materials for wound-dressing applications.
Collapse
Affiliation(s)
- Olga V. Alexeeva
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (A.A.O.); (M.L.K.); (V.V.P.); (L.Y.M.); (O.K.K.); (S.S.K.); (S.M.L.)
| | - Anatoliy A. Olkhov
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (A.A.O.); (M.L.K.); (V.V.P.); (L.Y.M.); (O.K.K.); (S.S.K.); (S.M.L.)
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, 119991 Moscow, Russia; (T.V.P.); (I.V.T.); (A.L.I.)
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 117997 Moscow, Russia
| | - Marina L. Konstantinova
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (A.A.O.); (M.L.K.); (V.V.P.); (L.Y.M.); (O.K.K.); (S.S.K.); (S.M.L.)
| | - Vyacheslav V. Podmasterev
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (A.A.O.); (M.L.K.); (V.V.P.); (L.Y.M.); (O.K.K.); (S.S.K.); (S.M.L.)
| | - Tuyara V. Petrova
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, 119991 Moscow, Russia; (T.V.P.); (I.V.T.); (A.L.I.)
| | - Levon Yu. Martirosyan
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (A.A.O.); (M.L.K.); (V.V.P.); (L.Y.M.); (O.K.K.); (S.S.K.); (S.M.L.)
| | - Olga K. Karyagina
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (A.A.O.); (M.L.K.); (V.V.P.); (L.Y.M.); (O.K.K.); (S.S.K.); (S.M.L.)
| | - Sergey S. Kozlov
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (A.A.O.); (M.L.K.); (V.V.P.); (L.Y.M.); (O.K.K.); (S.S.K.); (S.M.L.)
| | - Sergey M. Lomakin
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (A.A.O.); (M.L.K.); (V.V.P.); (L.Y.M.); (O.K.K.); (S.S.K.); (S.M.L.)
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, 119991 Moscow, Russia; (T.V.P.); (I.V.T.); (A.L.I.)
| | - Ilya V. Tretyakov
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, 119991 Moscow, Russia; (T.V.P.); (I.V.T.); (A.L.I.)
| | - Valentina Siracusa
- Department of Chemical Science (DSC), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Alexey L. Iordanskii
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, 119991 Moscow, Russia; (T.V.P.); (I.V.T.); (A.L.I.)
| |
Collapse
|
10
|
Yang J, Wang H, Zhou Y, Duan L, Schneider KH, Zheng Z, Han F, Wang X, Li G. Silk Fibroin/Wool Keratin Composite Scaffold with Hierarchical Fibrous and Porous Structure. Macromol Biosci 2023; 23:e2300105. [PMID: 37247409 DOI: 10.1002/mabi.202300105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/04/2023] [Indexed: 05/31/2023]
Abstract
The present study describes a silk microfiber reinforced meniscus scaffold (SMRMS) with hierarchical fibrous and porous structure made from silk fibroin (SF) and wool keratin (WK) using electrospinning and freeze-drying technology. This study focuses on the morphology, secondary structure, mechanical properties, and water absorption properties of the scaffold. The cytotoxicity and biocompatibility of SMRMS are assessed in vivo and in vitro. The scaffold shows hierarchical fibrous and porous structure, hierarchical pore size distribution (ranges from 50 to 650 µm), robust mechanical properties (compression strength can reach at 2.8 MPa), and stable biodegradability. A positive growth condition revealed by in vitro cytotoxicity testing indicates that the scaffold is not hazardous to cells. In vivo assessments of biocompatibility reveal that only a mild inflammatory reaction is present in implanted rat tissue. Meniscal scaffold made of SF/WK composite shows a potential application prospect in the meniscal repair engineering field with its development.
Collapse
Affiliation(s)
- Jie Yang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Huan Wang
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Yuhang Zhou
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Lirong Duan
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Karl H Schneider
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Waehringer Gurtel 18-20, Vienna, 1090, Austria
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Fengxuan Han
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
11
|
Pratap-Singh A, Guo Y, Baldelli A, Singh A. Concept for a Unidirectional Release Mucoadhesive Buccal Tablet for Oral Delivery of Antidiabetic Peptide Drugs Such as Insulin, Glucagon-like Peptide 1 (GLP-1), and their Analogs. Pharmaceutics 2023; 15:2265. [PMID: 37765234 PMCID: PMC10534625 DOI: 10.3390/pharmaceutics15092265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 09/29/2023] Open
Abstract
Injectable peptides such as insulin, glucagon-like peptide 1 (GLP-1), and their agonists are being increasingly used for the treatment of diabetes. Currently, the most common route of administration is injection, which is linked to patient discomfort as well as being subjected to refrigerated storage and the requirement for efficient supply chain logistics. Buccal and sublingual routes are recognized as valid alternatives due to their high accessibility and easy administration. However, there can be several challenges, such as peptide selection, drug encapsulation, and delivery system design, which are linked to the enhancement of drug efficacy and efficiency. By using hydrophobic polymers that do not dissolve in saliva, and by using neutral or positively charged nanoparticles that show better adhesion to the negative charges generated by the sialic acid in the mucus, researchers have attempted to improve drug efficiency and efficacy in buccal delivery. Furthermore, unidirectional films and tablets seem to show the highest bioavailability as compared to sprays and other buccal delivery vehicles. This advantageous attribute can be attributed to their capability to mitigate the impact of saliva and inadvertent gastrointestinal enzymatic digestion, thereby minimizing drug loss. This is especially pertinent as these formulations ensure a more directed drug delivery trajectory, leading to heightened therapeutic outcomes. This communication describes the current state of the art with respect to the creation of nanoparticles containing peptides such as insulin, glucagon-like peptide 1 (GLP-1), and their agonists, and theorizes the production of mucoadhesive unidirectional release buccal tablets or films. Such an approach is more patient-friendly and can improve the lives of millions of diabetics around the world; in addition, these shelf-stable formulations ena a more environmentally friendly and sustainable supply chain network.
Collapse
Affiliation(s)
- Anubhav Pratap-Singh
- Food, Nutrition, and Health Program, Faculty of Land & Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Yigong Guo
- Food, Nutrition, and Health Program, Faculty of Land & Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
- Natural Health and Food Products Research Group, Centre for Applied Research & Innovation (CARI), British Columbia Institute of Technology, Burnaby, BC V5G 3H2, Canada
| | - Alberto Baldelli
- Food, Nutrition, and Health Program, Faculty of Land & Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Anika Singh
- Food, Nutrition, and Health Program, Faculty of Land & Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
- Natural Health and Food Products Research Group, Centre for Applied Research & Innovation (CARI), British Columbia Institute of Technology, Burnaby, BC V5G 3H2, Canada
| |
Collapse
|
12
|
Barceló X, Garcia O, Kelly DJ. Chondroitinase ABC Treatment Improves the Organization and Mechanics of 3D Bioprinted Meniscal Tissue. ACS Biomater Sci Eng 2023; 9:3488-3495. [PMID: 37192278 PMCID: PMC10265576 DOI: 10.1021/acsbiomaterials.3c00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/07/2023] [Indexed: 05/18/2023]
Abstract
The meniscus is a fibrocartilage tissue that is integral to the correct functioning of the knee joint. The tissue possesses a unique collagen fiber architecture that is integral to its biomechanical functionality. In particular, a network of circumferentially aligned collagen fibers function to bear the high tensile forces generated in the tissue during normal daily activities. The limited regenerative capacity of the meniscus has motivated increased interest in meniscus tissue engineering; however, the in vitro generation of structurally organized meniscal grafts with a collagen architecture mimetic of the native meniscus remains a significant challenge. Here we used melt electrowriting (MEW) to produce scaffolds with defined pore architectures to impose physical boundaries upon cell growth and extracellular matrix production. This enabled the bioprinting of anisotropic tissues with collagen fibers preferentially oriented parallel to the long axis of the scaffold pores. Furthermore, temporally removing glycosaminoglycans (sGAGs) during the early stages of in vitro tissue development using chondroitinase ABC (cABC) was found to positively impact collagen network maturation. Specially we found that temporal depletion of sGAGs is associated with an increase in collagen fiber diameter without any detrimental effect on the development of a meniscal tissue phenotype or subsequent extracellular matrix production. Moreover, temporal cABC treatment supported the development of engineered tissues with superior tensile mechanical properties compared to empty MEW scaffolds. These findings demonstrate the benefit of temporal enzymatic treatments when engineering structurally anisotropic tissues using emerging biofabrication technologies such as MEW and inkjet bioprinting.
Collapse
Affiliation(s)
- Xavier Barceló
- Trinity
Centre for Biomedical Engineering, Trinity
Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department
of Mechanical, Manufacturing, & Biomedical Engineering, School
of Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Advanced
Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity
College Dublin, Dublin D02 F6N2, Ireland
| | - Orquidea Garcia
- Johnson
& Johnson 3D Printing Innovation & Customer Solutions, Johnson & Johnson Services, Inc., Dublin D02 R590, Ireland
| | - Daniel J. Kelly
- Trinity
Centre for Biomedical Engineering, Trinity
Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department
of Mechanical, Manufacturing, & Biomedical Engineering, School
of Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Advanced
Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity
College Dublin, Dublin D02 F6N2, Ireland
- Department
of Anatomy and Regenerative Medicine, Royal
College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| |
Collapse
|
13
|
Li W, Xu F, Dai F, Deng T, Ai Y, Xu Z, He C, Ai F, Song L. Hydrophilic surface-modified 3D printed flexible scaffolds with high ceramic particle concentrations for immunopolarization-regulation and bone regeneration. Biomater Sci 2023; 11:3976-3997. [PMID: 37115001 DOI: 10.1039/d3bm00362k] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Bioceramic scaffolds used in bone tissue engineering suffer from a low concentration of ceramic particles (<50 wt%), because the high concentration of ceramic particles increases the brittleness of the composite. 3D printed flexible PCL/HA scaffolds with high ceramic particle concentrations (84 wt%) were successfully fabricated in this study. However, the hydrophobicity of PCL weakens the composite scaffold hydrophilicity, which may limit the osteogenic ability to some extent. Thus, as a less time-consuming, less labour intensive, and more cost-effective treatment method, alkali treatment (AT) was employed to modify the surface hydrophilicity of the PCL/HA scaffold, and its regulation of immune responses and bone regeneration were investigated in vivo and in vitro. Initially, several concentrations of NaOH (0.5, 1, 1.5, 2, 2.5, and 5 mol L-1) were employed in tests to determine the appropriate concentration for AT. Based on the comprehensive consideration of the results of mechanical experiments and hydrophilicity, 2 mol L-1 and 2.5 mol L-1 of NaOH were selected for further investigation in this study. The PCL/HA-AT-2 scaffold dramatically reduced foreign body reactions as compared to the PCL/HA and PCL/HA-AT-2.5 scaffolds, promoted macrophage polarization towards the M2 phenotype and enhanced new bone formation. The Wnt/β-catenin pathway might participate in the signal transduction underlying hydrophilic surface-modified 3D printed scaffold-regulated osteogenesis, according to the results of immunohistochemical staining. In conclusion, hydrophilic surface-modified 3D printed flexible scaffolds with high ceramic particle concentrations can regulate the immune reactions and macrophage polarization to promote bone regeneration, and the PCL/HA-AT-2 scaffold is a potential candidate for bone tissue repair.
Collapse
Affiliation(s)
- Wenfeng Li
- The Center of Stomatology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, China.
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, China
| | - Fancheng Xu
- The Center of Stomatology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, China.
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, China
| | - Fang Dai
- The Center of Stomatology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, China.
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, China
| | - Tian Deng
- The Center of Stomatology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, China.
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, China
| | - Yufeng Ai
- The Center of Stomatology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, China.
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, China
| | - Zhiyong Xu
- School of Pharmacy, Nanchang University, Nanchang, China
| | - Chenjiang He
- The Center of Stomatology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, China.
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, China
| | - Fanrong Ai
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, China
- School of Advanced Manufacturing, Nanchang University, Nanchang, China.
| | - Li Song
- The Center of Stomatology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, China.
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, China
| |
Collapse
|
14
|
Geoghegan N, O'Loughlin M, Delaney C, Rochfort KD, Kennedy M, Kolagatla S, Podhorska L, Rodriguez BJ, Florea L, Kelleher SM. Controlled degradation of polycaprolactone-based micropillar arrays. Biomater Sci 2023; 11:3077-3091. [PMID: 36876330 PMCID: PMC10152922 DOI: 10.1039/d3bm00165b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Herein we demonstrate the fabrication of arrays of micropillars, achieved through the combination of direct laser writing and nanoimprint lithography. By combining two diacrylate monomers, polycaprolactone dimethacrylate (PCLDMA) and 1,6-hexanediol diacrylate (HDDA), two copolymer formulations that, owing to the varying ratios of the hydrolysable ester functionalities present in the polycaprolactone moiety, can be degraded in the presence of base in a controllable manner. As such, the degradation of the micropillars can be tuned over several days as a function of PCLDMA concentration within the copolymer formulations, and the topography greatly varied over a short space of time, as visualised using scanning electron microscopy and atomic force microscopy. Crosslinked neat HDDA was used as a control material, demonstrating that the presence of the PCL was responsible for the ability of the microstructures to degrade in the controlled manner. In addition, the mass loss of the crosslinked materials was minimal, demonstrating the degradation of microstructured surfaces without loss of bulk properties was possible. Moreover, the compatibility of these crosslinked materials with mammalian cells was explored. The influence of both indirect and direct contact of the materials with A549 cells was assessed by profiling indices reflective of cytotoxicity such as morphology, adhesion, metabolic activity, oxidative balance, and release of injury markers. No significant changes in the aforementioned profile were observed in the cells cultured under these conditions for up to 72 h, with the cell-material interaction suggesting these materials may have potential in microfabrication contexts towards biomedical application purposes.
Collapse
Affiliation(s)
- Niamh Geoghegan
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland. .,CURAM, Science Foundation Ireland Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Mark O'Loughlin
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Colm Delaney
- School of Chemistry and AMBER, the SFI Research Centre for Advanced Materials and BioEngineering Research, Trinity College Dublin, the University of Dublin, College Green, Dublin 2, Ireland
| | - Keith D Rochfort
- School of Nursing, Psychotherapy, and Community Health, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Meabh Kennedy
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Srikanth Kolagatla
- School of Chemistry and AMBER, the SFI Research Centre for Advanced Materials and BioEngineering Research, Trinity College Dublin, the University of Dublin, College Green, Dublin 2, Ireland.,Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lucia Podhorska
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Brian J Rodriguez
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Larisa Florea
- School of Chemistry and AMBER, the SFI Research Centre for Advanced Materials and BioEngineering Research, Trinity College Dublin, the University of Dublin, College Green, Dublin 2, Ireland
| | - Susan M Kelleher
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland. .,CURAM, Science Foundation Ireland Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland.,School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
15
|
Janmohammadi M, Nourbakhsh MS, Bahraminasab M, Tayebi L. Effect of Pore Characteristics and Alkali Treatment on the Physicochemical and Biological Properties of a 3D-Printed Polycaprolactone Bone Scaffold. ACS OMEGA 2023; 8:7378-7394. [PMID: 36873019 PMCID: PMC9979326 DOI: 10.1021/acsomega.2c05571] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/08/2023] [Indexed: 05/09/2023]
Abstract
Polycaprolactone scaffolds were designed and 3D-printed with different pore shapes (cube and triangle) and sizes (500 and 700 μm) and modified with alkaline hydrolysis of different ratios (1, 3, and 5 M). In total, 16 designs were evaluated for their physical, mechanical, and biological properties. The present study mainly focused on the pore size, porosity, pore shapes, surface modification, biomineralization, mechanical properties, and biological characteristics that might influence bone ingrowth in 3D-printed biodegradable scaffolds. The results showed that the surface roughness in treated scaffolds increased compared to untreated polycaprolactone scaffolds (R a = 2.3-10.5 nm and R q = 17- 76 nm), but the structural integrity declined with an increase in the NaOH concentration especially in the scaffolds with small pores and a triangle shape. Overall, the treated polycaprolactone scaffolds particularly with the triangle shape and smaller pore size provided superior performance in mechanical strength similar to that of cancellous bone. Additionally, the in vitro study showed that cell viability increased in the polycaprolactone scaffolds with cubic pore shapes and small pore sizes, whereas mineralization was enhanced in the designs with larger pore sizes. Based on the results obtained, this study demonstrated that the 3D-printed modified polycaprolactone scaffolds exhibit a favorable mechanical property, biomineralization, and better biological properties; therefore, they can be applied in bone tissue engineering.
Collapse
Affiliation(s)
- Mahsa Janmohammadi
- Department
of Biomedical Engineering, Faculty of New Sciences and Technologies, Semnan University, Semnan 3513119111, Iran
| | | | - Marjan Bahraminasab
- Department
of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran
- Nervous
System Stem Cells Research Center, Semnan
University of Medical Sciences, Semnan 3513138111, Iran
| | - Lobat Tayebi
- Marquette
University School of Dentistry, Milwaukee, Wisconsin 53233, United States
| |
Collapse
|
16
|
Urbaniak T, Musiał W. Layer-by-Layer Surface Modification of Alendronate-Loaded Polyester Microparticles-Enabling Protein Immobilization. Polymers (Basel) 2022; 14:polym14224943. [PMID: 36433069 PMCID: PMC9697578 DOI: 10.3390/polym14224943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
The highly inert surface of polyester micro- and nano- drug carriers is a challenging substrate for further modification. The presence of surface moieties suitable for macromolecule coupling is crucial in the development of targeted drug delivery systems. Among available methods of surface activation, those based on adsorption of charged macromolecules may be carried out in mild conditions. In this work, alendronate-loaded microcores of three polyesters: poly-ε-caprolactone (PCL), poly(l-lactide-co-ε-caprolactone) (PLA-co-PCL) and poly(lactic-co-glycolic acid) (PLGA) were coated with three polyelectrolyte shells composed of chitosan/heparin (CHIT/HEP), polyallylamine/heparin (PAH/HEP), and polyethyleneimine/heparin (PEI/HEP) via the layer-by-layer method. Subsequently, the feasibility of model protein immobilization on obtained shells was assessed. Electrokinetic potential measurements confirmed the possibility of deposition of all investigated coating variants, and a positive correlation between initial core ζ potential and intensity of charge alterations after deposition of subsequent layers was identified. PEI/HEP assembly was stable in physiological-like conditions, while PAH/HEP multilayers disassembled in presence of phosphate ions, and CHIT/HEP shell showed limited stability in pH 7.4. Fluorescence assays of fluorescein tagged lysozyme surface coupled via ethylcarbodiimide hydrochloride/N-Hydroxysuccinimide (EDC/NHS) click reaction with all shell variants indicated satisfying reaction efficiency. Poly-ε-caprolactone cores coated with CHIT/HEP tetralayer were selected as suitable for model IgG surface immobilization. Antibodies immobilized on the shell surface exhibited a moderate degree of affinity to fluorescent IgG binding protein.
Collapse
|
17
|
Zhu W, Chen R, Wang W, Liu Y, Shi C, Tang S, Tang G. Fabrication of Naturally Derived Double-Network Hydrogels With a Sustained Aspirin Release System for Facilitating Bone Regeneration. Front Chem 2022; 10:874985. [PMID: 35419346 PMCID: PMC8995466 DOI: 10.3389/fchem.2022.874985] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/08/2022] [Indexed: 12/20/2022] Open
Abstract
Continuous efforts on pursuit of effective drug delivery systems for engineering hydrogel scaffolds is considered a promising strategy for the bone-related diseases. Here, we developed a kind of acetylsalicylic acid (aspirin, ASA)-based double-network (DN) hydrogel containing the positively charged natural chitosan (CS) and methacrylated gelatin (GelMA) polymers. Combination of physical chain-entanglement, electrostatic interactions, and a chemically cross-linked methacrylated gelatin (GelMA) network led to the formation of a DN hydrogel, which had a suitable porous structure and favorable mechanical properties. After in situ encapsulation of aspirin agents, the resulting hydrogels were investigated as culturing matrices for adipose tissue-derived stromal cells (ADSCs) to evaluate their excellent biocompatibility and biological capacities on modulation of cell proliferation and differentiation. We further found that the long-term sustained ASA in the DN hydrogels could contribute to the anti-inflammation and osteoinductive properties, demonstrating a new strategy for bone tissue regeneration.
Collapse
Affiliation(s)
- Wenfeng Zhu
- Department of Orthopedics, Shanghai Post and Telecommunication Hospital, Shanghai, China
| | - Rui Chen
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Weiheng Wang
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yi Liu
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Changgui Shi
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Songjun Tang
- Department of Orthopedics, Shanghai Post and Telecommunication Hospital, Shanghai, China
| | - Guoke Tang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
18
|
Stocco E, Porzionato A, De Rose E, Barbon S, Caro RD, Macchi V. Meniscus regeneration by 3D printing technologies: Current advances and future perspectives. J Tissue Eng 2022; 13:20417314211065860. [PMID: 35096363 PMCID: PMC8793124 DOI: 10.1177/20417314211065860] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/24/2021] [Indexed: 01/10/2023] Open
Abstract
Meniscal tears are a frequent orthopedic injury commonly managed by conservative
strategies to avoid osteoarthritis development descending from altered
biomechanics. Among cutting-edge approaches in tissue engineering, 3D printing
technologies are extremely promising guaranteeing for complex biomimetic
architectures mimicking native tissues. Considering the anisotropic
characteristics of the menisci, and the ability of printing over structural
control, it descends the intriguing potential of such vanguard techniques to
meet individual joints’ requirements within personalized medicine. This
literature review provides a state-of-the-art on 3D printing for meniscus
reconstruction. Experiences in printing materials/technologies, scaffold types,
augmentation strategies, cellular conditioning have been compared/discussed;
outcomes of pre-clinical studies allowed for further considerations. To date,
translation to clinic of 3D printed meniscal devices is still a challenge:
meniscus reconstruction is once again clear expression of how the integration of
different expertise (e.g., anatomy, engineering, biomaterials science, cell
biology, and medicine) is required to successfully address native tissues
complexities.
Collapse
Affiliation(s)
- Elena Stocco
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| | - Andrea Porzionato
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| | - Enrico De Rose
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
| | - Silvia Barbon
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| | - Raffaele De Caro
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| | - Veronica Macchi
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| |
Collapse
|
19
|
Han X, Chang S, Zhang M, Bian X, Li C, Li D. Advances of Hydrogel-Based Bioprinting for Cartilage Tissue Engineering. Front Bioeng Biotechnol 2021; 9:746564. [PMID: 34660559 PMCID: PMC8511323 DOI: 10.3389/fbioe.2021.746564] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/27/2021] [Indexed: 12/17/2022] Open
Abstract
Bioprinting has gained immense attention and achieved the revolutionized progress for application in the multifunctional tissue regeneration. On account of the precise structural fabrication and mimicking complexity, hydrogel-based bio-inks are widely adopted for cartilage tissue engineering. Although more and more researchers have reported a number of literatures in this field, many challenges that should be addressed for the development of three-dimensional (3D) bioprinting constructs still exist. Herein, this review is mainly focused on the introduction of various natural polymers and synthetic polymers in hydrogel-based bioprinted scaffolds, which are systematically discussed via emphasizing on the fabrication condition, mechanical property, biocompatibility, biodegradability, and biological performance for cartilage tissue repair. Further, this review describes the opportunities and challenges of this 3D bioprinting technique to construct complex bio-inks with adjustable mechanical and biological integrity, and meanwhile, the current possible solutions are also conducted for providing some suggestive ideas on developing more advanced bioprinting products from the bench to the clinic.
Collapse
Affiliation(s)
- Xue Han
- The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Shuai Chang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | | | - Xiangbing Bian
- The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chunlin Li
- The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Dawei Li
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
20
|
Abstract
Iron oxide nanoparticles were employed to fabricate a soft tissue scaffold with enhanced physicochemical and biological characteristics. Growth promotion effect of L-lysine coated magnetite (Lys@Fe3O4) nanoparticles on the liver cell lines was proved previously. So, in the current experiment these nanoparticles were employed to fabricate a soft tissue scaffold with growth promoting effect on the liver cells. Lys@Fe3O4 nanoparticles were synthesized via co-precipitation reaction. Resulted particles were ~7 nm in diameter and various concentrations (3, 5, and 10 wt%) of these nanoparticles were used to fabricate nanocomposite PCL fibers. Electrospinning technique was employed and physicochemical characteristics of the resulted nanofibers were evaluated. Electron micrographs and EDX-mapping analysis showed that nanoparticles were well dispersed in the PCL fibers and no bead structure were formed. As expected, incorporation of Lys@Fe3O4 to the PCL nanofibers resulted in a reduction in hydrophobicity of the scaffold. Nanocomposite scaffolds were shown increased tensile strength with increasing concentration of employed nanoparticles. In contrast to PCL scaffold, nearly 150% increase in the cell viability was observed after 3-days exposure to the nanocomposite scaffolds. This study indicates that incorporation of magnetite nanoparticles in the PCL fibers make them more prone to cell attachment. However, incorporated nanoparticles can provide the attached cells with valuable iron element and consequently promote the cells growth rate. Based on the results, magnetite enriched PCL nanofibers could be introduced as a scaffold to enhance the biological performance for liver tissue engineering purposes.
Collapse
|
21
|
Dabasinskaite L, Krugly E, Baniukaitiene O, Martuzevicius D, Ciuzas D, Jankauskaite L, Aukstikalne L, Usas A. The Effect of Ozone Treatment on the Physicochemical Properties and Biocompatibility of Electrospun Poly(ε)caprolactone Scaffolds. Pharmaceutics 2021; 13:1288. [PMID: 34452249 PMCID: PMC8400338 DOI: 10.3390/pharmaceutics13081288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/14/2021] [Indexed: 12/05/2022] Open
Abstract
Ozonation has been proved as a viable surface modification technique providing certain properties to the scaffolds that are essential in tissue engineering. However, the ozone (O3) treatment of PCL scaffolds in aqueous environments has not yet been presented. O3 treatment performed in aqueous environments is more effective compared with traditional, executed in ambient air treatment due to more abundant production of hydroxyl radicals (•OH) within the O3 reaction with water molecules. During interaction with •OH, the scaffold acquires functional groups which improve wettability properties and encapsulate growth factors. In this study, a poly(ε)caprolactone (PCL) scaffold was fabricated using solution electrospinning and was subsequently ozonated in a water reactor. The O3 treatment resulted in the expected occurrence of oxygen-containing functional groups, which improved scaffold wettability by almost 27% and enhanced cell proliferation for up to 14 days. The PCL scaffold was able to withhold 120 min of O3 treatment, maintaining fibrous morphology and mechanical properties.
Collapse
Affiliation(s)
- Lauryna Dabasinskaite
- Department of Environmental Technology, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (E.K.); (D.M.); (D.C.)
| | - Edvinas Krugly
- Department of Environmental Technology, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (E.K.); (D.M.); (D.C.)
| | - Odeta Baniukaitiene
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, LT-50254 Kaunas, Lithuania;
| | - Dainius Martuzevicius
- Department of Environmental Technology, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (E.K.); (D.M.); (D.C.)
| | - Darius Ciuzas
- Department of Environmental Technology, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (E.K.); (D.M.); (D.C.)
| | - Lina Jankauskaite
- Faculty of Medicine, Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (L.J.); (L.A.); (A.U.)
| | - Lauryna Aukstikalne
- Faculty of Medicine, Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (L.J.); (L.A.); (A.U.)
| | - Arvydas Usas
- Faculty of Medicine, Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (L.J.); (L.A.); (A.U.)
| |
Collapse
|
22
|
Chaiarwut S, Ekabutr P, Chuysinuan P, Chanamuangkon T, Supaphol P. Surface immobilization of PCL electrospun nanofibers with pexiganan for wound dressing. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02669-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Lores NJ, Hung X, Talou MH, Abraham GA, Caracciolo PC. Novel three‐dimensional printing of poly(ester urethane) scaffolds for biomedical applications. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nayla J. Lores
- División Polímeros Biomédicos, Instituto de Investigaciones en Ciencia y Tecnología de Materiales INTEMA (UNMdP‐CONICET) Mar del Plata Argentina
| | - Xavier Hung
- División Cerámicos, Instituto de Investigaciones en Ciencia y Tecnología de Materiales INTEMA (UNMdP‐CONICET) Mar del Plata Argentina
| | - Mariano H. Talou
- División Cerámicos, Instituto de Investigaciones en Ciencia y Tecnología de Materiales INTEMA (UNMdP‐CONICET) Mar del Plata Argentina
| | - Gustavo A. Abraham
- División Polímeros Biomédicos, Instituto de Investigaciones en Ciencia y Tecnología de Materiales INTEMA (UNMdP‐CONICET) Mar del Plata Argentina
| | - Pablo C. Caracciolo
- División Polímeros Biomédicos, Instituto de Investigaciones en Ciencia y Tecnología de Materiales INTEMA (UNMdP‐CONICET) Mar del Plata Argentina
| |
Collapse
|
24
|
Zhang M, Liang J, Yang Y, Liang H, Jia H, Li D. Current Trends of Targeted Drug Delivery for Oral Cancer Therapy. Front Bioeng Biotechnol 2020; 8:618931. [PMID: 33425881 PMCID: PMC7793972 DOI: 10.3389/fbioe.2020.618931] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/19/2020] [Indexed: 12/29/2022] Open
Abstract
Oral cancer is an aggressive tumor that invades the local tissue and can cause metastasis and high mortality. Conventional treatment strategies, e.g., surgery, chemotherapy, and radiation therapy alone or in combinations, possess innegligible issues, and significant side and adverse effects for the clinical applications. Currently, targeting drug delivery is emerging as an effective approach for oral delivery of different therapeutics. Herein we provide a state-of-the-art review on the current progress of targeting drug delivery for oral cancer therapy. Variously oral delivery systems including polymeric/inorganic nanoparticles, liposomes, cyclodextrins, nanolipids, and hydrogels-based forms are emphasized and discussed, and biomimetic systems with respect to oral delivery like therapeutic vitamin, exosomes, proteins, and virus-like particles are also described with emphasis on the cancer treatment. A future perspective is also provided to highlight the existing challenges and possible resolution toward clinical translation of current oral cancer therapies.
Collapse
Affiliation(s)
- Mingming Zhang
- Strategic Support Force Characteristic Medical Center of Chinese People's Liberation Army, Beijing, China
| | - Jianqin Liang
- The 8th Medical Center, General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Yanyu Yang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Huize Liang
- Strategic Support Force Characteristic Medical Center of Chinese People's Liberation Army, Beijing, China
| | - Huaping Jia
- Strategic Support Force Characteristic Medical Center of Chinese People's Liberation Army, Beijing, China
| | - Dawei Li
- The 4th Medical Center, General Hospital of the Chinese People's Liberation Army, Beijing, China
| |
Collapse
|
25
|
Tang G, Zhou B, Li F, Wang W, Liu Y, Wang X, Liu C, Ye X. Advances of Naturally Derived and Synthetic Hydrogels for Intervertebral Disk Regeneration. Front Bioeng Biotechnol 2020; 8:745. [PMID: 32714917 PMCID: PMC7344321 DOI: 10.3389/fbioe.2020.00745] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022] Open
Abstract
Intervertebral disk (IVD) degeneration is associated with most cases of cervical and lumbar spine pathologies, amongst which chronic low back pain has become the primary cause for loss of quality-adjusted life years. Biomaterials science and tissue engineering have made significant progress in the replacement, repair and regeneration of IVD tissue, wherein hydrogel has been recognized as an ideal biomaterial to promote IVD regeneration in recent years. Aspects such as ease of use, mechanical properties, regenerative capacity, and their applicability as carriers for regenerative and anti-degenerative factors determine their suitability for IVD regeneration. This current review provides an overview of naturally derived and synthetic hydrogels that are related to their clinical applications for IVD regeneration. Although each type has its own unique advantages, it rarely becomes a standard product in truly clinical practice, and a more rational design is proposed for future use of biomaterials for IVD regeneration. This review aims to provide a starting point and inspiration for future research work on development of novel biomaterials and biotechnology.
Collapse
Affiliation(s)
- Guoke Tang
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medical CSU, Zhuzhou, China
| | - Bingyan Zhou
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medical CSU, Zhuzhou, China
| | - Feng Li
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medical CSU, Zhuzhou, China
| | - Weiheng Wang
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yi Liu
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chao Liu
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medical CSU, Zhuzhou, China
| | - Xiaojian Ye
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|