1
|
Ali BM, Elbaz EM, Al-Mokaddem AK, El-Emam SZ, Awny MM. Delphinidin or α-amyrin attenuated liver steatosis and metabolic disarrangement in rats fed a high-fat diet. Biofactors 2024. [PMID: 39431734 DOI: 10.1002/biof.2133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a liver pathology concomitant with metabolic disarrangement. This study assessed the therapeutic impacts of delphinidin, an anthocyanin, or α-amyrin, a pentacyclic triterpenoid, on NAFLD in rats and the underlying mechanisms involved. NAFLD was established by feeding a high-fat diet (HFD) for 10 weeks, either alone or in combination with delphinidin (40 mg/kg, oral) or α-amyrin (20 mg/kg, oral). Delphinidin or α-amyrin ameliorated the metabolic and histopathological perturbations induced by HFD. These compounds markedly attenuated NAFLD-induced hepatic steatosis, as evidenced by a substantial decrease in body weight, insulin resistance, and liver and adipose tissue indices. Alongside normalization of the atherogenic index, both improved HFD-mediated abnormalities in serum lipids, liver enzymes, leptin, and ghrelin levels. Moreover, their intervention activated the NFE2 like bZIP transcription factor 2 and heme oxygenase 1 pathways and abrogated HFD-triggered activation of mitogen-activated protein kinase 1 signaling. These remedies inhibited hepatic apoptosis and modulated the gene expression of lipogenic enzymes. Furthermore, histological analysis corroborated the suppression of lipid accumulation and amelioration of hepatic architecture in the treated rats. Our findings highlight the hepatoprotective value of delphinidin or α-amyrin against NAFLD and related metabolic diseases through their insulin-sensitizing, anti-inflammatory, antioxidant, and antiapoptotic effects.
Collapse
Affiliation(s)
- Bassam Mohamed Ali
- Department of Biochemistry, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Eman M Elbaz
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Asmaa K Al-Mokaddem
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Soad Z El-Emam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Magdy M Awny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza, Egypt
| |
Collapse
|
2
|
Tao SH, Lei YQ, Tan YM, Yang YB, Xie WN. Chinese herbal formula in the treatment of metabolic dysfunction-associated steatotic liver disease: current evidence and practice. Front Med (Lausanne) 2024; 11:1476419. [PMID: 39440040 PMCID: PMC11493624 DOI: 10.3389/fmed.2024.1476419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease, continues to rise with rapid economic development and poses significant challenges to human health. No effective drugs are clinically approved. MASLD is regarded as a multifaceted pathological process encompassing aberrant lipid metabolism, insulin resistance, inflammation, gut microbiota imbalance, apoptosis, fibrosis, and cirrhosis. In recent decades, herbal medicines have gained increasing attention as potential therapeutic agents for the prevention and treatment of MASLD, due to their good tolerance, high efficacy, and low toxicity. In this review, we summarize the pathological mechanisms of MASLD; emphasis is placed on the anti-MASLD mechanisms of Chinese herbal formula (CHF), especially their effects on improving lipid metabolism, inflammation, intestinal flora, and fibrosis. Our goal is to better understand the pharmacological mechanisms of CHF to inform research on the development of new drugs for the treatment of MASLD.
Collapse
Affiliation(s)
- Shao-Hong Tao
- Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Yu-Qing Lei
- Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Yi-Mei Tan
- Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Yu-Bo Yang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Wei-Ning Xie
- Department of Scientific Research, Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Foshan, Guangdong, China
| |
Collapse
|
3
|
Wang S, Chen B, Du R, Zhong M, Zhang C, Jin X, Cui X, Zhou Y, Kang Q, Xu H, Li Y, Wu Q, Tong G, Luo L. An herbal formulation "Shugan Xiaozhi decoction" ameliorates methionine/choline deficiency-induced nonalcoholic steatohepatitis through regulating inflammation and apoptosis-related pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118127. [PMID: 38583728 DOI: 10.1016/j.jep.2024.118127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shugan Xiaozhi (SGXZ) decoction is a traditional Chinese medicine used for treating nonalcoholic steatohepatitis (NASH). It has been used clinically for over 20 years and proved to be effective; however, the molecular mechanism underlying the effects of SGXZ decoction remains unclear. AIM OF THE STUDY We analyzed the chemical components, core targets, and molecular mechanisms of SGXZ decoction to improve NASH through network pharmacology and in vivo experiments. MATERIALS AND METHODS The chemical components, core targets, and related signaling pathways of SGXZ decoction intervention in NASH were predicted using network pharmacology. Molecular docking was performed to verify chemical components and their core targets. The results were validated in the NASH model treated with SGXZ decoction. Mouse liver function was assessed by measuring ALT and AST levels. TC and TG levels were determined to evaluate lipid metabolism, and lipid deposition was assessed via oil red O staining. Mouse liver damage was determined via microscopy following hematoxylin and eosin staining. Liver fibrosis was assessed via Masson staining. Western blot (WB) and immunohistochemical (IHC) analyses were performed to detect inflammation and the expression of apoptosis-related proteins, including IL-1β, IL-6, IL-18, TNF-α, MCP1, p53, FAS, Caspase-8, Caspase-3, Caspase-9, Bax, Bid, Cytochrome c, Bcl-2, and Bcl-XL. In addition, WB and IHC were used to assess protein expression associated with the TLR4/MyD88/NF-κB pathway. RESULTS Quercetin, luteolin, kaempferol, naringenin, and nobiletin in SGXZ decoction were effective chemical components in improving NASH, and TNF-α, IL-6, and IL-1β were the major core targets. Molecular docking indicated that these chemical components and major core targets might interact. KEGG pathway analysis showed that the pathways affected by SGXZ decoction, primarily including apoptosis and TLR4/NF-κB signaling pathways, interfere with NASH. In vivo experiments indicated that SGXZ decoction considerably ameliorated liver damage, fibrosis, and lipid metabolism disorder in MCD-induced NASH mouse models. In addition, WB and IHC verified the underlying molecular mechanisms of SGXZ decoction as predicted via network pharmacology. SGXZ decoction inhibited the activation of apoptosis-related pathways in MCD-induced NASH mice. Moreover, SGXZ decoction suppressed the activation of TLR4/MyD88/NF-κB pathway in MCD-induced NASH mice. CONCLUSION SGXZ decoction can treat NASH through multiple targets and pathways. These findings provide new insights into the effective treatment of NASH using SGXZ decoction.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China; Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China; Shenzhen Key Laboratory of Liver Diseases of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China
| | - Bohao Chen
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China; Shenzhen Key Laboratory of Liver Diseases of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China; Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China
| | - Ruili Du
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China; Shenzhen Key Laboratory of Liver Diseases of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China; Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China
| | - Mei Zhong
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China; Shenzhen Key Laboratory of Liver Diseases of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China; Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China
| | - Chunmei Zhang
- School of Basic Medical Science of Luoyang Polytechnic, No. 6 Keji Avenue, Yibin District, Henan, 471099, China
| | - Xiaoming Jin
- Department of Nephrology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China
| | - Xiang Cui
- Ankang Traditional Chinese Medicine Hospital, Ankang, 725000, Shaanxi, China
| | - Yuhang Zhou
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China; Shenzhen Key Laboratory of Liver Diseases of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China; Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China
| | - Qinyang Kang
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China; Shenzhen Key Laboratory of Liver Diseases of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China
| | - Hang Xu
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China; Shenzhen Key Laboratory of Liver Diseases of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China
| | - Yuting Li
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China; Shenzhen Key Laboratory of Liver Diseases of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China
| | - Qibiao Wu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China.
| | - Guangdong Tong
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China; Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China; Shenzhen Key Laboratory of Liver Diseases of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China; Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China.
| | - Lidan Luo
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China; Shenzhen Key Laboratory of Liver Diseases of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China.
| |
Collapse
|
4
|
Zhou L, Zeng X, Wei X, Shen W, Yao J, Wu W, Ge L, Zhou B. Bao-Gan-Xiao-Zhi-Wan Treatment Attenuates Methionine-choline-deficient Diet-induced Metabolic Dysfunction-associated Steatohepatitis in Rats by Modulating the NF-κB Signal Pathway and Autophagy. J Clin Transl Hepatol 2024; 12:607-611. [PMID: 38974960 PMCID: PMC11224906 DOI: 10.14218/jcth.2024.00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 07/09/2024] Open
Affiliation(s)
- Liming Zhou
- The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, Guangdong, China
- Department of Endocrinology, Shenzhen Second People’s Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen University, Shenzhen, Guangdong, China
| | - Xiaobin Zeng
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China
- Department of Pathology (Longhua Branch), Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China
| | - Xiaofang Wei
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Wanying Shen
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jie Yao
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China
| | - Weigang Wu
- The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, Guangdong, China
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China
| | - Lanlan Ge
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China
- Department of Pathology (Longhua Branch), Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China
| | - Boping Zhou
- The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, Guangdong, China
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Wang Y, Gu W, Kui F, Gao F, Niu Y, Li W, Zhang Y, Guo Z, Du G. The mechanism and active compounds of semen armeniacae amarum treating coronavirus disease 2019 based on network pharmacology and molecular docking. Food Nutr Res 2021; 65:5623. [PMID: 34908920 PMCID: PMC8634376 DOI: 10.29219/fnr.v65.5623] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/15/2020] [Accepted: 12/16/2020] [Indexed: 12/24/2022] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) outbreak is progressing rapidly, and poses significant threats to public health. A number of clinical practice results showed that traditional Chinese medicine (TCM) plays a significant role for COVID-19 treatment. Objective To explore the active components and molecular mechanism of semen armeniacae amarum treating COVID-19 by network pharmacology and molecular docking technology. Methods The active components and potential targets of semen armeniacae amarum were retrieved from traditional Chinese medicine systems pharmacology (TCMSP) database. Coronavirus disease 2019-associated targets were collected in the GeneCards, TTD, OMIM and PubChem database. Compound target, compound-target pathway and medicine-ingredient-target disease networks were constructed by Cytoscape 3.8.0. Protein-protein interaction (PPI) networks were drawn using the STRING database and Cytoscape 3.8.0 software. David database was used for gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The main active components were verified by AutoDock Vina 1.1.2 software. A lipopolysaccharide (LPS)-induced lung inflammation model in Institute of Cancer Research (ICR) mice was constructed and treated with amygdalin to confirm effects of amygdalin on lung inflammation and its underlying mechanisms by western blot analyses and immunofluorescence. Results The network analysis revealed that nine key, active components regulated eight targets (Proto-oncogene tyrosine-protein kinase SRC (SRC), interleukin 6 (IL6), mitogen-activated protein kinase 1 (MAPK1), mitogen-activated protein kinase 3 (MAPK3), vascular endothelial growth factor A (VEGFA), epidermal growth factor receptor (EGFR), HRAS proto-oncogene (HRAS), caspase-3 (CASP3)). Gene ontology and KEGG enrichment analysis suggested that semen armeniacae amarum plays a role in COVID-19 by modulating 94 biological processes, 13 molecular functions, 15 cellular components and 80 potential pathways. Molecular docking indicated that amygdalin had better binding activity to key targets such as IL6, SRC, MAPK3, SARS coronavirus-2 3C-like protease (SARS-CoV-2 3CLpro) and SARS-CoV-2 angiotensin converting enzyme II (ACE2). Experimental validation revealed that the lung pathological injury and inflammatory injury were significantly increased in the model group and were improved in the amygdalin group. Conclusion Amygdalin is a candidate compound for COVID-19 treatment by regulating IL6, SRC, MAPK1 EGFR and VEGFA to involve in PI3K-Akt signalling pathway, VEGF signalling pathway and MAPK signalling pathway. Meanwhile, amygdalin has a strong affinity for SARS-CoV-2 3CLpro and SARS-CoV-2 ACE2 and therefore prevents the virus transcription and dissemination.
Collapse
Affiliation(s)
- Yuehua Wang
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, China
| | - Wenwen Gu
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, China
| | - Fuguang Kui
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, China
| | - Fan Gao
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, China
| | - Yuji Niu
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, China
| | - Wenwen Li
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, China
| | - Yaru Zhang
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, China
| | - Zhenzhen Guo
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, China
| | - Gangjun Du
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, China.,School of Pharmacy and Chemical Engineering, Zhengzhou University of Industry Technology, Xinzheng, Henan Province, China
| |
Collapse
|
6
|
Meng Q, Pu L, Lu Q, Wang B, Li S, Liu B, Li F. Morin hydrate inhibits atherosclerosis and LPS-induced endothelial cells inflammatory responses by modulating the NFκB signaling-mediated autophagy. Int Immunopharmacol 2021; 100:108096. [PMID: 34464886 DOI: 10.1016/j.intimp.2021.108096] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 12/28/2022]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease involving blood vessels. Inflammation affects different cells and increases the expression of adhesion molecules. Morin hydrate (MO) is a naturally occurring bioflavonoid with anti-inflammatory and anti-oxidant effects. Although the exact mechanism has not been fully elucidated, MO possibly influences autophagy pathways in immunity and inflammation. In this study, MO showed the potential to inhibit atherosclerotic and promote vascular endothelial autophagy in apolipoprotein E (ApoE)-/- mice with a high-fat diet. Then, we aimed to explore the anti-inflammatory effects of MO in human umbilical vein endothelial cells (HUVECs) and its relationship with autophagy. We found that MO inhibited lipopolysaccharide (LPS)-induced monocyte adhesion and the expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), cyclooxygenase-2 (COX-2), and matrix metallopeptidase 9 (MMP-9) in HUVECs. Moreover, MO reduced the expression of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) by inhibiting the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/nuclear factor kappa B (NFκB) signaling pathway. MO induced autophagy by inhibiting the NFκB signaling pathway in normal HUVECs and LPS-stimulated HUVECs. When autophagy was inhibited by 3-methyladenine (3-MA) or small interfering RNA (siRNA), the anti-inflammatory effect of MO was reduced. In conclusion, MO inhibits atherosclerosis in ApoE-/- mice and LPS-induced inflammatory responses by inhibiting the activation of the PI3K/Akt1/NFκB signaling pathway in a NFκB signaling-mediated autophagy way.
Collapse
Affiliation(s)
- Qingyu Meng
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Luya Pu
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Qing Lu
- Department of General Dentistry, School and Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Baisen Wang
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Shuai Li
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Bin Liu
- Cardiovascular Disease Center, The First Hospital of Jilin University, Changchun, China.
| | - Fan Li
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China; Engineering Research Center for Medical Biomaterials of Jilin Province, Jilin University, Changchun, China; Key Laboratory for Health Biomedical Materials of Jilin Province, Jilin University, Changchun, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang, China; The Key Laboratory for Bionics Engineering, Ministry of Education, Jilin University, Changchun, China.
| |
Collapse
|
7
|
Chen M, Xie Y, Gong S, Wang Y, Yu H, Zhou T, Huang F, Guo X, Zhang H, Huang R, Han Z, Xing Y, Liu Q, Tong G, Zhou H. Traditional Chinese medicine in the treatment of nonalcoholic steatohepatitis. Pharmacol Res 2021; 172:105849. [PMID: 34450307 DOI: 10.1016/j.phrs.2021.105849] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 02/07/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a common chronic liver disease in clinical practice. It has been considered that NASH is one of the main causes of chronic liver disease, cirrhosis and carcinoma. The mechanism of the NASH progression is complex, including lipid metabolism dysfunction, insulin resistance, oxidative stress, inflammation, apoptosis, fibrosis and gut microbiota dysbiosis. Except for lifestyle modification and bariatric surgery, there has been no pharmacological therapy that is being officially approved in NASH treatment. Traditional Chinese medicine (TCM), as a conventional and effective therapeutic strategy, has been proved to be beneficial in treating NASH in numbers of studies. In the light of this, TCM may provide a potential therapy for treating NASH. In this review, we summarized the associated mechanisms of action TCM treating NASH in preclinical studies and systematically analysis the effectiveness of TCM treating NASH in current clinical trials.
Collapse
Affiliation(s)
- Mingtai Chen
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China
| | - Ying Xie
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, PR China
| | - Shenglan Gong
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Yunqiao Wang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Hao Yu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Tianran Zhou
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China
| | - Furong Huang
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China
| | - Xin Guo
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Huanhuan Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Ruolan Huang
- Department of Neurology, Shenzhen University Clinical Research Center for Neurological Diseases, Shenzhen University General Hospital, Shenzhen, PR China
| | - Zhiyi Han
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China
| | - Yufeng Xing
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China
| | - Qiang Liu
- Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China
| | - Guangdong Tong
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China.
| | - Hua Zhou
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Taipa, Macao, PR China.
| |
Collapse
|
8
|
Zhao W, Yan Y, Xiao Z, Wang M, Xu M, Wang Z, Wang Y, Zhuang Z, Yang D, Chen G, Liang G. Bicyclol ameliorates nonalcoholic fatty liver disease in mice via inhibiting MAPKs and NF-κB signaling pathways. Biomed Pharmacother 2021; 141:111874. [PMID: 34229251 DOI: 10.1016/j.biopha.2021.111874] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/31/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022] Open
Abstract
Bicyclol has been approved as an anti-inflammatory, hepatoprotective drug in China to treat various forms of hepatitis. However, the role of bicyclol in non-alcoholic fatty liver disease (NAFLD) is unknown. In this study, NAFLD model was established by feeding mice with high fat diet (HFD) for 16 weeks, and bicyclol (25 and 50 mg/kg) were orally administered for the last 4 weeks. Although bicyclol treatment did not change the body weight of mice, bicyclol administration significantly improved HFD-induced dyslipidemia, NAFLD activity score, hepatic apoptosis, systemic and hepatic inflammation, and liver fibrosis in the mice. Moreover, bicyclol treatment significantly inhibited HFD-induced activation of MAPKs and NF-κB signaling pathways that may mediate the inflammatory responses. Further in vitro studies showed that bicyclol pretreatment markedly ameliorated PA-induced inflammatory responses in human hepatocyte HL-7702 cells and mouse peritoneal macrophages through inhibiting MAPKs and NF-κB signaling pathways. These data indicated that bicyclol may have the potency to treat NAFLD by reducing inflammation.
Collapse
Affiliation(s)
- Weixin Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yixiao Yan
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhongxiang Xiao
- Department of Pharmacy, the Affiliated Yueqing Hospital, Wenzhou Medical University, Yueqing, Zhejiang 325699, China
| | - Meihong Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Mingjiang Xu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhe Wang
- Department of Pharmacy, the Affiliated Second Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zaishou Zhuang
- Affiliated Cangnan Hospital, Wenzhou Medical University, Cangnan, Zhejiang 325800, China
| | - Daona Yang
- Affiliated Cangnan Hospital, Wenzhou Medical University, Cangnan, Zhejiang 325800, China
| | - Gaozhi Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| |
Collapse
|
9
|
Kouroumalis E, Voumvouraki A, Augoustaki A, Samonakis DN. Autophagy in liver diseases. World J Hepatol 2021; 13:6-65. [PMID: 33584986 PMCID: PMC7856864 DOI: 10.4254/wjh.v13.i1.6] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/10/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is the liver cell energy recycling system regulating a variety of homeostatic mechanisms. Damaged organelles, lipids and proteins are degraded in the lysosomes and their elements are re-used by the cell. Investigations on autophagy have led to the award of two Nobel Prizes and a health of important reports. In this review we describe the fundamental functions of autophagy in the liver including new data on the regulation of autophagy. Moreover we emphasize the fact that autophagy acts like a two edge sword in many occasions with the most prominent paradigm being its involvement in the initiation and progress of hepatocellular carcinoma. We also focused to the implication of autophagy and its specialized forms of lipophagy and mitophagy in the pathogenesis of various liver diseases. We analyzed autophagy not only in well studied diseases, like alcoholic and nonalcoholic fatty liver and liver fibrosis but also in viral hepatitis, biliary diseases, autoimmune hepatitis and rare diseases including inherited metabolic diseases and also acetaminophene hepatotoxicity. We also stressed the different consequences that activation or impairment of autophagy may have in hepatocytes as opposed to Kupffer cells, sinusoidal endothelial cells or hepatic stellate cells. Finally, we analyzed the limited clinical data compared to the extensive experimental evidence and the possible future therapeutic interventions based on autophagy manipulation.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Liver Research Laboratory, University of Crete Medical School, Heraklion 71110, Greece
| | - Argryro Voumvouraki
- 1 Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54636, Greece
| | - Aikaterini Augoustaki
- Department of Gastroenterology and Hepatology, University Hospital of Crete, Heraklion 71110, Greece
| | - Dimitrios N Samonakis
- Department of Gastroenterology and Hepatology, University Hospital of Crete, Heraklion 71110, Greece.
| |
Collapse
|
10
|
Xie X, Zhang L, Yuan S, Li H, Zheng C, Xie S, Sun Y, Zhang C, Wang R, Jin Y. Val-Val-Tyr-Pro protects against non-alcoholic steatohepatitis in mice by modulating the gut microbiota and gut-liver axis activation. J Cell Mol Med 2021; 25:1439-1455. [PMID: 33400402 PMCID: PMC7875918 DOI: 10.1111/jcmm.16229] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/06/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022] Open
Abstract
Val‐Val‐Tyr‐Pro (VVYP) peptide is one of the main active components of Globin digest (GD). Our previous studies indicated that VVYP could protect against acetaminophen and carbon tetrachloride‐induced acute liver failure in mice and decrease blood lipid level. However, the effects and underlying mechanisms of VVYP in the treatment of non‐alcoholic steatohepatitis (NASH) have not been discovered. Our present study was designed to investigate the preventive effect of VVYP on NASH and its underlying specific mechanisms. We found that VVYP inhibited the cytotoxicity and lipid accumulation in L‐02 cells that were exposed to a mixture of free fatty acid (FFA). VVYP effectively alleviated the liver injury induced by methionine‐choline‐deficient (MCD) diet, demonstrated by reducing the levels of serum alanine aminotransferase (ALT)/aspartate aminotransferase (AST)/triglycerides (TG)/non‐esterified fatty acids (NEFA) and improving liver histology. VVYP decreased expression levels of lipid synthesis‐related genes and reduced levels of the proinflammation cytokines in the liver of mice fed by MCD diet. Moreover, VVYP inhibited the increased level of LPS and reversed the liver mitochondria dysfunction induced by MCD diet. Meanwhile, VVYP significantly increased the abundance of beneficial bacteria such as Eubacteriaceae, coriobacteriacease, Desulfovibrionaceae, S24‐7 and Bacteroidia in high‐fat diet (HFD)‐fed mice, however, VVYP reduced the abundance of Lactobacillus. Moreover, VVYP conferred the protective effect of intestinal barrier via promoting the expression of the mucins and tight junction (TJ)‐associated genes and inhibited subsequent liver inflammatory responses. These results indicated that the protective role of VVYP on NASH is mediated by modulating gut microbiota imbalance and related gut‐liver axis activation. VVYP might be a promising drug candidate for NASH.
Collapse
Affiliation(s)
- Xinshu Xie
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Lang Zhang
- Jiangxi Provincial Children's Hospital, Nanchang, China
| | - Shun Yuan
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Huilan Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Chaojun Zheng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Saisai Xie
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yongbing Sun
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Changhua Zhang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Rikang Wang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, China
| | - Yi Jin
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|