1
|
Zhu Z, Li C, Lin Y, Li L, Liu K, Wen W, Ding S, Zhou C, Lai Y, Luo B. Versatile 3D Printing Scaffold with Spatiotemporal Release of Multiple Drugs for Bone Regeneration. ACS NANO 2025. [PMID: 40188465 DOI: 10.1021/acsnano.4c13265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2025]
Abstract
Implanting a three-dimensional (3D) printing scaffold is one of the most effective ways for treating bone defects. However, the process of bone repair is extremely complex, which requires the scaffold to comply with this process, play early antibacterial roles after implantation, and promote angiogenesis and osteogenesis in the later stage. In this study, layered double hydroxides (LDHs), a type of 2D inorganic nanomaterial, were employed to efficiently load osteogenic and angiogenic dimethyloxalylglycine (DMOG) based on anion exchange. Further, the DMOG-loaded LDHs and eugenol, a natural antibacterial agent, were simultaneously modified onto the surface of 3D printing poly(L-lactide) (PLLA) scaffolds via a polydopamine layer, thereby constructing a 3D printing scaffold capable of realizing spatiotemporally controlled release of different bioactive drugs. Specifically, eugenol is released rapidly in the early stage to play an antibacterial role, while DMOG is sustainably released from the LDHs to promote long-term osteogenesis and angiogenesis. Besides, the surface-coated DMOG-loaded LDHs can not only mechanically strengthen the 3D printing PLLA scaffold but also promote the osteogenic activity of the scaffold due to the released Mg2+ with the decomposition of LDHs. Also noteworthy, we found that eugenol, DMOG, and LDHs exert synergistic effects in promoting the proliferation, angiogenesis, and osteogenic differentiation of cells in vitro, as well as accelerating vascularized bone formation in vivo. This work presents an approach to fabricating 3D-printed scaffolds with spatiotemporal release capabilities for multiple drugs, advancing bone repair.
Collapse
Affiliation(s)
- Zelin Zhu
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, P.R. China
| | - Cairong Li
- Centre for Translational Medicine Research and Development, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.R. China
| | - Yating Lin
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, P.R. China
| | - Lin Li
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, P.R. China
| | - Kun Liu
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, P.R. China
| | - Wei Wen
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, P.R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, P.R. China
| | - Shan Ding
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, P.R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, P.R. China
| | - Changren Zhou
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, P.R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, P.R. China
| | - Yuxiao Lai
- Centre for Translational Medicine Research and Development, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.R. China
- Key Laboratory of Biomedical Imaging Science and System, State Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen 518055, P.R. China
| | - Binghong Luo
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, P.R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, P.R. China
| |
Collapse
|
2
|
Du J, Zhou T, Peng W. Functional polysaccharide-based hydrogel in bone regeneration: From fundamentals to advanced applications. Carbohydr Polym 2025; 352:123138. [PMID: 39843049 DOI: 10.1016/j.carbpol.2024.123138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/24/2025]
Abstract
Bone regeneration is limited and generally requires external intervention to promote effective repair. Autografts, allografts, and xenografts as traditional methods for addressing bone defects have been widely utilized, their clinical applicability is limited due to their respective disadvantages. Fortunately, functional polysaccharide hydrogels have gained significant attention in bone regeneration due to their exceptional drug-loading capacity, biocompatibility, and ease of chemical modification. They also provide an optimal microenvironment for bone repair and regeneration. This review provides an overview of various functional polysaccharide hydrogels derived from biocompatible materials, focusing on their applications in intelligent delivery systems, bone tissue regeneration, and cartilage defect repair. Particularly, the incorporation of bioactive molecules into the design of functional polysaccharide hydrogels has been shown to significantly enhance bone regeneration. Additionally, this review emphasizes the preparation methods for functional polysaccharide hydrogels and associated the bone healing mechanisms. Finally, the limitations and future prospects of functional polysaccharide hydrogels are thoroughly evaluated.
Collapse
Affiliation(s)
- Jian Du
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China; Hebei North University, Zhangjiakou, 075000, China
| | - Tian Zhou
- Hebei North University, Zhangjiakou, 075000, China
| | - Wei Peng
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China.
| |
Collapse
|
3
|
Xue P, Wang J, Fu Y, He H, Gan Q, Liu C. Material-Mediated Immunotherapy to Regulate Bone Aging and Promote Bone Repair. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409886. [PMID: 39981851 DOI: 10.1002/smll.202409886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/19/2025] [Indexed: 02/22/2025]
Abstract
As the global population ages, an increasing number of elderly people are experiencing weakened bone regenerative capabilities, resulting in slower bone repair processes and associated risks of various complications. This review outlines the research progress on biomaterials that promote bone repair through immunotherapy. This review examines how manufacturing technologies such as 3D printing, electrospinning, and microfluidic technology contribute to enhancing the therapeutic effects of these biomaterials. Following this, it provides detailed introductions to various anti-osteoporosis drug delivery systems, such as injectable hydrogels, nanoparticles, and engineered exosomes, as well as bone tissue engineering materials and coatings used in immunomodulation. Moreover, it critically analyzes the current limitations of biomaterial-mediated bone immunotherapy and explores future research directions for material-mediated bone immunotherapy. This review aims to inspire new approaches and broaden perspectives in addressing the challenges of bone repair and aging by exploring innovative biomaterial-mediated immunotherapy strategies.
Collapse
Affiliation(s)
- Pengfei Xue
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jiayi Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yu Fu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Zhangwu Road 100, Shanghai, 200092, China
| | - Hongyan He
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Qi Gan
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
4
|
Cao Y, Liu C, Ye W, Zhao T, Fu F. Functional Hydrogel Interfaces for Cartilage and Bone Regeneration. Adv Healthc Mater 2025; 14:e2403079. [PMID: 39791312 DOI: 10.1002/adhm.202403079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/08/2024] [Indexed: 01/12/2025]
Abstract
Effective treatment of bone diseases is quite tricky due to the unique nature of bone tissue and the complexity of the bone repair process. In combination with biological materials, cells and biological factors can provide a highly effective and safe treatment strategy for bone repair and regeneration, especially based on these multifunctional hydrogel interface materials. However, itis still a challenge to formulate hydrogel materials with fascinating properties (e.g., biological activity, controllable biodegradability, mechanical strength, excellent cell/tissue adhesion, and controllable release properties) for their clinical applications in complex bone repair processes. In this review, we will highlight recent advances in developing functional interface hydrogels. We then discuss the barriers to producing of functional hydrogel materials without sacrificing their inherent properties, and potential applications in cartilage and bone repair are discussed. Multifunctional hydrogel interface materials can serve as a fundamental building block for bone tissue engineering.
Collapse
Affiliation(s)
- Yucheng Cao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Changyi Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wenjun Ye
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Tianrui Zhao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Fanfan Fu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
5
|
Zhang H, Li X, Jia Z, Jiao K, Liu C, Deng Z, Bai Y, Wei X, Zhou X. Bioprinted hydrogels in bone regeneration: a bibliometric analysis. Front Pharmacol 2025; 16:1532629. [PMID: 39963238 PMCID: PMC11830744 DOI: 10.3389/fphar.2025.1532629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Background The application of bioprinted hydrogels in the field of bone regeneration is garnering increasing attention. The objective of this study is to provide a comprehensive overview of the current research status, hotspots and research directions in this field through bibliometric methods, and to predict the development trend of this field. Methods A search was conducted on 27 December 2024, for papers published on the Web of Science from 2010 to 2025. We used the bibliometrix package in the software program R to analyze the retrieved data and VOSviewer and CiteSpace to visualize hotspots and research trends in bioprinted hydrogels for bone regeneration. Results We identified and reviewed 684 articles published in this field between 2010 and 2025. A total of 811 institutions and 1,166 researchers from 41 countries/regions contributed to these publications. Among them, China led in terms of the number of articles published, single-country publications (SCP), and multi-country publications (MCP). Our bibliometric-based visualization analysis revealed that the mechanical properties and osteogenic differentiation capacity of biomaterials have been a focal research topic over the past decade, while emerging research has also concentrated on the in vitro fabrication of stem cells for bone regeneration and osteogenic differentiation, particularly the precise application of in situ stem cell-loaded bioprinted organoids. Conclusion This study provides an in-depth analysis of the research trajectory in the application of bioprinted hydrogels for bone regeneration. The number of research papers in this field is increasing annually, and the main research hotspots include bone regeneration, 3D printing, scaffolds, and hydrogels. Future research directions may focus on gelatin, additive manufacturing, and growth factors. Additionally, international collaboration is essential to enhance the effectiveness of bioprinted hydrogels in bone regeneration applications.
Collapse
Affiliation(s)
- Huijie Zhang
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China
| | - Xiaoyu Li
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China
| | - Zhenyu Jia
- Department of Orthopedics, General Hospital of Southern Theater Command, Guangzhou, China
| | - Kun Jiao
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China
- Department of Orthopedics, Shanghai Changzheng Hospital, Shanghai, China
| | - Chen Liu
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China
- Department of Outpatient Service, Military District Shenyang No. 1 Retreat Center for Separated Cadres, Liaoning, China
| | - Zixiang Deng
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China
| | - Yushu Bai
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China
| | - Xianzhao Wei
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China
| | - Xiaoyi Zhou
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China
| |
Collapse
|
6
|
Trbojevic S, Taboas JM, Almarza AJ. TGFβ-1 and Healing of Bone Defects in Large Animal and Rabbit Models: A Systematic Review. Tissue Eng Part A 2025; 31:126-138. [PMID: 39723971 DOI: 10.1089/ten.tea.2024.0226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Long bone and craniofacial bone fractures amount to an overwhelming expenditure for patients and health care systems each year. Overall, 5-10% of all bone fractures result in some form of delayed or nonunion fractures. Nonunions occur from insufficient mechanical stabilization or a compromised wound environment lacking in vasculature and progenitor cells. The current standard for treating these critical-sized fractures and defects is the use of autologous bone grafts. However, advancements in tissue engineering have cultivated a shift in scientific efforts toward harnessing the body's own regenerative resources. As such, research on fracture healing has shifted as well. Transforming growth factor-beta 1 (TGFβ-1) has been studied in fracture healing for over 25 years, though many of these studies have been in vitro or in small animal models. The few studies in large animals have disagreement due to the heterogeneity within the experimental design. Because TGFβ-1 plays such a crucial role in the bone healing process, this systematic review investigates the application of TGFβ-1 in various carrier vehicles for repairing bone injuries in large animal and rabbit models. A systematic search was conducted in PubMed, Embase, and Web of Science (from database construction-October 2024). A total of 244 articles were screened, and 24 studies were included for review. Most large animal long bone studies used coated titanium implants, while most rabbit long bone studies used some form of degradable polymer constructs. TGFβ-1 doses in large animal long bone studies range from 0.005 to 750 µg, doses in large animal calvaria and mandible studies range from 1 to 5000 µg, and doses in rabbit long bone studies range from 0.05 to 120 µg. Nineteen out of 24 articles reviewed indicate successful use of TGFβ-1 for bone regeneration compared with experimental controls. It is clear that dose and controlled release of growth factor play a crucial role in defect closure, but outcome measures and success criteria were inconsistent across studies. More studies with consistent experimental designs are critical for understanding the therapeutic potential of TGFβ-1 in fracture repair, but overall, this review indicates that TGFβ-1 can be used alone or in conjunction with other growth factors to accelerate successful bone repair.
Collapse
Affiliation(s)
- Sara Trbojevic
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Juan M Taboas
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alejandro J Almarza
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Liu J, Xi Z, Fan C, Mei Y, Zhao J, Jiang Y, Zhao M, Xu L. Hydrogels for Nucleic Acid Drugs Delivery. Adv Healthc Mater 2024; 13:e2401895. [PMID: 39152918 DOI: 10.1002/adhm.202401895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/05/2024] [Indexed: 08/19/2024]
Abstract
Nucleic acid drugs are one of the hot spots in the field of biomedicine in recent years, and play a crucial role in the treatment of many diseases. However, its low stability and difficulty in target drug delivery are the bottlenecks restricting its application. Hydrogels are proven to be promising for improving the stability of nucleic acid drugs, reducing the adverse effects of rapid degradation, sudden release, and unnecessary diffusion of nucleic acid drugs. In this review, the strategies of loading nucleic acid drugs in hydrogels are summarized for various biomedical research, and classify the mechanism principles of these strategies, including electrostatic binding, hydrogen bond based binding, hydrophobic binding, covalent bond based binding and indirect binding using various carriers. In addition, this review also describes the release strategies of nucleic acid drugs, including photostimulation-based release, enzyme-responsive release, pH-responsive release, and temperature-responsive release. Finally, the applications and future research directions of hydrogels for delivering nucleic acid drugs in the field of medicine are discussed.
Collapse
Affiliation(s)
- Jiaping Liu
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Ziyue Xi
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Chuanyong Fan
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Yihua Mei
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Jiale Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Yingying Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Ming Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Lu Xu
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| |
Collapse
|
8
|
Hwang HS, Lee CS. Exosome-Integrated Hydrogels for Bone Tissue Engineering. Gels 2024; 10:762. [PMID: 39727520 DOI: 10.3390/gels10120762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Exosome-integrated hydrogels represent a promising frontier in bone tissue engineering, leveraging the unique biological properties of exosomes to enhance the regenerative capabilities of hydrogels. Exosomes, as naturally occurring extracellular vesicles, carry a diverse array of bioactive molecules that play critical roles in intercellular communication and tissue regeneration. When combined with hydrogels, these exosomes can be spatiotemporally delivered to target sites, offering a controlled and sustained release of therapeutic agents. This review aims to provide a comprehensive overview of the recent advancements in the development, engineering, and application of exosome-integrated hydrogels for bone tissue engineering, highlighting their potential to overcome current challenges in tissue regeneration. Furthermore, the review explores the mechanistic pathways by which exosomes embedded within hydrogels facilitate bone repair, encompassing the regulation of inflammatory pathways, enhancement of angiogenic processes, and induction of osteogenic differentiation. Finally, the review addresses the existing challenges, such as scalability, reproducibility, and regulatory considerations, while also suggesting future directions for research in this rapidly evolving field. Thus, we hope this review contributes to advancing the development of next-generation biomaterials that synergistically integrate exosome and hydrogel technologies, thereby enhancing the efficacy of bone tissue regeneration.
Collapse
Affiliation(s)
- Hee Sook Hwang
- Department of Pharmaceutical Engineering, Dankook University, Cheonan 31116, Republic of Korea
| | - Chung-Sung Lee
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea
| |
Collapse
|
9
|
Pandit A, Indurkar A, Locs J, Haugen HJ, Loca D. Calcium Phosphates: A Key to Next-Generation In Vitro Bone Modeling. Adv Healthc Mater 2024; 13:e2401307. [PMID: 39175382 PMCID: PMC11582516 DOI: 10.1002/adhm.202401307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/06/2024] [Indexed: 08/24/2024]
Abstract
The replication of bone physiology under laboratory conditions is a prime target behind the development of in vitro bone models. The model should be robust enough to elicit an unbiased response when stimulated experimentally, giving reproducible outcomes. In vitro bone tissue generation majorly requires the availability of cellular components, the presence of factors promoting cellular proliferation and differentiation, efficient nutrient supply, and a supporting matrix for the cells to anchor - gaining predefined topology. Calcium phosphates (CaP) are difficult to ignore while considering the above requirements of a bone model. Therefore, the current review focuses on the role of CaP in developing an in vitro bone model addressing the prerequisites of bone tissue generation. Special emphasis is given to the physico-chemical properties of CaP that promote osteogenesis, angiogenesis and provide sufficient mechanical strength for load-bearing applications. Finally, the future course of action is discussed to ensure efficient utilization of CaP in the in vitro bone model development field.
Collapse
Affiliation(s)
- Ashish Pandit
- Institute of Biomaterials and BioengineeringFaculty of Natural Sciences and TechnologyRiga Technical UniversityPulka Street 3RigaLV‐1007Latvia
- Baltic Biomaterials Centre of ExcellenceHeadquarters at Riga Technical UniversityRigaLV‐1007Latvia
| | - Abhishek Indurkar
- Institute of Biomaterials and BioengineeringFaculty of Natural Sciences and TechnologyRiga Technical UniversityPulka Street 3RigaLV‐1007Latvia
- Baltic Biomaterials Centre of ExcellenceHeadquarters at Riga Technical UniversityRigaLV‐1007Latvia
| | - Janis Locs
- Institute of Biomaterials and BioengineeringFaculty of Natural Sciences and TechnologyRiga Technical UniversityPulka Street 3RigaLV‐1007Latvia
- Baltic Biomaterials Centre of ExcellenceHeadquarters at Riga Technical UniversityRigaLV‐1007Latvia
| | | | - Dagnija Loca
- Institute of Biomaterials and BioengineeringFaculty of Natural Sciences and TechnologyRiga Technical UniversityPulka Street 3RigaLV‐1007Latvia
- Baltic Biomaterials Centre of ExcellenceHeadquarters at Riga Technical UniversityRigaLV‐1007Latvia
| |
Collapse
|
10
|
Shan J, Yu Y, Liu X, Chai Y, Wang X, Wen G. Recent advances of chitosan-based composite hydrogel materials in application of bone tissue engineering. Heliyon 2024; 10:e37431. [PMID: 39381099 PMCID: PMC11456830 DOI: 10.1016/j.heliyon.2024.e37431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024] Open
Abstract
Bone defects, stemming from trauma, tumors, infections, and congenital conditions, pose significant challenges in orthopedics. Although the body possesses innate mechanisms for bone self-repairing, factors such as aging, disease, and injury can impair these processes, jeopardizing skeletal integrity. Addressing substantial bone defects remains a global orthopedic concern, with variables like gender, lifestyle and preexisting conditions influencing fracture risk and complication rates. Traditional repair methods, mainly bone transplantation including autografts, allografts and xenografts, have shown effectiveness but also present limitations. Autologous bone grafts, highly valued for their osteogenic properties, require additional surgeries with extended hospitalization, and carry risks associated with the donor site. The development of advanced biomaterials offers promising new avenues for bone repair. An ideal material should exhibit a combination of biocompatibility, biodegradability, bone conduction, porosity, strength, and the ability to stimulate bone formation. Chitosan (CS), derived from chitin, stands out due to its biocompatibility, biodegradability, low immunogenicity, non-toxicity, and a wide range of biological activities, including antioxidant, anti-tumor, anti-inflammatory, antimicrobial, and immunomodulatory properties. Notably, CS has shown the properties to promote bone regeneration, increase bone density, and accelerate fracture healing. This review provides a comprehensive examination of CS-based hydrogels for bone repair aiming to inspire researchers by presenting new ideas for innovative CS-based solutions, thereby advancing their potential applications in the field of bone repair.
Collapse
Affiliation(s)
- Jianyang Shan
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Center for Orthopaedic Medicine, Shanghai, 200233, China
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yaling Yu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Center for Orthopaedic Medicine, Shanghai, 200233, China
| | - Xiaohan Liu
- Department of Plastic surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025,China
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Center for Orthopaedic Medicine, Shanghai, 200233, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gen Wen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Center for Orthopaedic Medicine, Shanghai, 200233, China
| |
Collapse
|
11
|
Yao P, Tan Z, Weng B, Wang X, Wang H, Yang G, Sun F, Zhao Y. Locally Injectable Chitosan/β-Glycerophosphate Hydrogel Doped with Triptolide-Human Serum Albumin Nanoparticles for Treating Rheumatoid Arthritis. Pharmaceuticals (Basel) 2024; 17:1312. [PMID: 39458953 PMCID: PMC11510276 DOI: 10.3390/ph17101312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) tends to occur in symmetrical joints and is always accompanied by synovial hyperplasia and cartilage damage. Triptolide (TP), an extract from Tripterygium, has anti-inflammatory and immunomodulatory properties and could be used in the treatment of RA. However, its poor water solubility and the multi-system lesions caused by the use of this substance limit its clinical application. Therefore, it would be of great significance to assemble a composite nanoparticle hydrogel and apply it to a collagen-induced arthritis (CIA) mouse model to investigate the therapeutic effect and biosafety of this compound. METHOD TP@HSA nanoparticles (TP@HSA NPs) were fabricated with a self-assembly method; a thermosensitive hydrogel loaded with the TP@HSA NPs (TP@HSA NP hydrogel) was prepared by using chitosan and beta- glycerophosphate (β-GP) and was then intra-articularly injected into CIA mice. The changes in joint swelling were measured with a digital caliper, and inflammation and cartilage damage were evaluated by using hematoxylin and eosin (H&E) and safranin O-fast green (SO&FG) staining, respectively. RESULTS TP@HSA NPs with an average diameter of 112 ± 2 nm were successfully assembled, and their encapsulation efficiency and drug loading efficiency were 47.6 ± 1.5% and 10.6 ± 3.3%, respectively. The TP@HSA NP hydrogel had a gelation temperature of 30.5 ± 0.2 °C, which allows for its injection at low temperatures and its sol-gel transformation under physiological conditions within 2 min, making it a suitable drug depot. The TP@HSA NP hydrogel was intra-articularly injected into CIA mice; it released TP locally and exerted anti-inflammatory and immunomodulatory effects, alleviating synovial inflammation and cartilage damage effectively. CONCLUSIONS We successfully fabricated a TP@HSA NP-loaded thermosensitive hydrogel with good biosafety, which can release TP slowly for the treatment of RA. Our study provides a basis for the development of TP-based innovative preparations and has good application prospects.
Collapse
Affiliation(s)
- Pu Yao
- School of Pharmacy& Bioengineering, Chongqing University of Technology, Chongqing 401320, China; (P.Y.)
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zirui Tan
- School of Pharmacy& Bioengineering, Chongqing University of Technology, Chongqing 401320, China; (P.Y.)
| | - Bangbi Weng
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xiaowen Wang
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Hongping Wang
- School of Pharmacy& Bioengineering, Chongqing University of Technology, Chongqing 401320, China; (P.Y.)
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Ge Yang
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Fengjun Sun
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Ying Zhao
- School of Pharmacy& Bioengineering, Chongqing University of Technology, Chongqing 401320, China; (P.Y.)
| |
Collapse
|
12
|
Daneshvar A, Farokhi M, Bonakdar S, Vossoughi M. Synthesis and characterization of injectable thermosensitive hydrogel based on Pluronic-grafted silk fibroin copolymer containing hydroxyapatite nanoparticles as potential for bone tissue engineering. Int J Biol Macromol 2024; 277:134412. [PMID: 39097043 DOI: 10.1016/j.ijbiomac.2024.134412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Injectable hydrogels are promising for bone tissue engineering due to their minimally invasive application and adaptability to irregular defects. This study presents the development of pluronic grafted silk fibroin (PF-127-g-SF), a temperature-sensitive graft copolymer synthesized from SF and modified PF-127 via a carbodiimide coupling reaction. The PF-127-g-SF copolymer exhibited a higher sol-gel transition temperature (34 °C at 16 % w/v) compared to PF-127 (23 °C), making it suitable for injectable applications. It also showed improved flexibility and strength, with a yielding point increase from <10 % to nearly 30 %. Unlike PF-127 gel, which degrades within 72 h in aqueous media, the PF-127-g-SF copolymer maintained a stable gel structure for over two weeks due to its robust crosslinked hydrogel network. Incorporating hydroxyapatite nanoparticles (n-HA) into the hydrogel reduced pore size and decreased swelling and degradation rates, extending structural stability to four weeks. Increasing n-HA concentration from 0 % to 20 % reduced porosity from 80 % to 66 %. Rheological studies indicated that n-HA enhanced the scaffold's strength and mechanical properties without altering gelation temperature. Cellular studies with MG-63 cells showed that n-HA concentration influenced cell viability and mineralization, highlighting the scaffold's potential in bone tissue engineering.
Collapse
Affiliation(s)
- Anahita Daneshvar
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Sharif University of Technology, Tehran 14588-89694, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.
| | - Shahin Bonakdar
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Manouchehr Vossoughi
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Sharif University of Technology, Tehran 14588-89694, Iran; Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
13
|
Chu X, Xiong Y, Lu L, Wang Y, Wang J, Zeng R, Hu L, Yan C, Zhao Z, Lin S, Mi B, Liu G. Research progress of gene therapy combined with tissue engineering to promote bone regeneration. APL Bioeng 2024; 8:031502. [PMID: 39301183 PMCID: PMC11412735 DOI: 10.1063/5.0200551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
Gene therapy has emerged as a highly promising strategy for the clinical treatment of large segmental bone defects and non-union fractures, which is a common clinical need. Meanwhile, many preclinical data have demonstrated that gene and cell therapies combined with optimal scaffold biomaterials could be used to solve these tough issues. Bone tissue engineering, an interdisciplinary field combining cells, biomaterials, and molecules with stimulatory capability, provides promising alternatives to enhance bone regeneration. To deliver and localize growth factors and associated intracellular signaling components into the defect site, gene therapy strategies combined with bioengineering could achieve a uniform distribution and sustained release to ensure mesenchymal stem cell osteogenesis. In this review, we will describe the process and cell molecular changes during normal fracture healing, followed by the advantages and disadvantages of various gene therapy vectors combined with bone tissue engineering. The growth factors and other bioactive peptides in bone regeneration will be particularly discussed. Finally, gene-activated biomaterials for bone regeneration will be illustrated through a description of characteristics and synthetic methods.
Collapse
Affiliation(s)
| | - Yuan Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | | | - Yiqing Wang
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jing Wang
- Department of Nuclear Medicine and PET, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | | | - Zhiming Zhao
- Department of Orthopedics, Suizhou Hospital, Hubei University of Medicine, Suizhou 441300, China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | | | | |
Collapse
|
14
|
Arndt T, Chatterjee U, Shilkova O, Francis J, Lundkvist J, Johansson D, Schmuck B, Greco G, Nordberg ÅE, Li Y, Wahlberg LU, Langton M, Johansson J, Götherström C, Rising A. Tuneable Recombinant Spider Silk Protein Hydrogels for Drug Release and 3D Cell Culture. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2303622. [PMID: 39355087 PMCID: PMC11440629 DOI: 10.1002/adfm.202303622] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/10/2023] [Indexed: 10/03/2024]
Abstract
Hydrogels are useful drug release systems and tissue engineering scaffolds. However, synthetic hydrogels often require harsh gelation conditions and can contain toxic by-products while naturally derived hydrogels can transmit pathogens and in general have poor mechanical properties. Thus, there is a need for a hydrogel that forms under ambient conditions, is non-toxic, xeno-free, and has good mechanical properties. A recombinant spider silk protein-derived hydrogel that rapidly forms at 37 °C is recently developed. The temperature and gelation times are well-suited for an injectable in situ polymerising hydrogel, as well as a 3D cell culture scaffold. Here, it is shown that the diffusion rate and the mechanical properties can be tuned by changing the protein concentration and that human fetal mesenchymal stem cells encapsulated in the hydrogels show high survival and viability. Furthermore, mixtures of recombinant spider silk proteins and green fluorescent protein (GFP) form gels from which functional GFP is gradually released, indicating that bioactive molecules are easily included in the gels, maintain activity and can diffuse through the gel. Interestingly, encapsulated ARPE-19 cells are viable and continuously produce the growth factor progranulin, which is detected in the cell culture medium over the study period of 31 days.
Collapse
Affiliation(s)
- Tina Arndt
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14152Sweden
| | - Urmimala Chatterjee
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14152Sweden
| | - Olga Shilkova
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14152Sweden
| | - Juanita Francis
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14152Sweden
| | | | - Daniel Johansson
- Department of Molecular SciencesSwedish University of Agricultural SciencesUppsala75007Sweden
| | - Benjamin Schmuck
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14152Sweden
- Department of AnatomyPhysiology and BiochemistrySwedish University of Agricultural SciencesUppsala75007Sweden
| | - Gabriele Greco
- Department of AnatomyPhysiology and BiochemistrySwedish University of Agricultural SciencesUppsala75007Sweden
| | - Åsa Ekblad Nordberg
- Department of Clinical ScienceIntervention and TechnologyDivision of Obstetrics and GynecologyKarolinska InstitutetHuddinge14152Sweden
| | - Yan Li
- Department of Clinical ScienceIntervention and TechnologyDivision of Orthopedics and BiotechnologyKarolinska UniversitetssjukhusetHuddinge141 86Sweden
| | | | - Maud Langton
- Department of Molecular SciencesSwedish University of Agricultural SciencesUppsala75007Sweden
| | - Jan Johansson
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14152Sweden
| | - Cecilia Götherström
- Department of Clinical ScienceIntervention and TechnologyDivision of Obstetrics and GynecologyKarolinska InstitutetHuddinge14152Sweden
| | - Anna Rising
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14152Sweden
- Department of AnatomyPhysiology and BiochemistrySwedish University of Agricultural SciencesUppsala75007Sweden
| |
Collapse
|
15
|
Xu W, Huang W, Cai X, Dang Z, Hao L, Wang L. Dexamethasone Long-Term Controlled Release from Injectable Dual-Network Hydrogels with Porous Microspheres Immunomodulation Promotes Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40581-40601. [PMID: 39074361 PMCID: PMC11311136 DOI: 10.1021/acsami.4c06661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024]
Abstract
Long-lasting, controlled-release, and minimally invasive injectable platforms that provide a stable blood concentration to promote bone regeneration are less well developed. Using hexagonal mesoporous silica (HMS) loaded with dexamethasone (DEX) and poly(lactic-co-glycolic acid) (PLGA), we prepared porous DEX/HMS/PLGA microspheres (PDHP). In contrast to HMS/PLGA microspheres (HP), porous HMS/PLGA microspheres (PHP), DEX/PLGA microspheres (DP), and DEX/HMS/PLGA microspheres (DHP), PDHP showed notable immuno-coordinated osteogenic capabilities and were best at promoting bone mesenchymal stem cell proliferation and osteogenic differentiation. PDHP were combined with methacrylated silk (SilMA) and sodium alginate (SA) to form an injectable photocurable dual-network hydrogel platform that could continuously release the drug for more than 4 months. By adjusting the content of the microspheres in the hydrogel, a zero-order release hydrogel platform was obtained in vitro for 48 days. When the microsphere content was 1%, the hydrogel platform exhibited the best biocompatibility and osteogenic effects. The expression levels of the osteogenic gene alkaline phosphatases, BMP-2 and OPN were 10 to 15 times higher in the 1% group than in the 0% group, respectively. In addition, the 1% microsphere hydrogel strongly stimulated macrophage polarization to the M2 phenotype, establishing an immunological milieu that supports bone regrowth. The aforementioned outcomes were also observed in vivo. The most successful method for correcting cranial bone abnormalities in SD rats was to use a hydrogel called SilMA/SA containing 1% drug-loaded porous microspheres (PDHP/SS). The angiogenic and osteogenic effects of this treatment were also noticeably greater in the PDHP/SS group than in the control and blank groups. In addition, PDHP/SS polarized M2 macrophages and suppressed M1 macrophages in vivo, which reduced the local immune-inflammatory response, promoted angiogenesis, and cooperatively aided in situ bone healing. This work highlights the potential application of an advanced hydrogel platform for long-term, on-demand, controlled release for bone tissue engineering.
Collapse
Affiliation(s)
- Weikang Xu
- Institute
of Biological and Medical Engineering, Guangdong
Academy of Sciences, No. 10 Shiliugang Road, Jianghai Avenue Central, Haizhu District, Guangzhou 510316, China
- National
Engineering Research Centre for Healthcare Devices, Guangdong Provincial
Key Laboratory of Medical Electronic Instruments and Materials, Guangdong Institute of Medical Instruments, No. 1307 Guangzhou Avenue Central, Tianhe District, Guangzhou 510500, China
- Guangdong
Chinese Medicine Intelligent Diagnosis and Treatment Engineering Technology
Research Centre, No.
10 Shiliugang Road, Jianghai Avenue Central, Haizhu
District, Guangzhou 510316, China
| | - Weihua Huang
- Affiliated
Qingyuan Hospital, Guangzhou Medical University,
Qingyuan People’s Hospital, No. 35, Yinquan North Road, Qingcheng District, Qingyuan 511518, China
- National
Engineering Research Centre for Healthcare Devices, Guangdong Provincial
Key Laboratory of Medical Electronic Instruments and Materials, Guangdong Institute of Medical Instruments, No. 1307 Guangzhou Avenue Central, Tianhe District, Guangzhou 510500, China
- Department
of Orthopaedic Surgery, the Second Affiliated Hospital of Guangzhou
Medical University, the Second Clinical
Medicine School of Guangzhou Medical University, No. 250 Changgang East Road, Haizhu
District, Guangzhou 510260, China
| | - Xiayu Cai
- Institute
of Biological and Medical Engineering, Guangdong
Academy of Sciences, No. 10 Shiliugang Road, Jianghai Avenue Central, Haizhu District, Guangzhou 510316, China
- National
Engineering Research Centre for Healthcare Devices, Guangdong Provincial
Key Laboratory of Medical Electronic Instruments and Materials, Guangdong Institute of Medical Instruments, No. 1307 Guangzhou Avenue Central, Tianhe District, Guangzhou 510500, China
| | - Zhaohui Dang
- Institute
of Biological and Medical Engineering, Guangdong
Academy of Sciences, No. 10 Shiliugang Road, Jianghai Avenue Central, Haizhu District, Guangzhou 510316, China
- National
Engineering Research Centre for Healthcare Devices, Guangdong Provincial
Key Laboratory of Medical Electronic Instruments and Materials, Guangdong Institute of Medical Instruments, No. 1307 Guangzhou Avenue Central, Tianhe District, Guangzhou 510500, China
- National
Engineering Research Centre for Human Tissue Restoration and Function
Reconstruction, South China University of
Technology, No. 381 Wushan Road, Guangzhou 510275, China
| | - Lijing Hao
- National
Engineering Research Centre for Human Tissue Restoration and Function
Reconstruction, South China University of
Technology, No. 381 Wushan Road, Guangzhou 510275, China
| | - Liyan Wang
- Department
of Stomatology, Foshan Women’s and Children’s Hospital, No. 11 Renmin Xi Road, Chancheng
District, Foshan 528000, China
| |
Collapse
|
16
|
Ma Y, Liu Y, Guo J, Chen Z, Zhao Z, Zheng J. Topical application of daphnetin hydrogel for traumatic brain injury. Front Neurosci 2024; 18:1450072. [PMID: 39170676 PMCID: PMC11335657 DOI: 10.3389/fnins.2024.1450072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Background Traumatic brain injury (TBI) causes neuronal cell damage and dysfunction. According to previous studies, daphnetin (Dap) has a protective effect in neurological injury. However, the in vivo bioavailability of daphnetin is not high. The purpose of this study was to determine whether administering daphnetin directly into the site of injury via a hydrogel drug carrier could improve its therapeutic impact. Methods Tripolycerol monostearates / daphnetin (TM/Dap) hydrogels were prepared and characterised using water bath heating, scanning electron microscopy (SEM) and small animal in vivo imaging techniques. The TBI model was established using the Feeney free fall impact method. Using the Morris water maze test, the mNSS neurological deficit rating scale, haematoxylin-eosin staining, and liver and kidney function tests, the therapeutic benefit of TM/Dap and its toxic side effects were assessed. The therapeutic effects of TM/Dap were further investigated using wet and dry gravimetric methods, Evans blue staining, protein immunoblotting, immunofluorescence staining techniques and ELISA. Results The efficacy of the TM/Dap hydrogel in gradually releasing daphnetin in the context of traumatic brain damage was shown by both in vitro and in vivo tests. Behavioral experiments showed that the learning and spatial memory abilities of TM/Dap hydrogel treated mice were significantly improved in the water maze experiment. And TM/Dap hydrogel has high biosafety for organisms. The results of the therapeutic mechanism of action showed that TM/Dap hydrogel showed more significant efficacy in reducing the neuroinflammatory response caused by TNF-α, IL-6 and other factors, as well as promoting the recovery of post-traumatic neurological function. Conclusion The use of hydrogel as a drug carrier for daphnetin showed more significant efficacy in reducing neuroinflammatory response, protecting nerve tissue and promoting post-traumatic neurological recovery compared with traditional drug delivery methods.
Collapse
Affiliation(s)
- Yuanhao Ma
- Department of Neurosurgery, Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
- Department of Neurosurgery, Huzhou Central Hospital, Huzhou, China
- Xuzhou Medical University, Xuzhou, China
| | - Yu Liu
- Department of Neurosurgery, Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
- Xuzhou Medical University, Xuzhou, China
| | - Jianqiang Guo
- Department of Neurosurgery, Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
- Xuzhou Medical University, Xuzhou, China
| | - Zhongjun Chen
- Department of Neurosurgery, Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
| | - Zongren Zhao
- Department of Neurosurgery, Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
| | - Jinyu Zheng
- Department of Neurosurgery, Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
| |
Collapse
|
17
|
Huang S, Wang Z, Sun X, Li K. Bone Morphogenetic Protein 7-Loaded Gelatin Methacrylate/Oxidized Sodium Alginate/Nano-Hydroxyapatite Composite Hydrogel for Bone Tissue Engineering. Int J Nanomedicine 2024; 19:6359-6376. [PMID: 38946885 PMCID: PMC11214552 DOI: 10.2147/ijn.s461996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024] Open
Abstract
Background Bone tissue engineering (BTE) is a promising alternative to autologous bone grafting for the clinical treatment of bone defects, and inorganic/organic composite hydrogels as BTE scaffolds are a hot spot in current research. The construction of nano-hydroxyapatite/gelatin methacrylate/oxidized sodium alginate (nHAP/GelMA/OSA), abbreviated as HGO, composite hydrogels loaded with bone morphogenetic protein 7 (BMP7) will provide a suitable 3D microenvironment to promote cell aggregation, proliferation, and differentiation, thus facilitating bone repair and regeneration. Methods Dually-crosslinked hydrogels were fabricated by combining GelMA and OSA, while HGO hydrogels were formulated by incorporating varying amounts of nHAP. The hydrogels were physically and chemically characterized followed by the assessment of their biocompatibility. BMP7-HGO (BHGO) hydrogels were fabricated by incorporating suitable concentrations of BMP7 into HGO hydrogels. The osteogenic potential of BHGO hydrogels was then validated through in vitro experiments and using rat femoral defect models. Results The addition of nHAP significantly improved the physical properties of the hydrogel, and the composite hydrogel with 10% nHAP demonstrated the best overall performance among all groups. The selected concentration of HGO hydrogel served as a carrier for BMP7 loading and was evaluated for its osteogenic potential both in vivo and in vitro. The BHGO hydrogel demonstrated superior in vitro osteogenic induction and in vivo potential for repairing bone tissue compared to the outcomes observed in the blank control, BMP7, and HGO groups. Conclusion Using hydrogel containing 10% HGO appears promising for bone tissue engineering scaffolds, especially when loaded with BMP7 to boost its osteogenic potential. However, further investigation is needed to optimize the GelMA, OSA, and nHAP ratios, along with the BMP7 concentration, to maximize the osteogenic potential.
Collapse
Affiliation(s)
- Shiyuan Huang
- The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, Bengbu, Anhui Province, 233044, People’s Republic of China
| | - Zesen Wang
- The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, Bengbu, Anhui Province, 233044, People’s Republic of China
| | - Xudong Sun
- The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, Bengbu, Anhui Province, 233044, People’s Republic of China
| | - Kuanxin Li
- The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, Bengbu, Anhui Province, 233044, People’s Republic of China
| |
Collapse
|
18
|
Moghaddam A, Bahrami M, Mirzadeh M, Khatami M, Simorgh S, Chimehrad M, Kruppke B, Bagher Z, Mehrabani D, Khonakdar HA. Recent trends in bone tissue engineering: a review of materials, methods, and structures. Biomed Mater 2024; 19:042007. [PMID: 38636500 DOI: 10.1088/1748-605x/ad407d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Bone tissue engineering (BTE) provides the treatment possibility for segmental long bone defects that are currently an orthopedic dilemma. This review explains different strategies, from biological, material, and preparation points of view, such as using different stem cells, ceramics, and metals, and their corresponding properties for BTE applications. In addition, factors such as porosity, surface chemistry, hydrophilicity and degradation behavior that affect scaffold success are introduced. Besides, the most widely used production methods that result in porous materials are discussed. Gene delivery and secretome-based therapies are also introduced as a new generation of therapies. This review outlines the positive results and important limitations remaining in the clinical application of novel BTE materials and methods for segmental defects.
Collapse
Affiliation(s)
| | - Mehran Bahrami
- Department of Mechanical Engineering and Mechanics, Lehigh University, 27 Memorial Dr W, Bethlehem, PA 18015, United States of America
| | | | - Mehrdad Khatami
- Iran Polymer and Petrochemical Institute (IPPI), Tehran 14965-115, Iran
| | - Sara Simorgh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Chimehrad
- Department of Mechanical & Aerospace Engineering, College of Engineering & Computer Science, University of Central Florida, Orlando, FL, United States of America
| | - Benjamin Kruppke
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069 Dresden, Germany
| | - Zohreh Bagher
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davood Mehrabani
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Fars 71348-14336, Iran
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Fars 71345-1744, Iran
| | - Hossein Ali Khonakdar
- Iran Polymer and Petrochemical Institute (IPPI), Tehran 14965-115, Iran
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
19
|
Shi W, Jiang Y, Wu T, Zhang Y, Li T. Advancements in drug-loaded hydrogel systems for bone defect repair. Regen Ther 2024; 25:174-185. [PMID: 38230308 PMCID: PMC10789937 DOI: 10.1016/j.reth.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/05/2023] [Accepted: 12/17/2023] [Indexed: 01/18/2024] Open
Abstract
Bone defects are primarily the result of high-energy trauma, pathological fractures, bone tumor resection, or infection debridement. The treatment of bone defects remains a huge clinical challenge. The current treatment options for bone defects include bone traction, autologous/allogeneic bone transplantation, gene therapy, and bone tissue engineering amongst others. With recent developments in the field, composite scaffolds prepared using tissue engineering techniques to repair bone defects are used more often. Among the various composite scaffolds, hydrogel exhibits the advantages of good biocompatibility, high water content, and degradability. Its three-dimensional structure is similar to that of the extracellular matrix, and as such it is possible to load stem cells, growth factors, metal ions, and small molecule drugs upon these scaffolds. Therefore, the hydrogel-loaded drug system has great potential in bone defect repair. This review summarizes the various natural and synthetic materials used in the preparation of hydrogels, in addition to the latest research status of hydrogel-loaded drug systems.
Collapse
Affiliation(s)
- Weipeng Shi
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yaping Jiang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Tingyu Wu
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingze Zhang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tao Li
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
20
|
Sun Y, Wang J, Li D, Cheng F. The Recent Progress of the Cellulose-Based Antibacterial Hydrogel. Gels 2024; 10:109. [PMID: 38391439 PMCID: PMC10887981 DOI: 10.3390/gels10020109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Cellulose-based antibacterial hydrogel has good biocompatibility, antibacterial performance, biodegradability, and other characteristics. It can be very compatible with human tissues and degradation, while its good water absorption and moisturizing properties can effectively absorb wound exudates, keep the wound moist, and promote wound healing. In this paper, the structural properties, and physical and chemical cross-linking preparation methods of cellulose-based antibacterial hydrogels were discussed in detail, and the application of cellulose-based hydrogels in the antibacterial field was deeply studied. In general, cellulose-based antibacterial hydrogels, as a new type of biomaterial, have shown good potential in antimicrobial properties and have been widely used. However, there are still some challenges, such as optimizing the preparation process and performance parameters, improving the antibacterial and physical properties, broadening the application range, and evaluating safety. However, with the deepening of research and technological progress, it is believed that cellulose-based antibacterial hydrogels will be applied and developed in more fields in the future.
Collapse
Affiliation(s)
- Ying Sun
- College of Light Industry and Textile, Qiqihar University, Qiqihar 161006, China
- Cold Area Hemp and Products Engineering Research Center of Ministry of Education, Qiqihar 161006, China
| | - Jiayi Wang
- College of Light Industry and Textile, Qiqihar University, Qiqihar 161006, China
| | - Duanxin Li
- College of Light Industry and Textile, Qiqihar University, Qiqihar 161006, China
- Cold Area Hemp and Products Engineering Research Center of Ministry of Education, Qiqihar 161006, China
| | - Feng Cheng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
21
|
Feng Q, Zhou X, He C. NIR light-facilitated bone tissue engineering. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1925. [PMID: 37632228 DOI: 10.1002/wnan.1925] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023]
Abstract
In the last decades, near-infrared (NIR) light has attracted considerable attention due to its unique properties and numerous potential applications in bioimaging and disease treatment. Bone tissue engineering for bone regeneration with the help of biomaterials is currently an effective means of treating bone defects. As a controlled light source with deeper tissue penetration, NIR light can provide real-time feedback of key information on bone regeneration in vivo utilizing fluorescence imaging and be used for bone disease treatment. This review provides a comprehensive overview of NIR light-facilitated bone tissue engineering, from the introduction of NIR probes as well as NIR light-responsive materials, and the visualization of bone regeneration to the treatment of bone-related diseases. Furthermore, the existing challenges and future development directions of NIR light-based bone tissue engineering are also discussed. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.
Collapse
Affiliation(s)
- Qian Feng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Xiaojun Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Chuanglong He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| |
Collapse
|
22
|
Shaz N, Maran S, Genasan K, Choudhary R, Alias R, Swamiappan S, Kamarul T, Raghavendran HRB. Functionalization of poly (lactic-co-glycolic acid) nano‑calcium sulphate and fucoidan 3D scaffold using human bone marrow mesenchymal stromal cells for bone tissue engineering application. Int J Biol Macromol 2024; 256:128059. [PMID: 37989428 DOI: 10.1016/j.ijbiomac.2023.128059] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/19/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023]
Abstract
This study aimed to functionalize a novel porous PLGA (Poly lactic-co-glycolic acid) composite scaffold in combination with nano‑calcium sulphate (nCS) and/or fucoidan (FU) to induce osteogenic differentiation of human bone marrow stromal cells. The composite scaffolds (PLGA-nCS-FU, PLGA-nCS or PLGA-FU) were fabricated and subjected to characterization using Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), Scanning electron microscopy (SEM) and Energy Dispersive X-Ray (EDX). The biocompatibility and osteogenic induction potential of scaffolds on seeded human bone marrow derived mesenchymal stromal cells (hBMSCs) were studied using cell attachment and alamar blue cell viability and alkaline phosphatase (ALP), osteocalcin and osteogenic gene expression, respectively. The composition of different groups was reflected in FTIR, XRD and EDX. The SEM micrographs revealed a difference in the surface of the scaffold before and after FU addition. The confocal imaging and SEM micrographs confirmed the attachment of cells onto all three composite scaffolds. However, the AB assay indicated a significant increase (p < 0.05) in cell viability/proliferation seeded on PLGA-nCS-FU on day 21 and 28 as compared with other combinations. A 2-fold significant increase (p < 0.05) in ALP and OC secretion of seeded hBMSCs onto PLGA-nCS-FU was observed when compared with other combinations. A significant increase in RUNX2, OPN, COL-I and ALP genes were observed in the cells seeded on PLGA-nCS-FU on day 14 and 28 as compared with day 0. In conclusion, the incorporation of both Fucoidan and Nano‑calcium sulphate with PLGA showed a promising improvement in the osteogenic potential of hBMSCs. Therefore, PLGA-nCS-FU could be the ideal candidate for subsequent pre-clinical studies to develop a successful bone substitute to repair critical bone defects.
Collapse
Affiliation(s)
- Norshazliza Shaz
- National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Tissue Engineering Group (TEG), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Sathiya Maran
- School of Pharmacy, Monash University Malaysia. 16150 Sunway, Malaysia
| | - Krishnamurithy Genasan
- National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Tissue Engineering Group (TEG), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; Department of Physiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Rajan Choudhary
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Faculty of Materials Science and Applied Chemistry, Institute of General Chemical Engineering, Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Kalku Street 1, LV-1658 Riga, Latvia
| | - Rodianah Alias
- Department of Manufacturing Technology, Faculty of Innovative Design & Technology, University Sultan Zainal Abidin, 21030 Kuala Terengganu, Malaysia
| | - Sasikumar Swamiappan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Tunku Kamarul
- National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Tissue Engineering Group (TEG), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; Advanced Medical and Dental Institute (AMDI), University Sains Malaysia, Bertam, Kepala Batas, 13200, Penang, Malaysia
| | - Hanumanth Rao Balaji Raghavendran
- National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Tissue Engineering Group (TEG), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; Sri Ramachandra Institute of Higher Education and Research, Biomaterials Laboratory, Faculty of Clinical Research, Central Research Facility, Porur, Chennai 116, India.
| |
Collapse
|
23
|
Zhou R, Chang M, Shen M, Cong Y, Chen Y, Wang Y. Sonocatalytic Optimization of Titanium-Based Therapeutic Nanomedicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301764. [PMID: 37395421 PMCID: PMC10477905 DOI: 10.1002/advs.202301764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/28/2023] [Indexed: 07/04/2023]
Abstract
Recent considerable technological advances in ultrasound-based treatment modality provides a magnificent prospect for scientific communities to conquer the related diseases, which is featured with remarkable tissue penetration, non-invasive and non-thermal characteristics. As one of the critical elements that influences treatment outcomes, titanium (Ti)-based sonosensitizers with distinct physicochemical properties and exceptional sonodynamic efficiency have been applied extensively in the field of nanomedical applications. To date, a myriad of methodologies has been designed to manipulate the sonodynamic performance of titanium-involved nanomedicine and further enhance the productivity of reactive oxygen species for disease treatments. In this comprehensive review, the sonocatalytic optimization of diversified Ti-based nanoplatforms, including defect engineering, plasmon resonance modulation, heterojunction, modulating tumor microenvironment, as well as the development of synergistic therapeutic modalities is mainly focused. The state-of-the-art Ti-based nanoplatforms ranging from preparation process to the extensive medical applications are summarized and highlighted, with the goal of elaborating on future research prospects and providing a perspective on the bench-to-beside translation of these sonocatalytic optimization tactics. Furthermore, to spur further technological advancements in nanomedicine, the difficulties currently faced and the direction of sonocatalytic optimization of Ti-based therapeutic nanomedicine are proposed and outlooked.
Collapse
Affiliation(s)
- Ruirui Zhou
- Department of UltrasoundShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433P. R. China
| | - Meiqi Chang
- Laboratory CenterShanghai Municipal Hospital of Traditional Chinese MedicineShanghai University of Traditional Chinese MedicineShanghai200071P. R. China
| | - Mengjun Shen
- Department of UltrasoundShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433P. R. China
| | - Yang Cong
- Department of UltrasoundShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433P. R. China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Yin Wang
- Department of UltrasoundShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433P. R. China
| |
Collapse
|
24
|
Zhang Q, Zhou X, Du H, Ha Y, Xu Y, Ao R, He C. Bifunctional Hydrogel-Integrated 3D Printed Scaffold for Repairing Infected Bone Defects. ACS Biomater Sci Eng 2023; 9:4583-4596. [PMID: 37318182 DOI: 10.1021/acsbiomaterials.3c00564] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The clinical treatment of infectious bone defects is difficult and time-consuming due to the coexistence of infection and bone defects, and the simultaneous control of infection and repair of bone defects is considered a promising therapy. In this study, a dual-drug delivery scaffold system was fabricated by the combination of a three-dimensional (3D) printed scaffold with hydrogel for infected bone defects repair. The 3D printed polycaprolactone scaffold was incorporated with biodegradable mesoporous silica nanoparticles containing the small molecular drug fingolimod (FTY720) to provide structural support and promote angiogenesis and osteogenesis. The vancomycin (Van)-loaded hydrogel was prepared from aldehyde hyaluronic acid (AHA) and carboxymethyl chitosan (NOCC) by the Schiff base reaction, which can fill the pores of the 3D-printed scaffold to produce a bifunctional composite scaffold. The in vitro results demonstrated that the composite scaffold had Van concentration-dependent antimicrobial properties. Furthermore, the FTY720-loaded composite scaffold demonstrated excellent biocompatibility, vascularization, and osteogenic ability in vitro. In the rat femoral defect model with bacterial infection, the dual-drug composite scaffold showed a better outcome in both infection control and bone regeneration compared to other groups. Therefore, the prepared bifunctional composite scaffold has potential application in the treatment of infected bone defects.
Collapse
Affiliation(s)
- Qianqian Zhang
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine; College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xiaojun Zhou
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine; College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Haibo Du
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine; College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Yujie Ha
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine; College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Yao Xu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Rongguang Ao
- Department of Trauma Orthopaedics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P. R. China
| | - Chuanglong He
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine; College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
25
|
Zhou L, Xing Y, Ou Y, Ding J, Han Y, Lin D, Chen J. Prolonged release of an antimicrobial peptide GL13K-loaded thermosensitive hydrogel on a titanium surface improves its antibacterial and anti-inflammatory properties. RSC Adv 2023; 13:23308-23319. [PMID: 37538512 PMCID: PMC10395452 DOI: 10.1039/d3ra03414c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/17/2023] [Indexed: 08/05/2023] Open
Abstract
The application of titanium in the orthopedic and dental fields is associated with bacterial infection and chronic inflammation, especially in the early stages after its implantation. In the present study, we investigated the antibacterial and anti-inflammatory activities of a titanium surface that was immobilized in a thermosensitive PLGA-PEG-PLGA hydrogel containing the antimicrobial peptide GL13K. The FTIR results confirmed the successful loading of GL13K. The degradation of the hydrogel and release of GL13K persisted for two weeks. The modified titanium surface exhibited a significant inhibitory effect on Porphyromonas gingivalis in contact with its surface, as well as an inhibitory effect on P.g in the surrounding environment by releasing GL13K antimicrobial peptides. The modified titanium surfaces were biocompatible with RAW264.7. Furthermore, the expression of pro-inflammatory cytokines IL-1β, TNF-α and iNOS was down-regulated, whereas anti-inflammatory cytokines Arg-1, IL-10 and VEGF-A were up-regulated on the modified titanium surfaces on days 3 and 5. This effect was attributed to the polarization of macrophages from the M1 to M2 phenotype, which was confirmed by the detection of macrophage M1/M2 biomarkers via immunofluorescence staining and flow cytometry. Thus, the thermosensitive PLGA-PEG-PLGA hydrogel release system carrying the antimicrobial peptide GL13K on a titanium surface exhibited antibacterial and anti-inflammatory properties and promoted macrophage polarization from the M1 to M2 phenotype, which may help create a favourable niche for bone formation under infective condition.
Collapse
Affiliation(s)
- Lin Zhou
- Affiliated Stomatological Hospital of Fujian Medical University, Fujian Medical University Fujian China
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University Fuzhou China
| | - Yifeng Xing
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University Fuzhou China
- Fujian Biological Materials Engineering and Technology Center of Stomatology, Fujian Medical University Fuzhou China
| | - Yanjin Ou
- Affiliated Stomatological Hospital of Fujian Medical University, Fujian Medical University Fujian China
- Fujian Biological Materials Engineering and Technology Center of Stomatology, Fujian Medical University Fuzhou China
| | - Jiamin Ding
- Department of Oral Mucosa, Affiliated Stomatological Hospital of Fujian Medical University Fuzhou China
| | - Yu Han
- Division of Craniofacial Development and Tissue Biology, Graduate School of Dentistry, Tohoku University Sendai City Japan
| | - Dong Lin
- Affiliated Stomatological Hospital of Fujian Medical University, Fujian Medical University Fujian China
| | - Jiang Chen
- Affiliated Stomatological Hospital of Fujian Medical University, Fujian Medical University Fujian China
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University Fuzhou China
| |
Collapse
|
26
|
Zhang S, Ding L, Chen G, Zhang J, Ge W, Qu Y. Enhanced bone regeneration via local low-dose delivery of PTH 1-34 in a composite hydrogel. Front Bioeng Biotechnol 2023; 11:1209752. [PMID: 37465690 PMCID: PMC10352085 DOI: 10.3389/fbioe.2023.1209752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023] Open
Abstract
Introducing bone regeneration-promoting factors into scaffold materials to improve the bone induction property is crucial in the fields of bone tissue engineering and regenerative medicine. This study aimed to develop a Sr-HA/PTH1-34-loaded composite hydrogel system with high biocompatibility. Teriparatide (PTH1-34) capable of promoting bone regeneration was selected as the bioactive factor. Strontium-substituted hydroxyapatite (Sr-HA) was introduced into the system to absorb PTH1-34 to promote the bioactivity and delay the release cycle. PTH1-34-loaded Sr-HA was then mixed with the precursor solution of the hydrogel to prepare the composite hydrogel as bone-repairing material with good biocompatibility and high mechanical strength. The experiments showed that Sr-HA absorbed PTH1-34 and achieved the slow and effective release of PTH1-34. In vitro biological experiments showed that the Sr-HA/PTH1-34-loaded hydrogel system had high biocompatibility, allowing the good growth of cells on the surface. The measurement of alkaline phosphatase activity and osteogenesis gene expression demonstrated that this composite system could promote the differentiation of MC3T3-E1 cells into osteoblasts. In addition, the in vivo cranial bone defect repair experiment confirmed that this composite hydrogel could promote the regeneration of new bones. In summary, Sr-HA/PTH1-34 composite hydrogel is a highly promising bone repair material.
Collapse
Affiliation(s)
- Shanyong Zhang
- Department of Spine Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Lei Ding
- Department of Rehabilitation, The Second Hospital of Jilin University, Changchun, China
| | - Gaoyang Chen
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Department of Hand Surgery, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Jinan University Second College of Medicine, Shenzhen, China
| | - Jiayin Zhang
- Department of Spine Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Wanbao Ge
- Department of Spine Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yuan Qu
- Department of Spine Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
27
|
Guillén-Carvajal K, Valdez-Salas B, Beltrán-Partida E, Salomón-Carlos J, Cheng N. Chitosan, Gelatin, and Collagen Hydrogels for Bone Regeneration. Polymers (Basel) 2023; 15:2762. [PMID: 37447408 DOI: 10.3390/polym15132762] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Hydrogels are versatile biomaterials characterized by three-dimensional, cross-linked, highly hydrated polymeric networks. These polymers exhibit a great variety of biochemical and biophysical properties, which allow for the diffusion of diverse molecules, such as drugs, active ingredients, growth factors, and nanoparticles. Meanwhile, these polymers can control chemical and molecular interactions at the cellular level. The polymeric network can be molded into different structures, imitating the structural characteristics of surrounding tissues and bone defects. Interestingly, the application of hydrogels in bone tissue engineering (BTE) has been gathering significant attention due to the beneficial bone improvement results that have been achieved. Moreover, essential clinical and osteoblastic fate-controlling advances have been achieved with the use of synthetic polymers in the production of hydrogels. However, current trends look towards fabricating hydrogels from biological precursors, such as biopolymers, due to the high biocompatibility, degradability, and mechanical control that can be regulated. Therefore, this review analyzes the concept of hydrogels and the characteristics of chitosan, collagen, and gelatin as excellent candidates for fabricating BTE scaffolds. The changes and opportunities brought on by these biopolymers in bone regeneration are discussed, considering the integration, synergy, and biocompatibility features.
Collapse
Affiliation(s)
- Karen Guillén-Carvajal
- Departamento de Corrosión y Materiales, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez and Normal s/n, Mexicali 21280, Baja California, Mexico
| | - Benjamín Valdez-Salas
- Departamento de Corrosión y Materiales, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez and Normal s/n, Mexicali 21280, Baja California, Mexico
- Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle Normal s/n, Mexicali 21280, Baja California, Mexico
| | - Ernesto Beltrán-Partida
- Departamento de Corrosión y Materiales, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez and Normal s/n, Mexicali 21280, Baja California, Mexico
- Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle Normal s/n, Mexicali 21280, Baja California, Mexico
| | - Jorge Salomón-Carlos
- Departamento de Corrosión y Materiales, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez and Normal s/n, Mexicali 21280, Baja California, Mexico
| | - Nelson Cheng
- Magna International Pte Ltd., 10 H Enterprise Road, Singapore 629834, Singapore
| |
Collapse
|
28
|
Xie C, Rashed F, Sasaki Y, Khan M, Qi J, Kubo Y, Matsumoto Y, Sawada S, Sasaki Y, Ono T, Ikeda T, Akiyoshi K, Aoki K. Comparison of Osteoconductive Ability of Two Types of Cholesterol-Bearing Pullulan (CHP) Nanogel-Hydrogels Impregnated with BMP-2 and RANKL-Binding Peptide: Bone Histomorphometric Study in a Murine Calvarial Defect Model. Int J Mol Sci 2023; 24:ijms24119751. [PMID: 37298702 DOI: 10.3390/ijms24119751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
The receptor activator of NF-κB ligand (RANKL)-binding peptide is known to accelerate bone morphogenetic protein (BMP)-2-induced bone formation. Cholesterol-bearing pullulan (CHP)-OA nanogel-crosslinked PEG gel (CHP-OA nanogel-hydrogel) was shown to release the RANKL-binding peptide sustainably; however, an appropriate scaffold for peptide-accelerated bone formation is not determined yet. This study compares the osteoconductivity of CHP-OA hydrogel and another CHP nanogel, CHP-A nanogel-crosslinked PEG gel (CHP-A nanogel-hydrogel), in the bone formation induced by BMP-2 and the peptide. A calvarial defect model was performed in 5-week-old male mice, and scaffolds were placed in the defect. In vivo μCT was performed every week. Radiological and histological analyses after 4 weeks of scaffold placement revealed that the calcified bone area and the bone formation activity at the defect site in the CHP-OA hydrogel were significantly lower than those in the CHP-A hydrogel when the scaffolds were impregnated with both BMP-2 and the RANKL-binding peptide. The amount of induced bone was similar in both CHP-A and CHP-OA hydrogels when impregnated with BMP-2 alone. In conclusion, CHP-A hydrogel could be an appropriate scaffold compared to the CHP-OA hydrogel when the local bone formation was induced by the combination of RANKL-binding peptide and BMP-2, but not by BMP-2 alone.
Collapse
Affiliation(s)
- Cangyou Xie
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Fatma Rashed
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
- Department of Oral Biology, Faculty of Dentistry, Damanhour University, Damanhour 22511, Egypt
| | - Yosuke Sasaki
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Masud Khan
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Jia Qi
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Yuri Kubo
- Department of AI Technology Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Yoshiro Matsumoto
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Shinichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Kyoto 615-8510, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Kyoto 615-8510, Japan
| | - Takashi Ono
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Tohru Ikeda
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Kyoto 615-8510, Japan
| | - Kazuhiro Aoki
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| |
Collapse
|
29
|
Sukpaita T, Chirachanchai S, Pimkhaokham A, Ampornaramveth RS. Effect of Storage Time and Temperature on the Bioactivity of a Chitosan-Derived Epigenetic Modulation Scaffold. Mar Drugs 2023; 21:md21030175. [PMID: 36976224 PMCID: PMC10054179 DOI: 10.3390/md21030175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
The appropriate storage protocol is one of the main limitations of translating tissue engineering technology to commercialized clinical applications. Recently, the development of a chitosan-derived composite scaffold incorporated with bioactive molecules has been reported as an excellent material to repair a critical size bony defect in mice calvaria. This study aims to determine the storage time and appropriate storage temperature of Chitosan/Biphasic Calcium Phosphate/Trichostatin A composite scaffold (CS/BCP/TSA scaffold) in vitro. The mechanical properties and in vitro bioactivity of trichostatin A (TSA) released from CS/BCP/TSA scaffolds in different storage times and temperatures were evaluated. Different storage times (0, 14, and 28 days) and temperatures (−18, 4, and 25 °C) did not affect the porosity, compressive strength, shape memory, and amount of TSA released. However, scaffolds stored at 25 °C and 4 °C were found to lose their bioactivity after 3- and 7-day storage periods, respectively. Thus, the CS/BCP/TSA scaffold should be stored in freezing conditions to preserve the long-term stability of TSA.
Collapse
Affiliation(s)
- Teerawat Sukpaita
- Center of Excellence on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Oral Surgery, Faculty of Dentistry, Naresuan University, Phitsanulok 65000, Thailand
| | - Suwabun Chirachanchai
- Bioresources Advanced Materials (B2A), The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Atiphan Pimkhaokham
- Bioresources Advanced Materials (B2A), The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ruchanee Salingcarnboriboon Ampornaramveth
- Center of Excellence on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +66-81-422-4546
| |
Collapse
|
30
|
Nurlidar F, Puji Rahayu D, Lasmawati D, Lestari Yunus A, Heryani R, Suryani N. A Simple Method for The Simultaneous Encapsulation of Ciprofloxacin into PEGDA/Alginate Hydrogels using Gamma Irradiation. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
|
31
|
Kim J, Choi HS, Kim YM, Song SC. Thermo-Responsive Nanocomposite Bioink with Growth-Factor Holding and its Application to Bone Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2203464. [PMID: 36526612 DOI: 10.1002/smll.202203464] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/03/2022] [Indexed: 06/17/2023]
Abstract
Three-dimensional (3D) bioprinting, which is being increasingly used in tissue engineering, requires bioinks with tunable mechanical properties, biological activities, and mechanical strength for in vivo implantation. Herein, a growth-factor-holding poly(organophosphazene)-based thermo-responsive nanocomposite (TNC) bioink system is developed. The mechanical properties of the TNC bioink are easily controlled within a moderate temperature range (5-37 °C). During printing, the mechanical properties of the TNC bioink, which determine the 3D printing resolution, can be tuned by varying the temperature (15-30 °C). After printing, TNC bioink scaffolds exhibit maximum stiffness at 37 °C. Additionally, because of its shear-thinning and self-healing properties, TNC bioinks can be extruded smoothly, demonstrating good printing outcomes. TNC bioink loaded with bone morphogenetic protein-2 (BMP-2) and transforming growth factor-beta1 (TGF-β1), key growth factors for osteogenesis, is used to print a scaffold that can stimulate biological activity. A biological scaffold printed using TNC bioink loaded with both growth factors and implanted on a rat calvarial defect model reveals significantly improved bone regenerative effects. The TNC bioink system is a promising next-generation bioink platform because its mechanical properties can be tuned easily for high-resolution 3D bioprinting with long-term stability and its growth-factor holding capability has strong clinical applicability.
Collapse
Affiliation(s)
- Jun Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hoon-Seong Choi
- Research Animal Resource Center, Research Resources Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Young-Min Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Soo-Chang Song
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
- Nexgel Biotech, Co., Ltd, Seoul, 02792, Republic of Korea
| |
Collapse
|
32
|
Li C, Wang J, Niu Y, Zhang H, Ouyang H, Zhang G, Fu Y. Baicalin Nanocomplexes with an In Situ-Forming Biomimetic Gel Implant for Repair of Calvarial Bone Defects via Localized Sclerostin Inhibition. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9044-9057. [PMID: 36753285 DOI: 10.1021/acsami.2c20946] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In situ-forming hydrogels are highly effective in covering complex and irregular tissue defects. Herein, a biomimetic gel implant (CS-GEL) consisting of methacrylated chondroitin sulfate and gelatin is obtained via visible light irradiation, which displays rapid gelation (∼30 s), suitable mechanical properties, and biological features to support osteoblast attachment and proliferation. Sclerostin is proven to be a viable target to promote osteogenesis. Hence, baicalin, a natural flavonoid with a high affinity to sclerostin, is selected as the therapeutic compound to achieve localized neutralization of sclerostin. To overcome its poor solubility and permeability, a baicalin nanocomplex (BNP) is synthesized using Solutol HS15, which is then dispersed in the CS-GEL to afford a nanocomposite delivery system, i.e., BNP-loaded gel (BNP@CS-GEL). In vitro, BNP significantly downregulated the level of sclerostin in MLO-Y4 osteocytes. In vivo, either CS-GEL or BNP@CS-GEL is proven to effectively promote osteogenesis and angiogenesis in a calvarial critical-sized bone defect rat model, with BNP@CS-GEL showing the best pro-healing effect. Specifically, the BNP@CS-GEL-treated group significantly downregulated the sclerostin level as compared to the sham group (p < 0.05). RANKL expression was also significantly suppressed by BNP in MLO-Y4 cells and BNP@CS-GEL in vivo. Collectively, our study offers a facile and viable gel platform in combination with nanoparticulated baicalin for the localized neutralization of sclerostin to promote bone regeneration and repair.
Collapse
Affiliation(s)
- Chenrui Li
- Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China
| | - Junru Wang
- Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China
| | - Yining Niu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Haonan Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hongling Ouyang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guangwei Zhang
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Department of Public Health & College of Clinical Medicine, Xi'an Medical University, Xi'an 710021, Shaanxi, China
| | - Yao Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
33
|
Hu J, Liu S, Fan C. Applications of functionally-adapted hydrogels in tendon repair. Front Bioeng Biotechnol 2023; 11:1135090. [PMID: 36815891 PMCID: PMC9934866 DOI: 10.3389/fbioe.2023.1135090] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Despite all the efforts made in tissue engineering for tendon repair, the management of tendon injuries still poses a challenge, as current treatments are unable to restore the function of tendons following injuries. Hydrogels, due to their exceptional biocompatibility and plasticity, have been extensively applied and regarded as promising candidate biomaterials in tissue regeneration. Varieties of approaches have designed functionally-adapted hydrogels and combined hydrogels with other factors (e.g., bioactive molecules or drugs) or materials for the enhancement of tendon repair. This review first summarized the current state of knowledge on the mechanisms underlying the process of tendon healing. Afterward, we discussed novel strategies in fabricating hydrogels to overcome the issues frequently encountered during the applications in tendon repair, including poor mechanical properties and undesirable degradation. In addition, we comprehensively summarized the rational design of hydrogels for promoting stem-cell-based tendon tissue engineering via altering biophysical and biochemical factors. Finally, the role of macrophages in tendon repair and how they respond to immunomodulatory hydrogels were highlighted.
Collapse
Affiliation(s)
- Jiacheng Hu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Shen Liu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| |
Collapse
|
34
|
Durairaj K, Balasubramanian B, Arumugam VA, Easwaran M, Park S, Issara U, Pushparaj K, Al-Dhabi NA, Arasu MV, Liu WC, Mousavi Khaneghah A. Biocompatibility of Veratric Acid-Encapsulated Chitosan/Methylcellulose Hydrogel: Biological Characterization, Osteogenic Efficiency with In Silico Molecular Modeling. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04311-5. [PMID: 36701091 DOI: 10.1007/s12010-023-04311-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2023] [Indexed: 01/27/2023]
Abstract
The limitations of graft material, and surgical sites for autografts in bone defects treatment have become a significant challenge in bone tissue engineering. Phytocompounds markedly affect bone metabolism by activating the osteogenic signaling pathways. The present study investigated the biocompatibility of the bio-composite thermo-responsive hydrogels consisting of chitosan (CS), and methylcellulose (MC) encapsulated with veratric acid (VA) as a restorative agent for bone defect treatment. The spectroscopy analyses confirmed the formation of CS/MC hydrogels and VA encapsulated CS/MC hydrogels (CS/MC-VA). Molecular analysis of the CS-specific MC decamer unit with VA complex exhibited a stable integration in the system. Further, Runx2 (runt-related transcription factor 2) was found in the docking mechanism with VA, indicating a high binding affinity towards the functional site of the Runx2 protein. The formulated CS/MC-VA hydrogels exhibited biocompatibility with the mouse mesenchymal stem cells, while VA promoted osteogenic differentiation in the stem cells, which was verified by calcium phosphate deposition through the von Kossa staining. The study results suggest that CS/MC-VA could be a potential therapeutic alternative source for bone regeneration.
Collapse
Affiliation(s)
- Kaliannan Durairaj
- Department of Environmental Science, School of Life Sciences, Periyar University, Salem, 636 011, India. .,Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, 54538, Iksan, Republic of Korea.
| | | | - Vijaya Anand Arumugam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore- 641 046, Tamil Nadu, India
| | - Murugesh Easwaran
- Computational Biology Lab, Department of Bioinformatics, Bharathiar University, Coimbatore-46, Tamil Nadu, India, 641046
| | - Sungkwon Park
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, 05006, South Korea
| | - Utthapon Issara
- Division of Food Science and Technology Management, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Khlong Hok, 12110, Thailand
| | - Karthika Pushparaj
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641 043, Tamil Nadu, India
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Wen-Chao Liu
- Department of Animal Science, College of Agriculture, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, People's Republic of China
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, 36 Rakowiecka St., 02-532, Warsaw, Poland. .,Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan.
| |
Collapse
|
35
|
Yu Y, Yu T, Wang X, Liu D. Functional Hydrogels and Their Applications in Craniomaxillofacial Bone Regeneration. Pharmaceutics 2022; 15:pharmaceutics15010150. [PMID: 36678779 PMCID: PMC9864650 DOI: 10.3390/pharmaceutics15010150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Craniomaxillofacial bone defects are characterized by an irregular shape, bacterial and inflammatory environment, aesthetic requirements, and the need for the functional recovery of oral-maxillofacial areas. Conventional clinical treatments are currently unable to achieve high-quality craniomaxillofacial bone regeneration. Hydrogels are a class of multifunctional platforms made of polymers cross-linked with high water content, good biocompatibility, and adjustable physicochemical properties for the intelligent delivery of goods. These characteristics make hydrogel systems a bright prospect for clinical applications in craniomaxillofacial bone. In this review, we briefly demonstrate the properties of hydrogel systems that can come into effect in the field of bone regeneration. In addition, we summarize the hydrogel systems that have been developed for craniomaxillofacial bone regeneration in recent years. Finally, we also discuss the prospects in the field of craniomaxillofacial bone tissue engineering; these discussions can serve as an inspiration for future hydrogel design.
Collapse
Affiliation(s)
- Yi Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Tingting Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Correspondence: (X.W.); (D.L.)
| | - Dawei Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
- Correspondence: (X.W.); (D.L.)
| |
Collapse
|
36
|
Thimukonda Jegadeesan J, Baldia M, Basu B. Next-generation personalized cranioplasty treatment. Acta Biomater 2022; 154:63-82. [PMID: 36272686 DOI: 10.1016/j.actbio.2022.10.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 12/14/2022]
Abstract
Decompressive craniectomy (DC) is a surgical procedure, that is followed by cranioplasty surgery. DC is usually performed to treat patients with traumatic brain injury, intracranial hemorrhage, cerebral infarction, brain edema, skull fractures, etc. In many published clinical case studies and systematic reviews, cranioplasty surgery is reported to restore cranial symmetry with good cosmetic outcomes and neurophysiologically relevant functional outcomes in hundreds of patients. In this review article, we present a number of key issues related to the manufacturing of patient-specific implants, clinical complications, cosmetic outcomes, and newer alternative therapies. While discussing alternative therapeutic treatments for cranioplasty, biomolecules and cellular-based approaches have been emphasized. The current clinical practices in the restoration of cranial defects involve 3D printing to produce patient-specific prefabricated cranial implants, that provide better cosmetic outcomes. Regardless of the advancements in image processing and 3D printing, the complete clinical procedure is time-consuming and requires significant costs. To reduce manual intervention and to address unmet clinical demands, it has been highlighted that automated implant fabrication by data-driven methods can accelerate the design and manufacturing of patient-specific cranial implants. The data-driven approaches, encompassing artificial intelligence (machine learning/deep learning) and E-platforms, such as publicly accessible clinical databases will lead to the development of the next generation of patient-specific cranial implants, which can provide predictable clinical outcomes. STATEMENT OF SIGNIFICANCE: Cranioplasty is performed to reconstruct cranial defects of patients who have undergone decompressive craniectomy. Cranioplasty surgery improves the aesthetic and functional outcomes of those patients. To meet the clinical demands of cranioplasty surgery, accelerated designing and manufacturing of 3D cranial implants are required. This review provides an overview of biomaterial implants and bone flap manufacturing methods for cranioplasty surgery. In addition, tissue engineering and regenerative medicine-based approaches to reduce clinical complications are also highlighted. The potential use of data-driven computer applications and data-driven artificial intelligence-based approaches are emphasized to accelerate the clinical protocols of cranioplasty treatment with less manual intervention and shorter intraoperative time.
Collapse
Affiliation(s)
| | - Manish Baldia
- Department of Neurosurgery, Jaslok Hospital and Research Centre, Mumbai, Maharashtra 400026, India
| | - Bikramjit Basu
- Materials Research Centre, Indian Institute of Science, CV Raman Road, Bangalore, Karnataka 560012, India; Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| |
Collapse
|
37
|
Application of Hydrogels as Sustained-Release Drug Carriers in Bone Defect Repair. Polymers (Basel) 2022; 14:polym14224906. [PMID: 36433033 PMCID: PMC9695274 DOI: 10.3390/polym14224906] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Large bone defects resulting from trauma, infection and tumors are usually difficult for the body's repair mechanisms to heal spontaneously. Generally, various types of bones and orthopedic implants are adopted to enhance bone repair and regeneration in the clinic. Due to the limitations of traditional treatments, bone defect repair is still a compelling challenge for orthopedic surgeons. In recent years, bone tissue engineering has become a potential option for bone repair and regeneration. Amidst the various scaffolds for bone tissue engineering applications, hydrogels are considered a new type of non-toxic, non-irritating and biocompatible materials, which are widely used in the biomedicine field currently. Some studies have demonstrated that hydrogels can provide a three-dimensional network structure similar to a natural extracellular matrix for tissue regeneration and can be used to transport cells, biofactors, nutrients and drugs. Therefore, hydrogels may have the potential to be multifunctional sustained-release drug carriers in the treatment of bone defects. The recent applications of different types of hydrogels in bone defect repair were briefly reviewed in this paper.
Collapse
|
38
|
Yu T, Zhang L, Dou X, Bai R, Wang H, Deng J, Zhang Y, Sun Q, Li Q, Wang X, Han B. Mechanically Robust Hydrogels Facilitating Bone Regeneration through Epigenetic Modulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203734. [PMID: 36161289 PMCID: PMC9661832 DOI: 10.1002/advs.202203734] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/24/2022] [Indexed: 05/26/2023]
Abstract
Development of artificial biomaterials by mimicking extracellular matrix of bone tissue is a promising strategy for bone regeneration. Hydrogel has emerged as a type of viable substitute, but its inhomogeneous networks and weak mechanics greatly impede clinical applications. Here, a dual crosslinked gelling system is developed with tunable architectures and mechanics to promote osteogenic capacity. Polyhedral oligomeric silsesquioxane (POSS) is designated as a rigid core surrounded by six disulfide-linked PEG shells and two 2-ureido-4[1H]-pyrimidinone (UPy) groups. Thiol-disulfide exchange is employed to fabricate chemical network because of the pH-responsive "on/off" function. While self-complementary UPy motif is capable of optimizing local microstructure to enhance mechanical properties. Taking the merits of biocompatibility and high-mechanics in periodontal ligament stem cells (PDLSCs) proliferation, attachment, and osteogenesis, hybrid hydrogel exhibits outstanding osteogenic potential both in vitro and in vivo. Importantly, it is the first time that a key epigenetic regulator of ten-eleven translocation 2 (Tet2) is discovered to significantly elevate the continuously active the WNT/β-catenin through Tet2/HDAC1/E-cadherin/β-catenin signaling cascade, thereby promoting PDLSCs osteogenesis. This work represents a general strategy to design the hydrogels with customized networks and biomimetic mechanics, and illustrates underlying osteogenic mechanisms that will extend the design rationales for high-functional biomaterials in tissue engineering.
Collapse
Affiliation(s)
- Tingting Yu
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Lingyun Zhang
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Xueyu Dou
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Rushui Bai
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Hufei Wang
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jie Deng
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Yunfan Zhang
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Qiannan Sun
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Qian Li
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Xing Wang
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Bing Han
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| |
Collapse
|
39
|
Oliveira CBP, Gomes V, Ferreira PMT, Martins JA, Jervis PJ. Peptide-Based Supramolecular Hydrogels as Drug Delivery Agents: Recent Advances. Gels 2022; 8:706. [PMID: 36354614 PMCID: PMC9689023 DOI: 10.3390/gels8110706] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 08/19/2023] Open
Abstract
Supramolecular peptide hydrogels have many important applications in biomedicine, including drug delivery applications for the sustained release of therapeutic molecules. Targeted and selective drug administration is often preferential to systemic drug delivery, as it can allow reduced doses and can avoid the toxicity and side-effects caused by off-target binding. New discoveries are continually being reported in this rapidly developing field. In this review, we report the latest developments in supramolecular peptide-based hydrogels for drug delivery, focusing primarily on discoveries that have been reported in the last four years (2018-present). We address clinical points, such as peptide self-assembly and drug release, mechanical properties in drug delivery, peptide functionalization, bioadhesive properties and drug delivery enhancement strategies, drug release profiles, and different hydrogel matrices for anticancer drug loading and release.
Collapse
Affiliation(s)
| | | | | | | | - Peter J. Jervis
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
40
|
Wu Q, Fu Y, Yang W, Liu S. A Temperature/pH Double-Responsive and Physical Double-Crosslinked Hydrogel Based on PLA and Histidine. Gels 2022; 8:570. [PMID: 36135282 PMCID: PMC9498346 DOI: 10.3390/gels8090570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 12/03/2022] Open
Abstract
Hydrogel is a good drug carrier, widely used in the sustained-release aspect of tumor drugs, which can achieve the continuous release of drugs to the tumor sites. In this study, diethylene glycol monomethyl ether methacrylate (MEO2MA) and poly (ethylene glycol) methyl ether methacrylate (OEGMA) are temperature-sensitive monomers. N-Methacryloyl-L-Histidine (Mist) is pH sensitive monomer and ligand for metal coordination bond. The temperature-sensitive monomers and pH sensitive monomer with stereocomplex of modified polylactic acid (HEMA-PLLA30/PDLA30) were mixed, under 2,2'-azobis (2-methylpropionitrile) (AIBN) as radical initiator, polymer was formed by free-radical polymerization. The polymer was then immersed in ZnSO4 solution, the imidazole group of Mist monomer forms a tridentate metal coordination bond with Zn2+, temperature/pH double-responsive and physical double-crosslinked hydrogel was finally obtained. Comparing the hydrogen bond hydrogel, hydrogen bond and metal coordination bond double crosslinking hydrogel, metal coordination bond hydrogel, testing thermal stability, viscoelasticity, swelling, and morphology of three hydrogels. In addition, using UV-Visible spectroscopy (UV-Vis) to test the sustained release of the hydrophobic drug doxorubicin hydrochloride (DOX-HCl) in the human tumor environment (37 °C, pH = 5). We found that the temperature/pH double-responsive and physical double-crosslinked hydrogel had the most potential for the sustained drug release.
Collapse
Affiliation(s)
| | | | | | - Shouxin Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
41
|
Wang G, Yuan N, Li N, Wei Q, Qian Y, Zhang J, Qin M, Wang Y, Dong S. Vascular Endothelial Growth Factor Mimetic Peptide and Parathyroid Hormone (1-34) Delivered via a Blue-Light-Curable Hydrogel Synergistically Accelerate Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35319-35332. [PMID: 35881151 DOI: 10.1021/acsami.2c06159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Safe and effective biomaterials are in urgent clinical need for tissue regeneration and bone repair. While numerous advances have been made on hydrogels promoting osteogenesis in bone formation, co-stimulation of the angiogenic pathways in this process remains to be exploited. Here, we have developed a gelatin-based blue-light-curable hydrogel system, functionalized with an angiogenic vascular endothelial growth factor (VEGF) mimetic peptide, KLTWQELYQLKYKGI (KLT), and an osteoanabolic peptide, parathyroid hormone (PTH) 1-34. We have discovered that the covalent modification of gelatin scaffold with peptides can modulate the physical properties and biological activities of the produced hydrogels. Furthermore, we have demonstrated that those two peptides orchestrate synergistically and promote bone regeneration in a rat cranial bone defect model with remarkable efficacy. This dual-peptide-functionalized hydrogel system may serve as a promising lead to functional biomaterials in bone repair and tissue engineering.
Collapse
Affiliation(s)
- Guiyan Wang
- National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, and Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Ning Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ningyu Li
- Department of Oral Comprehensive Treatment, Jilin University School and Hospital of Stomatology, Changchun 130021, China
| | - Qijia Wei
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuping Qian
- Department of Prosthodontics, Jilin University School and Hospital of Stomatology, Changchun 130021, China
| | - Jun Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Man Qin
- National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, and Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yuguang Wang
- National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, and Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Suwei Dong
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
42
|
Hao Z, Li H, Wang Y, Hu Y, Chen T, Zhang S, Guo X, Cai L, Li J. Supramolecular Peptide Nanofiber Hydrogels for Bone Tissue Engineering: From Multihierarchical Fabrications to Comprehensive Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103820. [PMID: 35128831 PMCID: PMC9008438 DOI: 10.1002/advs.202103820] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/02/2022] [Indexed: 05/03/2023]
Abstract
Bone tissue engineering is becoming an ideal strategy to replace autologous bone grafts for surgical bone repair, but the multihierarchical complexity of natural bone is still difficult to emulate due to the lack of suitable biomaterials. Supramolecular peptide nanofiber hydrogels (SPNHs) are emerging biomaterials because of their inherent biocompatibility, satisfied biodegradability, high purity, facile functionalization, and tunable mechanical properties. This review initially focuses on the multihierarchical fabrications by SPNHs to emulate natural bony extracellular matrix. Structurally, supramolecular peptides based on distinctive building blocks can assemble into nanofiber hydrogels, which can be used as nanomorphology-mimetic scaffolds for tissue engineering. Biochemically, bioactive motifs and bioactive factors can be covalently tethered or physically absorbed to SPNHs to endow various functions depending on physiological and pharmacological requirements. Mechanically, four strategies are summarized to optimize the biophysical microenvironment of SPNHs for bone regeneration. Furthermore, comprehensive applications about SPNHs for bone tissue engineering are reviewed. The biomaterials can be directly used in the form of injectable hydrogels or composite nanoscaffolds, or they can be used to construct engineered bone grafts by bioprinting or bioreactors. Finally, continuing challenges and outlook are discussed.
Collapse
Affiliation(s)
- Zhuowen Hao
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Hanke Li
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Yi Wang
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Yingkun Hu
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Tianhong Chen
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Shuwei Zhang
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Xiaodong Guo
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Road 1277Wuhan430022China
| | - Lin Cai
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Jingfeng Li
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| |
Collapse
|
43
|
Pan T, Song W, Xin H, Yu H, Wang H, Ma D, Cao X, Wang Y. MicroRNA-activated hydrogel scaffold generated by 3D printing accelerates bone regeneration. Bioact Mater 2022; 10:1-14. [PMID: 34901525 PMCID: PMC8637000 DOI: 10.1016/j.bioactmat.2021.08.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/09/2023] Open
Abstract
Bone defects remain a major threat to human health and bone tissue regeneration has become a prominent clinical demand worldwide. The combination of microRNA (miRNA) therapy with 3D printed scaffolds has always posed a challenge. It can mimic physiological bone healing processes, in which a biodegradable scaffold is gradually replaced by neo-tissue, and the sustained release of miRNA plays a vital role in creating an optimal osteogenic microenvironment, thus achieving promising bone repair outcomes. However, the balance between two key factors - scaffold degradation behavior and miRNA release profile - on osteogenesis and bone formation is still poorly understood. Herein, we construct a series of miRNA-activated hydrogel scaffolds (MAHSs) generated by 3D printing with different crosslinking degree to screened the interplay between scaffold degradation and miRNA release in the osteoinduction activity both in vitro and in vivo. Although MAHSs with a lower crosslinking degree (MAHS-0 and MAHS-0.25) released a higher amount of miR-29b in a sustained release profile, they degraded too fast to provide prolonged support for cell and tissue ingrowth. On the contrary, although the slow degradation of MAHSs with a higher crosslinking degree (MAHS-1 and MAHS-2.5) led to insufficient release of miR-29b, their adaptable degradation rate endowed them with more efficient osteoinductive behavior over the long term. MAHS-1 gave the most well-matched degradation rate and miR-29b release characteristics and was identified as the preferred MAHSs for accelerated bone regeneration. This study suggests that the bio-adaptable balance between scaffold degradation behavior and bioactive factors release profile plays a critical role in bone regeneration. These findings will provide a valuable reference about designing miRNAs as well as other bioactive molecules activated scaffold for tissue regeneration.
Collapse
Affiliation(s)
- Ting Pan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, PR China
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, PR China
| | - Wenjing Song
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, And Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Hongbao Xin
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, PR China
| | - Haiyue Yu
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral Diagnosis, Digital Health and Health Services Research, Berlin, Germany
| | - He Wang
- Department of Endodontics, Stomatological Hospital, Southern Medical University, No. 366 South Jiangnan Avenue, Guangzhou, 510280, China
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, Southern Medical University, No. 366 South Jiangnan Avenue, Guangzhou, 510280, China
| | - Xiaodong Cao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, And Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Yingjun Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, And Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
44
|
Man K, Brunet MY, Federici AS, Hoey DA, Cox SC. An ECM-Mimetic Hydrogel to Promote the Therapeutic Efficacy of Osteoblast-Derived Extracellular Vesicles for Bone Regeneration. Front Bioeng Biotechnol 2022; 10:829969. [PMID: 35433655 PMCID: PMC9005798 DOI: 10.3389/fbioe.2022.829969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
The use of extracellular vesicles (EVs) is emerging as a promising acellular approach for bone regeneration, overcoming translational hurdles associated with cell-based therapies. Despite their potential, EVs short half-life following systemic administration hinders their therapeutic efficacy. EVs have been reported to bind to extracellular matrix (ECM) proteins and play an essential role in matrix mineralisation. Chitosan and collagen type I are naturally-derived pro-osteogenic biomaterials, which have been demonstrated to control EV release kinetics. Therefore, this study aimed to develop an injectable ECM-mimetic hydrogel capable of controlling the release of osteoblast-derived EVs to promote bone repair. Pure chitosan hydrogels significantly enhanced compressive modulus (2.48-fold) and osteogenic differentiation (3.07-fold), whilst reducing gelation times (2.09-fold) and proliferation (2.7-fold) compared to pure collagen gels (p ≤ 0.001). EV release was strongly associated with collagen concentration (R2 > 0.94), where a significantly increased EV release profile was observed from chitosan containing gels using the CD63 ELISA (p ≤ 0.001). Hydrogel-released EVs enhanced human bone marrow stromal cells (hBMSCs) proliferation (1.12-fold), migration (2.55-fold), and mineralisation (3.25-fold) compared to untreated cells (p ≤ 0.001). Importantly, EV-functionalised chitosan-collagen composites significantly promoted hBMSCs extracellular matrix mineralisation when compared to the EV-free gels in a dose-dependent manner (p ≤ 0.001). Taken together, these findings demonstrate the development of a pro-osteogenic thermosensitive chitosan-collagen hydrogel capable of enhancing the therapeutic efficacy of osteoblast-derived EVs as a novel acellular tool for bone augmentation strategy.
Collapse
Affiliation(s)
- Kenny Man
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Mathieu Y. Brunet
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Angelica S. Federici
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland,Dept. of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland,Advanced Materials and Bioengineering Research Centre, Trinity College Dublin and RCSI, Dublin, Ireland
| | - David A. Hoey
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland,Dept. of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland,Advanced Materials and Bioengineering Research Centre, Trinity College Dublin and RCSI, Dublin, Ireland
| | - Sophie C. Cox
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom,*Correspondence: Sophie C. Cox,
| |
Collapse
|
45
|
Hallan SS, Amirian J, Brangule A, Bandere D. Lipid-Based Nano-Sized Cargos as a Promising Strategy in Bone Complications: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1146. [PMID: 35407263 PMCID: PMC9000285 DOI: 10.3390/nano12071146] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023]
Abstract
Bone metastasis has been considered the fatal phase of cancers, which remains incurable and to be a challenge due to the non-availability of the ideal treatment strategy. Unlike bone cancer, bone metastasis involves the spreading of the tumor cells to the bones from different origins. Bone metastasis generally originates from breast and prostate cancers. The possibility of bone metastasis is highly attributable to its physiological milieu susceptible to tumor growth. The treatment of bone-related diseases has multiple complications, including bone breakage, reduced quality of life, spinal cord or nerve compression, and pain. However, anticancer active agents have failed to maintain desired therapeutic concentrations at the target site; hence, uptake of the drug takes place at a non-target site responsible for the toxicity at the cellular level. Interestingly, lipid-based drug delivery systems have become the center of interest for researchers, thanks to their biocompatible and bio-mimetic nature. These systems possess a great potential to improve precise bone targeting without affecting healthy tissues. The lipid nano-sized systems are not only limited to delivering active agents but also genes/peptide sequences/siRNA, bisphosphonates, etc. Additionally, lipid coating of inorganic nanomaterials such as calcium phosphate is an effective approach against uncontrollable rapid precipitation resulting in reduced colloidal stability and dispersity. This review summarizes the numerous aspects, including development, design, possible applications, challenges, and future perspective of lipid nano-transporters, namely liposomes, exosomes, solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), and lipid nanoparticulate gels to treat bone metastasis and induce bone regeneration. Additionally, the economic suitability of these systems has been discussed and different alternatives have been discussed. All in all, through this review we will try to understand how far nanomedicine is from clinical and industrial applications in bone metastasis.
Collapse
Affiliation(s)
- Supandeep Singh Hallan
- Department of Pharmaceutical Chemistry, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia; (S.S.H.); (J.A.)
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Kalku Street 1, LV-1658 Riga, Latvia
| | - Jhaleh Amirian
- Department of Pharmaceutical Chemistry, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia; (S.S.H.); (J.A.)
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Kalku Street 1, LV-1658 Riga, Latvia
| | - Agnese Brangule
- Department of Pharmaceutical Chemistry, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia; (S.S.H.); (J.A.)
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Kalku Street 1, LV-1658 Riga, Latvia
| | - Dace Bandere
- Department of Pharmaceutical Chemistry, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia; (S.S.H.); (J.A.)
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Kalku Street 1, LV-1658 Riga, Latvia
| |
Collapse
|
46
|
Fabrication and evaluation of gelatin-PVA-co-poly(2-acrylamido-2-methylpropane sulfonic acid)-based hydrogels for extended-release of sitagliptin and metformin by employing response surface methodology. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02155-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
47
|
Sánchez JM, Carratalá JV, Serna N, Unzueta U, Nolan V, Sánchez-Chardi A, Voltà-Durán E, López-Laguna H, Ferrer-Miralles N, Villaverde A, Vazquez E. The Poly-Histidine Tag H6 Mediates Structural and Functional Properties of Disintegrating, Protein-Releasing Inclusion Bodies. Pharmaceutics 2022; 14:pharmaceutics14030602. [PMID: 35335976 PMCID: PMC8955739 DOI: 10.3390/pharmaceutics14030602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022] Open
Abstract
The coordination between histidine-rich peptides and divalent cations supports the formation of nano- and micro-scale protein biomaterials, including toxic and non-toxic functional amyloids, which can be adapted as drug delivery systems. Among them, inclusion bodies (IBs) formed in recombinant bacteria have shown promise as protein depots for time-sustained protein release. We have demonstrated here that the hexahistidine (H6) tag, fused to recombinant proteins, impacts both on the formation of bacterial IBs and on the conformation of the IB-forming protein, which shows a higher content of cross-beta intermolecular interactions in H6-tagged versions. Additionally, the addition of EDTA during the spontaneous disintegration of isolated IBs largely affects the protein leakage rate, again protein release being stimulated in His-tagged materials. This event depends on the number of His residues but irrespective of the location of the tag in the protein, as it occurs in either C-tagged or N-tagged proteins. The architectonic role of H6 in the formation of bacterial IBs, probably through coordination with divalent cations, offers an easy approach to manipulate protein leakage and to tailor the applicability of this material as a secretory amyloidal depot in different biomedical interfaces. In addition, the findings also offer a model to finely investigate, in a simple set-up, the mechanics of protein release from functional secretory amyloids.
Collapse
Affiliation(s)
- Julieta María Sánchez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; (J.M.S.); (J.V.C.); (N.S.); (E.V.-D.); (H.L.-L.); (N.F.-M.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), CONICET-Universidad Nacional de Córdoba, ICTA & Cátedra de Química Biológica, Departamento de Química, FCEFyN, UNC. Av. Velez Sarsfield 1611, Córdoba X 5016GCA, Argentina;
| | - José Vicente Carratalá
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; (J.M.S.); (J.V.C.); (N.S.); (E.V.-D.); (H.L.-L.); (N.F.-M.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; (J.M.S.); (J.V.C.); (N.S.); (E.V.-D.); (H.L.-L.); (N.F.-M.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Ugutz Unzueta
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, 08025 Barcelona, Spain
| | - Verónica Nolan
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), CONICET-Universidad Nacional de Córdoba, ICTA & Cátedra de Química Biológica, Departamento de Química, FCEFyN, UNC. Av. Velez Sarsfield 1611, Córdoba X 5016GCA, Argentina;
| | - Alejandro Sánchez-Chardi
- Servei de Microscòpia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Eric Voltà-Durán
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; (J.M.S.); (J.V.C.); (N.S.); (E.V.-D.); (H.L.-L.); (N.F.-M.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Hèctor López-Laguna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; (J.M.S.); (J.V.C.); (N.S.); (E.V.-D.); (H.L.-L.); (N.F.-M.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; (J.M.S.); (J.V.C.); (N.S.); (E.V.-D.); (H.L.-L.); (N.F.-M.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; (J.M.S.); (J.V.C.); (N.S.); (E.V.-D.); (H.L.-L.); (N.F.-M.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
- Correspondence: (A.V.); (E.V.)
| | - Esther Vazquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; (J.M.S.); (J.V.C.); (N.S.); (E.V.-D.); (H.L.-L.); (N.F.-M.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
- Correspondence: (A.V.); (E.V.)
| |
Collapse
|
48
|
Gupta A, Lee J, Ghosh T, Nguyen VQ, Dey A, Yoon B, Um W, Park JH. Polymeric Hydrogels for Controlled Drug Delivery to Treat Arthritis. Pharmaceutics 2022; 14:540. [PMID: 35335915 PMCID: PMC8948938 DOI: 10.3390/pharmaceutics14030540] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 12/31/2022] Open
Abstract
Rheumatoid arthritis (RA) and osteoarthritis (OA) are disabling musculoskeletal disorders that affect joints and cartilage and may lead to bone degeneration. Conventional delivery of anti-arthritic agents is limited due to short intra-articular half-life and toxicities. Innovations in polymer chemistry have led to advancements in hydrogel technology, offering a versatile drug delivery platform exhibiting tissue-like properties with tunable drug loading and high residence time properties This review discusses the advantages and drawbacks of polymeric materials along with their modifications as well as their applications for fabricating hydrogels loaded with therapeutic agents (small molecule drugs, immunotherapeutic agents, and cells). Emphasis is given to the biological potentialities of hydrogel hybrid systems/micro-and nanotechnology-integrated hydrogels as promising tools. Applications for facile tuning of therapeutic drug loading, maintaining long-term release, and consequently improving therapeutic outcome and patient compliance in arthritis are detailed. This review also suggests the advantages, challenges, and future perspectives of hydrogels loaded with anti-arthritic agents with high therapeutic potential that may alter the landscape of currently available arthritis treatment modalities.
Collapse
Affiliation(s)
- Anuradha Gupta
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Korea; (A.G.); (J.L.); (T.G.); (V.Q.N.); (A.D.); (B.Y.); (W.U.)
| | - Jungmi Lee
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Korea; (A.G.); (J.L.); (T.G.); (V.Q.N.); (A.D.); (B.Y.); (W.U.)
| | - Torsha Ghosh
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Korea; (A.G.); (J.L.); (T.G.); (V.Q.N.); (A.D.); (B.Y.); (W.U.)
| | - Van Quy Nguyen
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Korea; (A.G.); (J.L.); (T.G.); (V.Q.N.); (A.D.); (B.Y.); (W.U.)
| | - Anup Dey
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Korea; (A.G.); (J.L.); (T.G.); (V.Q.N.); (A.D.); (B.Y.); (W.U.)
| | - Been Yoon
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Korea; (A.G.); (J.L.); (T.G.); (V.Q.N.); (A.D.); (B.Y.); (W.U.)
| | - Wooram Um
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Korea; (A.G.); (J.L.); (T.G.); (V.Q.N.); (A.D.); (B.Y.); (W.U.)
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Korea; (A.G.); (J.L.); (T.G.); (V.Q.N.); (A.D.); (B.Y.); (W.U.)
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
49
|
Recent advances in smart stimuli-responsive biomaterials for bone therapeutics and regeneration. Bone Res 2022; 10:17. [PMID: 35197462 PMCID: PMC8866424 DOI: 10.1038/s41413-021-00180-y] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/26/2021] [Accepted: 09/17/2021] [Indexed: 02/05/2023] Open
Abstract
Bone defects combined with tumors, infections, or other bone diseases are challenging in clinical practice. Autologous and allogeneic grafts are two main traditional remedies, but they can cause a series of complications. To address this problem, researchers have constructed various implantable biomaterials. However, the original pathological microenvironment of bone defects, such as residual tumors, severe infection, or other bone diseases, could further affect bone regeneration. Thus, the rational design of versatile biomaterials with integrated bone therapy and regeneration functions is in great demand. Many strategies have been applied to fabricate smart stimuli-responsive materials for bone therapy and regeneration, with stimuli related to external physical triggers or endogenous disease microenvironments or involving multiple integrated strategies. Typical external physical triggers include light irradiation, electric and magnetic fields, ultrasound, and mechanical stimuli. These stimuli can transform the internal atomic packing arrangements of materials and affect cell fate, thus enhancing bone tissue therapy and regeneration. In addition to the external stimuli-responsive strategy, some specific pathological microenvironments, such as excess reactive oxygen species and mild acidity in tumors, specific pH reduction and enzymes secreted by bacteria in severe infection, and electronegative potential in bone defect sites, could be used as biochemical triggers to activate bone disease therapy and bone regeneration. Herein, we summarize and discuss the rational construction of versatile biomaterials with bone therapeutic and regenerative functions. The specific mechanisms, clinical applications, and existing limitations of the newly designed biomaterials are also clarified.
Collapse
|
50
|
Kurian AG, Singh RK, Patel KD, Lee JH, Kim HW. Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioact Mater 2022; 8:267-295. [PMID: 34541401 PMCID: PMC8424393 DOI: 10.1016/j.bioactmat.2021.06.027] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Polymeric hydrogels are fascinating platforms as 3D scaffolds for tissue repair and delivery systems of therapeutic molecules and cells. Among others, methacrylated gelatin (GelMA) has become a representative hydrogel formulation, finding various biomedical applications. Recent efforts on GelMA-based hydrogels have been devoted to combining them with bioactive and functional nanomaterials, aiming to provide enhanced physicochemical and biological properties to GelMA. The benefits of this approach are multiple: i) reinforcing mechanical properties, ii) modulating viscoelastic property to allow 3D printability of bio-inks, iii) rendering electrical/magnetic property to produce electro-/magneto-active hydrogels for the repair of specific tissues (e.g., muscle, nerve), iv) providing stimuli-responsiveness to actively deliver therapeutic molecules, and v) endowing therapeutic capacity in tissue repair process (e.g., antioxidant effects). The nanomaterial-combined GelMA systems have shown significantly enhanced and extraordinary behaviors in various tissues (bone, skin, cardiac, and nerve) that are rarely observable with GelMA. Here we systematically review these recent efforts in nanomaterials-combined GelMA hydrogels that are considered as next-generation multifunctional platforms for tissue therapeutics. The approaches used in GelMA can also apply to other existing polymeric hydrogel systems.
Collapse
Affiliation(s)
- Amal George Kurian
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Rajendra K. Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Kapil D. Patel
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, WC1X8LD, UK
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| |
Collapse
|