1
|
Liu WJ, Xu DQ, Cui DX, Fu RJ, Jing H, Li XQ, Cao W, Tang YP. The structural features and anti-inflammatory properties of a glucogalactan from Holotrichia diomphalia Bates (Qi Cao). JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118948. [PMID: 39419304 DOI: 10.1016/j.jep.2024.118948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The dried larvae of Holotrichia diomphalia Bates, named Qi Cao, is a traditional Chinese medicine treat for liver diseases and arthritis. Polysaccharides is a principal component in Qi Cao, which exhibiting antioxidant and anti-inflammatory effects. However, the structural characteristics and underlying mechanisms of the polysaccharides remain inadequately elucidated. AIM OF THE STUDY To analyze the primary structure and elucidate the molecular anti-inflammatory mechanisms of the active polysaccharide in Qi Cao. MATERIALS AND METHODS The total polysaccharide was extracted by water extraction and alcohol precipitation, and further isolated and purified by DEAE Sephadex A-25 column and Sephadex G-100 column. The anti-inflammatory properties of four major fractions (HDPS-1, HDPS-2, HDPS-3, HDPS-4) and the pure homogeneous polysaccharides (HDPS-1I and HDPS-1II) were assessed using a RAW 264.7 cell model induced by lipopolysaccharide (LPS), and HDPS-1II was identified as the polysaccharide exhibiting significant anti-inflammatory activity in Qi Cao. The structural characteristics of HDPS-1II were subsequently analyzed using high-performance size-exclusion chromatography (HPSEC), fourier-transform infrared spectroscopy (FT-IR), gas chromatography-mass spectrometry (GC-MS), and nuclear magnetic resonance (NMR) spectroscopy. The TLR4, NF-κB, COX-2 and iNOS expressions were determined by Western blot analysis to investigate the anti-inflammatory mechanism of HDPS-1II in vitro. Finally, the in vivo anti-inflammatory activity of HDPS-1II were evaluated by measuring the serum levels of pro-inflammatory factors, inflammatory cell infiltration and organelle damage in the lung tissues of sepsis model mice. RESULTS A homogeneous polysaccharide (HDPS-1II) with molecular weight of 1.7 × 104 Da was isolated from Holotrichia diomphalia Bates. HDPS-1II contains a backbone of α-T-Glcp-(1 → 6)-α-Glcp-(1 → 4)-α-Galp-(1 → 4)-α-Galp-(1 → 6)-α-Galp-(1 → 3)-α-Galp-(1 → . It inhibited activation of the TLR4/NF-κB signaling and reduced pro-inflammatory factors and NO in LPS-stimulated macrophage. Moreover, HDPS-1II increased the survival rate, inhibited inflammatory cells infiltration, and ameliorated the lung tissue damage in septic mice. CONCLUSIONS HDPS-1II exhibits anti-inflammatory effects in vitro and in vivo, which is the active polysaccharide components of the anti-inflammatory activity of Qi Cao.
Collapse
Affiliation(s)
- Wen-Juan Liu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China; Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China; Department of Pharmacology and Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Dong-Xiao Cui
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Hui Jing
- College of Pharmacy, Xi'an Medical University, Shaanxi, Xi'an, 710021, China
| | - Xiao-Qiang Li
- Department of Pharmacology and Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Wei Cao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China; Department of Pharmacology and Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, China.
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| |
Collapse
|
2
|
Zhang YF, Zhang RM, Gu WX, Jin YT, Ma CL. Efficacy and safety of same-day versus next-day administration of PEG-rhG-CSF for the prophylaxis of chemotherapy-induced neutropenia and febrile neutropenia in patients with breast cancer: a retrospective cohort study. Curr Med Res Opin 2024:1-8. [PMID: 39479731 DOI: 10.1080/03007995.2024.2423736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/13/2024] [Accepted: 10/28/2024] [Indexed: 11/07/2024]
Abstract
OBJECTIVES Polyethylene glycol recombinant human granulocyte colony-stimulating factors (PEG-rhG-CSFs) are used to prevent or treat chemotherapy-induced neutropenia (CIN) and febrile neutropenia (FN). This study aimed to compare the efficacy and safety of same-day versus next-day PEG-rhG-CSF administration following chemotherapy and the effects of 3 mg versus 6 mg dosages. METHODS We retrospectively analyzed cohort data of patients with breast cancer who underwent chemotherapy and received PEG-rhG-CSF either within 24 h (same-day group) or 24 h (next-day group) after chemotherapy. The incidences of CIN and FN were assessed in each chemotherapy cycle between the two groups. The primary endpoint was the incidence of FN in the first cycle and throughout all cycles. The secondary endpoints included the incidences of various grades of CIN (CIN1-CIN4), antibiotic use, chemotherapy regimen modifications, and overall safety. RESULTS Among the 2385 chemotherapy cycles with prophylactic PEG-rhG-CSF in 620 patients, 798 and 1587 cycleswere in the same-day and next-day group, respectively. No statistically significant differences were observed in the incidence of FN in the first cycle or across all cycles, CIN1-4, or adverse reactions between the two groups. However, the same-day group exhibited significantly higher rates of antibiotic use (2.88% vs. 0.42%, p = .03) and chemotherapy regimen modification (4.68% vs. 1.45%, p < .001). Subgroup analysis indicated no differences in outcomes for the 6 mg dosage, but a significantly lower incidence of CIN was observed in the same-day group receiving 3 mg (p = .025). CONCLUSIONS These findings suggest that same-day administration of PEG-rhG-CSF is as effective and safe as next-day administration in preventing FN and CIN during chemotherapy.
Collapse
Affiliation(s)
- Yu-Fei Zhang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Rou-Mei Zhang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Wen-Xin Gu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Yi-Ting Jin
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Chun-Lai Ma
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, PR China
| |
Collapse
|
3
|
Zheng W, Huang Y, Wu Q, Cheng P, Song Y, Wang B, Huang Q, Hu S. Poly(lactic acid hydroxyacetic acid)-poly(ethylene glycol)-modified ginsenoside Rg3 nanomedicine enhances anti-tumor effect in hepatocellular carcinoma. Drug Dev Ind Pharm 2024; 50:763-775. [PMID: 39259031 DOI: 10.1080/03639045.2024.2402769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
OBJECTIVE This research aims to improve the bioavailability and anti-hepatocellular carcinoma (HCC) efficacy of Ginsenoside Rg3 by modification with poly (lactic acid hydroxyacetic acid)-poly(ethylene glycol) (PLGA-PEG). METHODS PLGA-PEG-Rg3 was obtained by emulsification and evaluated it physiochemical characterization by FTIR, SEM, laser particle-size analyzer and HPLC. The effect of the PLGA-PEG-Rg3 and Rg3 on HepG2 cells was compared in vitro studies, including cell proliferation, transwell and a series of apoptosis detection, and in-situ HCC model. RESULTS The PLGA-PEG-Rg3 were 122 nm in size and 0.112 in polydispersity index with sustained release profile in vitro. Compared to Rg3, PLGA-PEG-Rg3 was more effective in suppressing HepG2 growth and inducing apoptosis by the mitochondrial apoptosis pathway in vitro. And PLGA-PEG modification enhanced the liver-targeting ability and drug circulation time of Rg3 in vivo, resulting in PLGA-PEG-Rg3 possessing superior performance in inhibiting tumor growth and prolonging the survival time of tumor-bearing mice than Rg3. CONCLUSIONS Overall, these results showed PLGA-PEG-Rg3 enhanced the anti-tumor effect of Rg3 in HCC.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuqiao Huang
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Qiong Wu
- Center for Modern Physics Technology, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
| | - Pu Cheng
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yujun Song
- Center for Modern Physics Technology, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
| | - Ben Wang
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Qi Huang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shen Hu
- Department of Obstetrics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
| |
Collapse
|
4
|
Dana SMMA, Meghdadi M, Kakhki SK, Khademi R. Anti-leukemia effects of ginsenoside monomer: A narrative review of pharmacodynamics study. CURRENT THERAPEUTIC RESEARCH 2024; 100:100739. [PMID: 38706463 PMCID: PMC11066596 DOI: 10.1016/j.curtheres.2024.100739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/12/2024] [Indexed: 05/07/2024]
Abstract
Background Leukemia is a prevalent disease with high mortality and morbidity rates. Current therapeutic approaches are expensive and have side effects. Objective In this investigation, we reviewed studies that investigated the anticancer effects of ginsenoside derivatives against leukemia and also explained the three main Ginsenoside derivatives (ginsenoside Rg3, Rh2, and Rg1) separately. Methods An extensive search was conducted in Pubmed, Web of Science, and Google Scholar and relevant studies that investigated anticancer effects of ginsenoside derivatives against leukemia cancer were extracted and reviewed. Results Preclinical studies reported that ginsenoside derivatives can induce apoptosis, suppress the proliferation of cancer cells, and induce differentiation and cell cycle arrest in leukemia cells. in addition, it can suppress the chemokine activity and extramedullary infiltration of leukemia cells from bone marrow. using herbal medicine and its derivatives is a promising approach to current health problems. Conclusion This review shows that ginsenoside derivatives can potentially suppress the growth of leukemia cells via various pathways and can be applied as a new natural medicine for future clinical research.
Collapse
Affiliation(s)
| | - Mohammadreza Meghdadi
- Department of Hematology and Blood Banking, Faculty of Medical Science, Mashhad University of Medical Science, Mashhad, Iran
| | - Saeed Khayat Kakhki
- Department of Gerontological Nursing, School of Nursing, Social Development and Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Reza Khademi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Wang Y, Han Q, Zhang S, Xing X, Sun X. New perspective on the immunomodulatory activity of ginsenosides: Focus on effective therapies for post-COVID-19. Biomed Pharmacother 2023; 165:115154. [PMID: 37454595 DOI: 10.1016/j.biopha.2023.115154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
More than 700 million confirmed cases of Coronavirus Disease-2019 (COVID-19) have been reported globally, and 10-60% of patients are expected to exhibit "post-COVID-19 symptoms," which will continue to affect human life and health. In the absence of safer, more specific drugs, current multiple immunotherapies have failed to achieve satisfactory efficacy. Ginseng, a traditional Chinese medicine, is often used as an immunomodulator and has been used in COVID-19 treatment as a tonic to increase blood oxygen saturation. Ginsenosides are the main active components of ginseng. In this review, we summarize the multiple ways in which ginsenosides affect post-COVID-19 symptoms, including inhibition of lipopolysaccharide, tumor necrosis factor signaling, modulation of chemokine receptors and inflammasome activation, induction of macrophage polarization, effects on Toll-like receptors, nuclear factor kappa-B, the mitogen-activated protein kinase pathway, lymphocytes, intestinal flora, and epigenetic regulation. Ginsenosides affect virus-mediated tissue damage, local or systemic inflammation, immune modulation, and other links, thus alleviating respiratory and pulmonary symptoms, reducing the cardiac burden, protecting the nervous system, and providing new ideas for the rehabilitation of patients with post-COVID-19 symptoms. Furthermore, we analyzed its role in strengthening body resistance to eliminate pathogenic factors from the perspective of ginseng-epidemic disease and highlighted the challenges in clinical applications. However, the benefit of ginsenosides in modulating organismal imbalance post-COVID-19 needs to be further evaluated to better validate the pharmacological mechanisms associated with their traditional efficacy and to determine their role in individualized therapy.
Collapse
Affiliation(s)
- Yixin Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders,State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China
| | - Qin Han
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders,State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China
| | - Shuxia Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders,State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China
| | - Xiaoyan Xing
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders,State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China.
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders,State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China.
| |
Collapse
|
6
|
Oh HM, Cho CK, Son CG. Experimental Evidence for the Anti-Metastatic Action of Ginsenoside Rg3: A Systematic Review. Int J Mol Sci 2022; 23:ijms23169077. [PMID: 36012338 PMCID: PMC9409359 DOI: 10.3390/ijms23169077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022] Open
Abstract
Cancer metastasis is the leading cause of death in cancer patients. Due to the limitations of conventional cancer treatment, such as chemotherapy, there is a need for novel therapeutics to prevent metastasis. Ginsenoside Rg3, a major active component of Panax ginseng C.A. Meyer, inhibits tumor growth and has the potential to prevent tumor metastasis. Herein, we systematically reviewed the anti-metastatic effects of Rg3 from experimental studies. We searched for articles in three research databases, MEDLINE (PubMed), EMBASE, and the Cochrane Central Register of Controlled Trials (CENTRAL) through March 2022. In total, 14 studies (eight animal and six in vitro) provide data on the anti-metastatic effects of Rg3 and the relevant mechanisms. The major anti-metastatic mechanisms of Rg3 involve cancer stemness, epithelial mesenchymal transition (EMT) behavior, and angiogenesis. Taken together, Rg3 would be one of the herbal resources in anti-metastatic drug developments through further well-designed investigations and clinical studies. Our review provides valuable reference data for Rg3-derived studies targeting tumor metastasis.
Collapse
Affiliation(s)
- Hyeon-Muk Oh
- College of Korean Medicine, Daejeon University, Daejeon 35235, Korea
| | - Chong-Kwan Cho
- College of Korean Medicine, Daejeon University, Daejeon 35235, Korea
- East-West Cancer Center, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon 35235, Korea
| | - Chang-Gue Son
- College of Korean Medicine, Daejeon University, Daejeon 35235, Korea
- Liver and Immunology Research Center, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon 35235, Korea
- Correspondence:
| |
Collapse
|
7
|
Chen ZX, Li J, Liu WB, Zhang SR, Sun H. Elemene-containing hyperthermic intraperitoneal chemotherapy combined with chemotherapy for elderly patients with peritoneal metastatic advanced gastric cancer. World J Clin Cases 2022; 10:1498-1507. [PMID: 35211587 PMCID: PMC8855251 DOI: 10.12998/wjcc.v10.i5.1498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/19/2021] [Accepted: 01/10/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Almost all elderly patients with peritoneal metastatic gastric cancer (PGC) are unlikely to tolerate cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy (HIPEC) and adjuvant chemotherapy. However, determining how to optimize the treatment strategy for such patients has always been a clinical problem. Both HIPEC and palliative adjuvant chemotherapy can benefit patients with PGC. Therefore, optimizing HIPEC and chemotherapy regimens has potential clinical value in reducing side effects, and improving treatment tolerance and clinical effectiveness.
AIM To explore the effect of HIPEC containing elemene, which is an anti-cancer component extracted in traditional Chinese herbal medicine, combined with reduced capecitabine and oxaliplatin (CapeOx) chemotherapy regimens, in elderly patients with PGC.
METHODS In the present study, 39 of 52 elderly PGC patients were included and assigned to different HIPEC treatment groups [lobaplatin group (group L) and mixed group (group M)] for analysis. Lobaplatin was used for all three HIPECs in group L. In group M, lobaplatin was used in the middle of the three HIPECs, and elemene was used for the first and third HIPEC. After HIPEC, patients received CapeOx chemotherapy. The incidence of complications (abdominal infection, lung infection, and urinary tract infection), myelosuppression, immune function (CD4/CD8 ratio), average length of hospital stay, and prognosis were compared between these two groups.
RESULTS There was no significant difference in the incidence of complications between the two groups during hospitalization (P > 0.05). Compared to patients in group M, patients in group L exhibited severe myelosuppression (P = 0.027) and increased length of hospital stay (P = 0.045). However, no overall survival benefit was observed in group M. Furthermore, the immune function of patients in group M was less affected (P < 0.001), when compared to that of patients in group L. The multivariate analysis suggested that the cycles of chemotherapy after perfusion significantly affected the prognosis of patients in both groups.
CONCLUSION Compared to the lobaplatin-based HIPEC regimen, the administration of elemene reduced the myelosuppression incidence in elderly PGC patients. The present study sheds light on the implementation of this therapeutic strategy for this set of patients.
Collapse
Affiliation(s)
- Zhi-Xiong Chen
- Department of Gastrointestinal Cancer Center, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Jin Li
- Department of Ultrasound, The Fifth People's Hospital of Chongqing, Chongqing 400062, China
| | - Wen-Bin Liu
- Department of Hepatobiliary and Pancreatic Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Shou-Ru Zhang
- Department of Teaching and Research Section, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Hao Sun
- Department of Gastrointestinal Cancer Center, Chongqing University Cancer Hospital, Chongqing 400030, China
| |
Collapse
|
8
|
Wan Y, Wang J, Xu JF, Tang F, Chen L, Tan YZ, Rao CL, Ao H, Peng C. Panax ginseng and its ginsenosides: potential candidates for the prevention and treatment of chemotherapy-induced side effects. J Ginseng Res 2021; 45:617-630. [PMID: 34764717 PMCID: PMC8569258 DOI: 10.1016/j.jgr.2021.03.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Chemotherapy-induced side effects affect the quality of life and efficacy of treatment of cancer patients. Current approaches for treating the side effects of chemotherapy are poorly effective and may cause numerous harmful side effects. Therefore, developing new and effective drugs derived from natural non-toxic compounds for the treatment of chemotherapy-induced side effects is necessary. Experiments in vivo and in vitro indicate that Panax ginseng (PG) and its ginsenosides are undoubtedly non-toxic and effective options for the treatment of chemotherapy-induced side effects, such as nephrotoxicity, hepatotoxicity, cardiotoxicity, immunotoxicity, and hematopoietic inhibition. The mechanism focus on anti-oxidation, anti-inflammation, and anti-apoptosis, as well as the modulation of signaling pathways, such as nuclear factor erythroid-2 related factor 2 (Nrf2)/heme oxygenase-1 (HO-1), P62/keap1/Nrf2, c-jun N-terminal kinase (JNK)/P53/caspase 3, mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinases (ERK), AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR), mitogen-activated protein kinase kinase 4 (MKK4)/JNK, and phosphatidylinositol 3-kinase (PI3K)/AKT. Since a systemic review of the effect and mechanism of PG and its ginsenosides on chemotherapy-induced side effects has not yet been published, we provide a comprehensive summarization with this aim and shed light on the future research of PG.
Collapse
Key Words
- 5-FU, 5-fluorouracil
- ADM, Adriamycin
- ALT, alanine aminotransferase
- AMO, Atractylodes macrocephala volatile oil
- AMPK, AMP-activated protein kinase
- ARE, antioxidant response element
- AST, aspartate aminotransferase
- BMNC, bone marrow nucleated cells
- CIA, chemotherapy-induced hair loss
- CK, compound K
- CP, cisplatin
- CY, cyclophosphamide
- CYP2E1, Cytochrome P450 E1
- Chemotherapy
- DAC, doses of docetaxel, doxorubicin as well as cyclophosphamide
- ERG, enzyme-treated eRG
- ERK, extracellular signal-regulated kinases
- FBG, fermented black ginseng
- FRG, probiotic-fermented eRG
- FRGE, fermented red ginseng extract
- GM-CSF, granulocyte macrophage colony-stimulating factor
- Ginsenosides
- HEI-OC1, House Ear Institute-Organ of Corti 1
- HO-1, heme oxygenase-1
- HSPCS, haematopoietic stem and progenitor cells
- IL, interleukin
- JNK, c-jun N-terminal kinase
- KG-KH, the mixture of ginsenosides Rk3 and Rh4
- LLC-PK1, porcine renal proximal epithelial tubular
- LSK, Lin−Sca-1+c-kit+
- MAPK, mitogen-activated protein kinase
- MDA, malonaldehyde
- MEK, mitogen activated protein kinase
- MKK4, mitogen activated protein kinase kinase 4
- Mechanism
- NF-κB, nuclear factor-kappa B p65
- NQO, NAD (P) H quinone oxidoreductase
- Nrf2, nuclear factor erythroid related factor 2
- PG
- PG, Panax ginseng
- PGFR, PG flower
- PGLF, PG leaf
- PGRT, PG root
- PGS, PG total saponins
- PGSD, PG seeds
- PGSM, PG stem
- PI3K, phosphatidylinositol 3-kinase
- PPD, protopanaxadiol
- PPT, protopanaxatriol
- Pharmacological effects
- RG, red ginseng
- RGE, red ginseng extract
- ROS, reactive oxygen species
- SREBP-1, sterol regulatory element binding protein 1
- Side effects
- TNF-α, tumor necrosis factor-α
- eRG, 50% ethanol-extracted RG
- mTOR, mammalian target of rapamycin
- wRG, water-extracted RG
Collapse
Affiliation(s)
- Yan Wan
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin-feng Xu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Tang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Chen
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-zhu Tan
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao-long Rao
- College of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Ao
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Zhu H, Wang SY, Zhu JH, Liu H, Kong M, Mao Q, Zhang W, Li SL. Efficacy and safety of transcatheter arterial chemoembolization combined with ginsenosides in hepatocellular carcinoma treatment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153700. [PMID: 34425474 DOI: 10.1016/j.phymed.2021.153700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/30/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Transcatheter arterial chemoembolization (TACE) is a standard therapy to treat hepatocellular carcinoma (HCC), but often limited for its complications. Ginsenosides, including total ginsenosides (GS), Rg3, Rh2 and CK, have been clinically used as adjuvants of TACE in HCC therapy. However, partial clinical observations concerning the efficacy and safety of the combinational treatment were contradictory. PURPOSE To investigate the efficacy and safety of TACE and ginsenosides combination for HCC therapy. METHODS Randomized controlled trials (RCTs) regarding TACE and ginsenosides for HCC up to May 2021 were screened from six databases (PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure, Chinese VIP Information and Web of Science). The outcomes of tumor response, adverse reactions (ADRs), quality of life (QOL), survival rates (OS) and liver function were extracted and evaluated by meta-analysis, respectively. RESULTS A total of 18 RCTs with 1308 HCC patients were enrolled, and most of the eligible studies had unclear bias risk. Compared with TACE, combining ginsenosides improved objective response rate [ORR, risk ratio (RR) 1.39, 95% confidence intervals (CI) 1.20∼1.61], disease control rate (DCR, RR 1.21, 95% CI 1.12∼1.30), QOL (RR 1.54, 95% CI 1.25∼1.90), one- (RR 1.37, 95% CI 1.16∼1.62) and two- (RR 1.43, 95% CI 1.06∼1.95) year OS, and A level of Child-pugh, as well as reduced the risks of nausea and vomiting, pyrexia, ache, hyperbilirubinemia, anorexia, fatigue, leukopenia, thrombocytopenia and myelosuppression. Subgroup analyses showed that both short- and long- treatment durations of ginsenosides enhanced the A level of Child-pugh, and reduced nausea and vomiting, ache and hyperbilirubinemia. Besides, combining Rg3 benefited DCR, ORR and QOL, and alleviated nausea and vomiting, hyperbilirubinemia, leukopenia, myelosuppression, thrombocytopenia and α-fetoprotein, while combining GS alleviated nausea and vomiting, ache and hyperbilirubinemia, combining Rh2 alleviated thrombocytopenia, and combining CK alleviated nausea and vomiting, pyrexia, ache and leukopenia, respectively. CONCLUSION The results suggested that combining ginsenosides could continuously benefit the efficacy and safety of TACE in HCC treatment, and Rg3 is the prior selection during the combination.
Collapse
Affiliation(s)
- He Zhu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| | - Si-Yu Wang
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Jin-Hao Zhu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Hui Liu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Ming Kong
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Qian Mao
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Wei Zhang
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Song-Lin Li
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| |
Collapse
|
10
|
Song T, Wang H, Liu Y, Cai R, Yang D, Xiong Y. TPGS-Modified Long-Circulating Liposomes Loading Ziyuglycoside I for Enhanced Therapy of Myelosuppression. Int J Nanomedicine 2021; 16:6281-6295. [PMID: 34548791 PMCID: PMC8449650 DOI: 10.2147/ijn.s326629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/07/2021] [Indexed: 01/02/2023] Open
Abstract
Background Ziyuglycoside I (ZgI), an active ingredient isolated from traditional Chinese medicine Sanguisorba officinalis L, has been demonstrated to increase the leucocytes and protect hematopoietic stem cells. However, the poor solubility and a short half-life of ZgI limit its bioavailability and efficacy. The D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) has been widely used to increase the solubility, improve the encapsulation rate, and extend the half-life of drugs. Methods Here, we formulated the TPGS-modified long-circulating liposomes loading ZgI with a sustained drug release and enhanced therapy for myelosuppression. ZgI-TPGS-liposomes were manufactured using a thin-film hydration technique, followed by characterizations of physicochemical properties, including the particle size, zeta potential, TEM, SEM, FTIR, XRD, stability, drug loading (DL), encapsulation efficiency (EE). The in vitro and in vivo delivery efficiency were further evaluated by cellular uptake, in vitro drug release and in vivo pharmacokinetics. Finally, therapeutic effect on myelosuppression was investigated. Results The ZgI-TPGS-liposomes had an particle size of 97.89 ± 1.42 nm and ZP of −28.65 ± 0.16 mV. It exhibited DL of 9.06 ± 0.76% and EE of 92.34 ± 3.83%, along with excellent storage stability, cellular uptake and sustained drug release to free ZgI and liposomes without TPGS. Additionally, the TPGS modified liposomes significantly enhanced the therapeutic effect of ZgI on CTX induced myelosuppression, which can be confirmed in the apoptosis inhibition and cell viability promotion of CTX injured HSPC-1 cells. Also, the mice in vivo pharmacodynamics demonstrated that TPGS liposomes promoted ZgI increasing the numbers of leucocytes and neutrophils in myelosuppression mice induced by CTX. Conclusion Our research suggest that TPGS-modified long-circulating liposomes loading ziyuglycoside I has potential application in myelosuppression therapy.
Collapse
Affiliation(s)
- Tingting Song
- Department of Pharmacy, Zunyi Medical University, Zunyi City, People's Republic of China
| | - Hong Wang
- Department of Pharmacy, Zunyi Medical University, Zunyi City, People's Republic of China
| | - Yue Liu
- Department of Pharmacy, Zunyi Medical University, Zunyi City, People's Republic of China
| | - Rongshan Cai
- Department of Pharmacy, Zunyi Medical University, Zunyi City, People's Republic of China
| | - Dezhi Yang
- Department of Pharmacy, Zunyi Medical University, Zunyi City, People's Republic of China
| | - Yongai Xiong
- Department of Pharmacy, Zunyi Medical University, Zunyi City, People's Republic of China
| |
Collapse
|
11
|
He M, Wang N, Zheng W, Cai X, Qi D, Zhang Y, Han C. Ameliorative effects of ginsenosides on myelosuppression induced by chemotherapy or radiotherapy. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113581. [PMID: 33189841 DOI: 10.1016/j.jep.2020.113581] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/17/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND and ethnopharmacological relevance: As the major side effect of radiotherapy or chemotherapy, myelosuppression usually leads to anemia, hemorrhage, immunosuppression, and even fatal infections, which may discontinue the process of cancer treatment. As a result, more and more attention is paid to the treatment of myelosuppression. Ginseng, root of Panax ginseng Meyer (Panax ginseng C. A. Mey), is considered as the king of herbs in the Orient, particularly in China, Korea and Japan. Ginsenosides, the most important active ingredients of ginseng, have been shown to have a variety of therapeutic effects, such as neuroprotective, anti-cancer and anti-diabetic properties. Considering that ginsenosides are closely associated with the pathogenesis of myelosuppression, researchers have carried out a few experiments on ginsenosides to attenuate myelosuppression induced by chemotherapy or radiotherapy in recent years. AIM OF THE STUDY To summarize previous studies about the effects of ginsenosides on alleviating myelosuppression and the mechanisms of action. METHODS Literatures in this review were searched in PubMed, China National Knowledge Infrastructure (CNKI), Web of Science, and ScienceDirect. RESULTS Ginsenosides play an important role in relieving myelosuppression predominantly by restoring hematopoiesis and immunity. CONCLUSION Ginsenosides might be potential candidates for the treatment of myelosuppression induced by chemotherapy or radiotherapy.
Collapse
Affiliation(s)
- Mengjiao He
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Na Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Wenxiu Zheng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Xiaoqing Cai
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Dongmei Qi
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Yongqing Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China; Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, Shandong, 250355, PR China.
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China; Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, Shandong, 250355, PR China.
| |
Collapse
|
12
|
Liu Z, Liu T, Li W, Li J, Wang C, Zhang K. Insights into the antitumor mechanism of ginsenosides Rg3. Mol Biol Rep 2021; 48:2639-2652. [PMID: 33661439 DOI: 10.1007/s11033-021-06187-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 01/28/2021] [Indexed: 12/12/2022]
Abstract
Panax ginseng, an ancient herb, belonging to Chinese traditional medicine, is an important herb that has a remarkable impact on various diseases. Ginsenoside Rg3, one of the most abundant ginsenosides, exerts significant functions in the prevention of various types of cancers with few side effects. In the present review, its functional molecular mechanisms are explored, including the improvement of antioxidant and anti-inflammation properties, immune regulation, induction of tumor apoptosis, prevention of tumor invasion and metastasis, tumor proliferation and angiogenesis, and reduction of chemoresistance and radioresistance. On the other hand, metabolism, pharmacokinetics and clinical indications of Rg3 are also discussed. The biological functional role of ginsenoside Rg3 may be associated with that it is a steroid glycoside with diverse biological activities and many signaling pathway can be regulated. Many clinical trials are highly needed to confirm the functions of ginsenoside Rg3.
Collapse
Affiliation(s)
- Zongyu Liu
- Department of General Surgery, The Second Hospital of Jilin University, No.218 Ziqiang Street, Changchun, 130000, China
| | - Tongjun Liu
- Department of General Surgery, The Second Hospital of Jilin University, No.218 Ziqiang Street, Changchun, 130000, China
| | - Wei Li
- Department of General Surgery, The Second Hospital of Jilin University, No.218 Ziqiang Street, Changchun, 130000, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, No.218 Ziqiang Street, Changchun, 130000, China
| | - Cuizhu Wang
- Department of New Drug Research Office, College of Pharmacy of Jilin University, Changchun, 130000, China
| | - Kai Zhang
- Department of General Surgery, The Second Hospital of Jilin University, No.218 Ziqiang Street, Changchun, 130000, China.
| |
Collapse
|
13
|
Sun S, Qu Y, Wen F, Yu H. Initial neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio as prognostic markers in patients with inoperable locally advanced non-small-cell lung cancer. Biomark Med 2020; 14:1341-1352. [PMID: 32808809 DOI: 10.2217/bmm-2019-0583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
Aim: To determine whether pretreatment of neutrophil-to-lymphocyte ratio (NLR) or platelet-to-lymphocyte ratio (PLR) has a prognostic value in patients with inoperable locally advanced non-small-cell lung cancer. Materials & methods: A total of 167 patients between 2013 and 2016 were analyzed retrospectively. Results: Appropriate cut-off values for initial NLR (3.06) and PLR (168.03) were determined by receiver operating characteristic curves. High NLR (p < 0.001 and p < 0.001) was related to poor overall survival (OS) and progression-free survival (PFS) via univariate analysis. Multivariable analysis showed that NLR can independently influence OS (hazard ratio: 1.570; p = 0.012) and PFS (hazard ratio: 1.471; p = 0.023). PLR did not correlate with OS or PFS. Conclusion: Pretreatment of NLR could independently predict the prognosis of inoperable locally advanced non-small-cell lung cancer patients, while pretreatment of PLR does not have prognostic value.
Collapse
Affiliation(s)
- Siyu Sun
- Radiation Oncology Department of Thoracic Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Dadong District Shenyang, Liaoning Province 110042, PR China
| | - Yanli Qu
- Radiation Oncology Department of Thoracic Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Dadong District Shenyang, Liaoning Province 110042, PR China
| | - Fengyun Wen
- Radiation Oncology Department of Thoracic Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Dadong District Shenyang, Liaoning Province 110042, PR China
| | - Hong Yu
- Radiation Oncology Department of Thoracic Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Dadong District Shenyang, Liaoning Province 110042, PR China
| |
Collapse
|