1
|
Miller RC, Temenoff JS. Biomaterials for Cell Manufacturing. ACS Macro Lett 2024; 13:1521-1530. [PMID: 39466845 PMCID: PMC11580378 DOI: 10.1021/acsmacrolett.4c00634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Cell therapies, potent populations of cells used to treat disease and injury, can be strategically manufactured with biomaterial intervention to improve clinical translation. In this viewpoint, we discuss biomaterial design and integration into cell manufacturing steps to achieve three main goals: scale-up, phenotype control, and selection of potent cells. Material properties can be engineered to influence the cell-biomaterial interface and, therefore, impart desirable cell behavior such as growth, secretory activity, and differentiation. Future directions for the field should capitalize on the combinatorial design of biomaterial properties to yield highly specific and potent cell populations. Furthermore, future biomaterials could contribute to novel high-throughput cell separation technologies that can individually select the most therapeutically relevant cells within a produced batch.
Collapse
Affiliation(s)
- Ryan C. Miller
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Tech/Emory University, Atlanta, Georgia 30332, United States
| | - Johnna S. Temenoff
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Tech/Emory University, Atlanta, Georgia 30332, United States
- Parker
H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Wang J, Li R. Effects, methods and limits of the cryopreservation on mesenchymal stem cells. Stem Cell Res Ther 2024; 15:337. [PMID: 39343920 PMCID: PMC11441116 DOI: 10.1186/s13287-024-03954-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are a type of cell capable of regulating the immune system, as well as exhibiting self-renewal and multi-lineage differentiation potential. Mesenchymal stem cells have emerged as an essential source of seed cells for therapeutic cell therapy. It is crucial to cryopreserve MSCs in liquid nitrogen prior to clinical application while preserving their functionality. Furthermore, efficient cryopreservation greatly enhances MSCs' potential in a range of biological domains. Nevertheless, there are several limits on the MSC cryopreservation methods now in use, necessitating thorough biosafety assessments before utilizing cryopreserved MSCs. Therefore, in order to improve the effectiveness of cryopreserved MSCs in clinical stem cell treatment procedures, new technological techniques must be developed immediately. The study offers an exhaustive analysis of the state-of-the-art MSC cryopreservation techniques, their effects on MSCs, and the difficulties encountered when using cryopreserved MSCs in clinical applications.
Collapse
Affiliation(s)
- Jialing Wang
- Chengdu Senkicel Biotechnology Co. Ltd, Chengdu, China
| | - Rui Li
- Chengdu Senkicel Biotechnology Co. Ltd, Chengdu, China.
| |
Collapse
|
3
|
Chu Q, Jiang X, Xiao Y. Rebuilding the myocardial microenvironment to enhance mesenchymal stem cells-mediated regeneration in ischemic heart disease. Front Bioeng Biotechnol 2024; 12:1468833. [PMID: 39372432 PMCID: PMC11452912 DOI: 10.3389/fbioe.2024.1468833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are naturally-derived regenerative materials that exhibit significant potential in regenerative medicine. Previous studies have demonstrated that MSCs-based therapy can improve heart function in ischemia-injured hearts, offering an exciting therapeutic intervention for myocardial ischemic infarction, a leading cause of worldwide mortality and disability. However, the efficacy of MSCs-based therapies is significantly disturbed by the myocardial microenvironment, which undergoes substantial changes following ischemic injury. After the ischemic injury, blood vessels become obstructed and damaged, and cardiomyocytes experience ischemic conditions. This activates the hypoxia-induced factor 1 (HIF-1) pathway, leading to the rapid production of several cytokines and chemokines, including vascular endothelial growth factor (VEGF) and stromal-derived factor 1 (SDF-1), which are crucial for angiogenesis, cell migration, and tissue repair, but it is not sustainable. MSCs respond to these cytokines and chemokines by homing to the injured site and participating in myocardial regeneration. However, the deteriorated microenvironment in the injured myocardium poses challenges for cell survival, interacting with MSCs, and constraining their homing, retention, and migration capabilities, thereby limiting their regenerative potential. This review discusses how the deteriorated microenvironment negatively affects the ability of MSCs to promote myocardial regeneration. Recent studies have shown that optimizing the microenvironment through the promotion of angiogenesis can significantly enhance the efficacy of MSCs in treating myocardial infarction. This approach harnesses the full therapeutic potential of MSCs-based therapies for ischemic heart disease.
Collapse
Affiliation(s)
- Qing Chu
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Xin Jiang
- Department of Laboratory Medicine, Sichuan University West China Hospital, Chengdu, Sichuan, China
- Innovation Institute for Integration of Medicine and Engineering, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Ying Xiao
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan, China
- Department of Postgraduate, Sichuan University West China Hospital, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Abraham BD, Gysel E, Kallos MS, Hu J. Biofunctionalization of Cellulose Microcarriers Using a Carbohydrate Binding Module Linked with Fibroblast Growth Factor for the Expansion of Human Umbilical Mesenchymal Stromal Cells in Stirred Suspension Bioreactors. ACS APPLIED BIO MATERIALS 2024; 7:5956-5964. [PMID: 39190068 DOI: 10.1021/acsabm.4c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Mesenchymal stromal cells (MSCs) have the potential to be used as autologous or allogenic cell therapy in several diseases due to their beneficial secretome and capacity for immunomodulation and differentiation. However, clinical trials using MSCs require a large number of cells. As an alternative to traditional culture flasks, suspension bioreactors provide a scalable platform to produce clinically relevant quantities of cells. When cultured in bioreactors, anchorage-dependent cells like MSCs require the addition of microcarriers, which provide a surface for cell attachment while in suspension. The best performing microcarriers are typically coated in animal derived proteins, which increases cellular attachment and proliferation but present issues from a regulatory perspective. To overcome this issue, a recombinant fusion protein was generated linking basic fibroblast growth factor (bFGF) to a cellulose-specific carbohydrate binding module (CBM) and used to functionalize the surface of cellulose microcarriers for the expansion of human umbilical MSCs in suspension bioreactors. The fusion protein was shown to support the growth of MSCs when used as a soluble growth factor in the absence of cellulose, readily bound to cellulose microcarriers in a dose-dependent manner, and ultimately improved the expansion of MSCs when grown in bioreactors using cellulose microcarriers. The use of CBM fusion proteins offers a simple method for the surface immobilization of growth factors to animal component-free substrates such as cellulose, which can be used alongside bioreactors to increase growth factor lifespan, decrease culture medium cost, and increase cell production in the manufacturing of therapeutic cells.
Collapse
Affiliation(s)
- Brett D Abraham
- Department of Biomedical Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Emilie Gysel
- Department of Biomedical Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Michael S Kallos
- Department of Biomedical Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
5
|
Younesi FS, Hinz B. The Myofibroblast Fate of Therapeutic Mesenchymal Stromal Cells: Regeneration, Repair, or Despair? Int J Mol Sci 2024; 25:8712. [PMID: 39201399 PMCID: PMC11354465 DOI: 10.3390/ijms25168712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) can be isolated from various tissues of healthy or patient donors to be retransplanted in cell therapies. Because the number of MSCs obtained from biopsies is typically too low for direct clinical application, MSC expansion in cell culture is required. However, ex vivo amplification often reduces the desired MSC regenerative potential and enhances undesired traits, such as activation into fibrogenic myofibroblasts. Transiently activated myofibroblasts restore tissue integrity after organ injury by producing and contracting extracellular matrix into scar tissue. In contrast, persistent myofibroblasts cause excessive scarring-called fibrosis-that destroys organ function. In this review, we focus on the relevance and molecular mechanisms of myofibroblast activation upon contact with stiff cell culture plastic or recipient scar tissue, such as hypertrophic scars of large skin burns. We discuss cell mechanoperception mechanisms such as integrins and stretch-activated channels, mechanotransduction through the contractile actin cytoskeleton, and conversion of mechanical signals into transcriptional programs via mechanosensitive co-transcription factors, such as YAP, TAZ, and MRTF. We further elaborate how prolonged mechanical stress can create persistent myofibroblast memory by direct mechanotransduction to the nucleus that can evoke lasting epigenetic modifications at the DNA level, such as histone methylation and acetylation. We conclude by projecting how cell culture mechanics can be modulated to generate MSCs, which epigenetically protected against myofibroblast activation and transport desired regeneration potential to the recipient tissue environment in clinical therapies.
Collapse
Affiliation(s)
- Fereshteh Sadat Younesi
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Keenan Research Institute for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| | - Boris Hinz
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Keenan Research Institute for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
6
|
Jang J, Lee DW. Advancements in plant based meat analogs enhancing sensory and nutritional attributes. NPJ Sci Food 2024; 8:50. [PMID: 39112506 PMCID: PMC11306346 DOI: 10.1038/s41538-024-00292-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
The burgeoning demand for plant-based meat analogs (PBMAs) stems from environmental, health, and ethical concerns, yet replicating the sensory attributes of animal meat remains challenging. This comprehensive review explores recent innovations in PBMA ingredients and methodologies, emphasizing advancements in texture, flavor, and nutritional profiles. It chronicles the transition from soy-based first-generation products to more diversified second- and third-generation PBMAs, showcasing the utilization of various plant proteins and advanced processing techniques to enrich sensory experiences. The review underscores the crucial role of proteins, polysaccharides, and fats in mimicking meat's texture and flavor and emphasizes research on new plant-based sources to improve product quality. Addressing challenges like production costs, taste, texture, and nutritional adequacy is vital for enhancing consumer acceptance and fostering a more sustainable food system.
Collapse
Affiliation(s)
- Jiwon Jang
- Graduate Program in Bio-industrial Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Dong-Woo Lee
- Graduate Program in Bio-industrial Engineering, Yonsei University, Seoul, 03722, South Korea.
- Department of Biotechnology, Yonsei University, Seoul, 03722, South Korea.
| |
Collapse
|
7
|
Gupta K, Perkerson RB, Parsons TM, Angom R, Amerna D, Burgess JD, Ren Y, McLean PJ, Mukhopadhyay D, Vibhute P, Wszolek ZK, Zubair AC, Quiñones-Hinojosa A, Kanekiyo T. Secretome from iPSC-derived MSCs exerts proangiogenic and immunosuppressive effects to alleviate radiation-induced vascular endothelial cell damage. Stem Cell Res Ther 2024; 15:230. [PMID: 39075600 PMCID: PMC11287895 DOI: 10.1186/s13287-024-03847-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/13/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Radiation therapy is the standard of care for central nervous system tumours. Despite the success of radiation therapy in reducing tumour mass, irradiation (IR)-induced vasculopathies and neuroinflammation contribute to late-delayed complications, neurodegeneration, and premature ageing in long-term cancer survivors. Mesenchymal stromal cells (MSCs) are adult stem cells that facilitate tissue integrity, homeostasis, and repair. Here, we investigated the potential of the iPSC-derived MSC (iMSC) secretome in immunomodulation and vasculature repair in response to radiation injury utilizing human cell lines. METHODS We generated iPSC-derived iMSC lines and evaluated the potential of their conditioned media (iMSC CM) to treat IR-induced injuries in human monocytes (THP1) and brain vascular endothelial cells (hCMEC/D3). We further assessed factors in the iMSC secretome, their modulation, and the molecular pathways they elicit. RESULTS Increasing doses of IR disturbed endothelial tube and spheroid formation in hCMEC/D3. When IR-injured hCMEC/D3 (IR ≤ 5 Gy) were treated with iMSC CM, endothelial cell viability, adherence, spheroid compactness, and proangiogenic sprout formation were significantly ameliorated, and IR-induced ROS levels were reduced. iMSC CM augmented tube formation in cocultures of hCMEC/D3 and iMSCs. Consistently, iMSC CM facilitated angiogenesis in a zebrafish model in vivo. Furthermore, iMSC CM suppressed IR-induced NFκB activation, TNF-α release, and ROS production in THP1 cells. Additionally, iMSC CM diminished NF-kB activation in THP1 cells cocultured with irradiated hCMEC/D3, iMSCs, or HMC3 microglial lines. The cytokine array revealed that iMSC CM contains the proangiogenic and immunosuppressive factors MCP1/CCL2, IL6, IL8/CXCL8, ANG (Angiogenin), GROα/CXCL1, and RANTES/CCL5. Common promoter regulatory elements were enriched in TF-binding motifs such as androgen receptor (ANDR) and GATA2. hCMEC/D3 phosphokinome profiling revealed increased expression of pro-survival factors, the PI3K/AKT/mTOR modulator PRAS40 and β-catenin in response to CM. The transcriptome analysis revealed increased expression of GATA2 in iMSCs and the enrichment of pathways involved in RNA metabolism, translation, mitochondrial respiration, DNA damage repair, and neurodevelopment. CONCLUSIONS The iMSC secretome is a comodulated composite of proangiogenic and immunosuppressive factors that has the potential to alleviate radiation-induced vascular endothelial cell damage and immune activation.
Collapse
Affiliation(s)
- Kshama Gupta
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA.
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA.
| | - Ralph B Perkerson
- Center of Regenerative Biotherapeutics, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Tammee M Parsons
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
- Center of Regenerative Biotherapeutics, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Ramacharan Angom
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Danilyn Amerna
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Jeremy D Burgess
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Yingxue Ren
- Department of Quantitative Health Sciences, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Pamela J McLean
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Debabrata Mukhopadhyay
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Prasanna Vibhute
- Department of Radiology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Zbigniew K Wszolek
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Abba C Zubair
- Center of Regenerative Biotherapeutics, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Alfredo Quiñones-Hinojosa
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
- Department of Neurosurgery, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA.
- Center of Regenerative Biotherapeutics, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA.
| |
Collapse
|
8
|
Krupczak B, Farruggio C, Van Vliet KJ. Manufacturing mesenchymal stromal cells in a microcarrier-microbioreactor platform can enhance cell yield and quality attributes: case study for acute respiratory distress syndrome. J Transl Med 2024; 22:614. [PMID: 38956643 PMCID: PMC11220991 DOI: 10.1186/s12967-024-05373-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024] Open
Abstract
Mesenchymal stem and stromal cells (MSCs) hold potential to treat a broad range of clinical indications, but clinical translation has been limited to date due in part to challenges with batch-to-batch reproducibility of potential critical quality attributes (pCQAs) that can predict potency/efficacy. Here, we designed and implemented a microcarrier-microbioreactor approach to cell therapy manufacturing, specific to anchorage-dependent cells such as MSCs. We sought to assess whether increased control of the biochemical and biophysical environment had the potential to create product with consistent presentation and elevated expression of pCQAs relative to established manufacturing approaches in tissue culture polystyrene (TCPS) flasks. First, we evaluated total cell yield harvested from dissolvable, gelatin microcarriers within a microbioreactor cassette (Mobius Breez) or a flask control with matched initial cell seeding density and culture duration. Next, we identified 24 genes implicated in a therapeutic role for a specific motivating indication, acute respiratory distress syndrome (ARDS); expression of these genes served as our pCQAs for initial in vitro evaluation of product potency. We evaluated mRNA expression for three distinct donors to assess inter-donor repeatability, as well as for one donor in three distinct batches to assess within-donor, inter-batch variability. Finally, we assessed gene expression at the protein level for a subset of the panel to confirm successful translation. Our results indicated that MSCs expanded with this microcarrier-microbioreactor approach exhibited reasonable donor-to-donor repeatability and reliable batch-to-batch reproducibility of pCQAs. Interestingly, the baseline conditions of this microcarrier-microbioreactor approach also significantly improved expression of several key pCQAs at the gene and protein expression levels and reduced total media consumption relative to TCPS culture. This proof-of-concept study illustrates key benefits of this approach to therapeutic cell process development for MSCs and other anchorage-dependent cells that are candidates for cell therapies.
Collapse
Affiliation(s)
- Brandon Krupczak
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
- Singapore-MIT Alliance for Research and Technology, Critical Analytics for Manufacturing Personalised-medicine, 1 Create Way, Singapore, 138602, Singapore
| | - Camille Farruggio
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, USA
- Singapore-MIT Alliance for Research and Technology, Critical Analytics for Manufacturing Personalised-medicine, 1 Create Way, Singapore, 138602, Singapore
| | - Krystyn J Van Vliet
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
- Singapore-MIT Alliance for Research and Technology, Critical Analytics for Manufacturing Personalised-medicine, 1 Create Way, Singapore, 138602, Singapore.
- Departments of Materials Science & Engineering and Biomedical Engineering, Cornell University, 144 Feeney Way, Ithaca, NY, 14853, USA.
| |
Collapse
|
9
|
Tan YL, Al-Masawa ME, Eng SP, Shafiee MN, Law JX, Ng MH. Therapeutic Efficacy of Interferon-Gamma and Hypoxia-Primed Mesenchymal Stromal Cells and Their Extracellular Vesicles: Underlying Mechanisms and Potentials in Clinical Translation. Biomedicines 2024; 12:1369. [PMID: 38927577 PMCID: PMC11201753 DOI: 10.3390/biomedicines12061369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) hold promises for cell therapy and tissue engineering due to their self-renewal and differentiation abilities, along with immunomodulatory properties and trophic factor secretion. Extracellular vesicles (EVs) from MSCs offer similar therapeutic effects. However, MSCs are heterogeneous and lead to variable outcomes. In vitro priming enhances MSC performance, improving immunomodulation, angiogenesis, proliferation, and tissue regeneration. Various stimuli, such as cytokines, growth factors, and oxygen tension, can prime MSCs. Two classical priming methods, interferon-gamma (IFN-γ) and hypoxia, enhance MSC immunomodulation, although standardized protocols are lacking. This review discusses priming protocols, highlighting the most commonly used concentrations and durations, along with mechanisms and in vivo therapeutics effects of primed MSCs and their EVs. The feasibility of up-scaling their production was also discussed. The review concluded that priming with IFN-γ or hypoxia (alone or in combination with other factors) boosted the immunomodulation capability of MSCs and their EVs, primarily via the JAK/STAT and PI3K/AKT and Leptin/JAK/STAT and TGF-β/Smad signalling pathways, respectively. Incorporating priming in MSC and EV production enables translation into cell-based or cell-free therapies for various disorders.
Collapse
Affiliation(s)
- Yu Ling Tan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Y.L.T.); (M.E.A.-M.); (J.X.L.)
| | - Maimonah Eissa Al-Masawa
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Y.L.T.); (M.E.A.-M.); (J.X.L.)
| | - Sue Ping Eng
- NK Biocell Sdn. Bhd, Unit 1-22A, 1st Floor Pusat Perdagangan Berpadu (United Point), No.10, Jalan Lang Emas, Kuala Lumpur 51200, Malaysia;
| | - Mohamad Nasir Shafiee
- Department of Obstetrics & Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Y.L.T.); (M.E.A.-M.); (J.X.L.)
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Y.L.T.); (M.E.A.-M.); (J.X.L.)
| |
Collapse
|
10
|
Sabetkish S, Currie P, Meagher L. Recent trends in 3D bioprinting technology for skeletal muscle regeneration. Acta Biomater 2024; 181:46-66. [PMID: 38697381 DOI: 10.1016/j.actbio.2024.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Skeletal muscle is a pro-regenerative tissue, that utilizes a tissue-resident stem cell system to effect repair upon injury. Despite the demonstrated efficiency of this system in restoring muscle mass after many acute injuries, in conditions of severe trauma such as those evident in volumetric muscle loss (VML) (>20 % by mass), this self-repair capability is unable to restore tissue architecture, requiring interventions which currently are largely surgical. As a possible alternative, the generation of artificial muscle using tissue engineering approaches may also be of importance in the treatment of VML and muscle diseases such as dystrophies. Three-dimensional (3D) bioprinting has been identified as a promising technique for regeneration of the complex architecture of skeletal muscle. This review discusses existing treatment strategies following muscle damage, recent progress in bioprinting techniques, the bioinks used for muscle regeneration, the immunogenicity of scaffold materials, and in vitro and in vivo maturation techniques for 3D bio-printed muscle constructs. The pros and cons of these bioink formulations are also highlighted. Finally, we present the current limitations and challenges in the field and critical factors to consider for bioprinting approaches to become more translationa and to produce clinically relevant engineered muscle. STATEMENT OF SIGNIFICANCE: This review discusses the physiopathology of muscle injuries and existing clinical treatment strategies for muscle damage, the types of bioprinting techniques that have been applied to bioprinting of muscle, and the bioinks commonly used for muscle regeneration. The pros and cons of these bioinks are highlighted. We present a discussion of existing gaps in the literature and critical factors to consider for the translation of bioprinting approaches and to produce clinically relevant engineered muscle. Finally, we provide insights into what we believe will be the next steps required before the realization of the application of tissue-engineered muscle in humans. We believe this manuscript is an insightful, timely, and instructive review that will guide future muscle bioprinting research from a fundamental construct creation approach, down a translational pathway to achieve the desired impact in the clinic.
Collapse
Affiliation(s)
- Shabnam Sabetkish
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC 3800, Australia
| | - Peter Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC 3800, Australia
| | - Laurence Meagher
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
11
|
Shimizu Y, Ntege EH, Inoue Y, Matsuura N, Sunami H, Sowa Y. Optimizing mesenchymal stem cell extracellular vesicles for chronic wound healing: Bioengineering, standardization, and safety. Regen Ther 2024; 26:260-274. [PMID: 38978963 PMCID: PMC11228664 DOI: 10.1016/j.reth.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/12/2024] [Accepted: 06/06/2024] [Indexed: 07/10/2024] Open
Abstract
Chronic wounds represent a significant global burden, afflicting millions with debilitating complications. Despite standard care, impaired healing persists due to factors like persistent inflammation and impaired tissue regeneration. Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) offer an innovative regenerative medicine approach, delivering stem cell-derived therapeutic cargo in engineered nanoscale delivery systems. This review examines pioneering bioengineering strategies to engineer MSC-EVs into precision nanotherapeutics for chronic wounds. Emerging technologies like CRISPR gene editing, microfluidic manufacturing, and biomimetic delivery systems are highlighted for their potential to enhance MSC-EV targeting, optimize therapeutic cargo enrichment, and ensure consistent clinical-grade production. However, key hurdles remain, including batch variability, rigorous safety assessment for potential tumorigenicity, immunogenicity, and biodistribution profiling. Crucially, collaborative frameworks harmonizing regulatory science with bioengineering and patient advocacy hold the key to expediting global clinical translation. By overcoming these challenges, engineered MSC-EVs could catalyze a new era of off-the-shelf regenerative therapies, restoring hope and healing for millions afflicted by non-healing wounds.
Collapse
Affiliation(s)
- Yusuke Shimizu
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Edward Hosea Ntege
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Yoshikazu Inoue
- Department of Plastic and Reconstructive Surgery, School of Medicine, Fujita Health University, 1-98, Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
| | - Naoki Matsuura
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Hiroshi Sunami
- Center for Advanced Medical Research, School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Yoshihiro Sowa
- Department of Plastic Surgery, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, 329-0498, Tochigi, Japan
| |
Collapse
|
12
|
Ma CY, Zhai Y, Li CT, Liu J, Xu X, Chen H, Tse HF, Lian Q. Translating mesenchymal stem cell and their exosome research into GMP compliant advanced therapy products: Promises, problems and prospects. Med Res Rev 2024; 44:919-938. [PMID: 38095832 DOI: 10.1002/med.22002] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/22/2023] [Accepted: 11/26/2023] [Indexed: 04/06/2024]
Abstract
Mesenchymal stem cells (MSCs) are one of the few stem cell types used in clinical practice as therapeutic agents for immunomodulation and ischemic tissue repair, due to their unique paracrine capacity, multiple differentiation potential, active components in exosomes, and effective mitochondria donation. At present, MSCs derived from tissues such as bone marrow and umbilical cord are widely applied in preclinical and clinical studies. Nevertheless, there remain challenges to the maintenance of consistently good quality MSCs derived from different donors or tissues, directly impacting their application as advanced therapy products. In this review, we discuss the promises, problems, and prospects associated with translation of MSC research into a pharmaceutical product. We review the hurdles encountered in translation of MSCs and MSC-exosomes from the research bench to an advanced therapy product compliant with good manufacturing practice (GMP). These difficulties include how to set up GMP-compliant protocols, what factors affect raw material selection, cell expansion to product formulation, establishment of quality control (QC) parameters, and quality assurance to comply with GMP standards. To avoid human error and reduce the risk of contamination, an automatic, closed system that allows real-time monitoring of QC should be considered. We also highlight potential advantages of pluripotent stem cells as an alternative source for MSC and exosomes generation and manufacture.
Collapse
Affiliation(s)
- Chui-Yan Ma
- Center for Translational Stem Cell Biology, Hong Kong, China
- Department of Medicine, HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuqing Zhai
- Center for Translational Stem Cell Biology, Hong Kong, China
- Department of Medicine, HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chung Tony Li
- Center for Translational Stem Cell Biology, Hong Kong, China
- Department of Medicine, HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong, China
| | - Jie Liu
- Department of Medicine, HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong, China
- Cord Blood Bank Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Xiang Xu
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hung-Fat Tse
- Center for Translational Stem Cell Biology, Hong Kong, China
- Department of Medicine, HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong, China
- Department of Cardiology, Cardiac and Vascular Center, Shenzhen Hong Kong University Hospital, Shenzhen, China
- Hong Kong-Guangdong Joint Laboratory on Stem Cell and Regenerative Medicine, The University of Hong Kong, Hong Kong, China
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Qizhou Lian
- Center for Translational Stem Cell Biology, Hong Kong, China
- Department of Medicine, HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Cord Blood Bank Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
13
|
Gonçalves MP, Farah R, Bikorimana JP, Abusarah J, EL-Hachem N, Saad W, Talbot S, Stanga D, Beaudoin S, Plouffe S, Rafei M. A1-reprogrammed mesenchymal stromal cells prime potent antitumoral responses. iScience 2024; 27:109248. [PMID: 38433914 PMCID: PMC10907831 DOI: 10.1016/j.isci.2024.109248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/23/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) have been modified via genetic or pharmacological engineering into potent antigen-presenting cells-like capable of priming responding CD8 T cells. In this study, our screening of a variant library of Accum molecule revealed a molecule (A1) capable of eliciting antigen cross-presentation properties in MSCs. A1-reprogrammed MSCs (ARM) exhibited improved soluble antigen uptake and processing. Our comprehensive analysis, encompassing cross-presentation assays and molecular profiling, among other cellular investigations, elucidated A1's impact on endosomal escape, reactive oxygen species production, and cytokine secretion. By evaluating ARM-based cellular vaccine in mouse models of lymphoma and melanoma, we observe significant therapeutic potency, particularly in allogeneic setting and in combination with anti-PD-1 immune checkpoint inhibitor. Overall, this study introduces a strong target for developing an antigen-adaptable vaccination platform, capable of synergizing with immune checkpoint blockers to trigger tumor regression, supporting further investigation of ARMs as an effective and versatile anti-cancer vaccine.
Collapse
Affiliation(s)
| | - Roudy Farah
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Jean-Pierre Bikorimana
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Jamilah Abusarah
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada
| | - Nehme EL-Hachem
- Pediatric Hematology-Oncology Division, Centre Hospitalier Universitaire Sainte-Justine Research Centre, Montreal, QC, Canada
| | - Wael Saad
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada
| | - Sebastien Talbot
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Daniela Stanga
- Defence Therapeutics Inc., Research and Development branch, Montreal, QC, Canada
| | - Simon Beaudoin
- Defence Therapeutics Inc., Research and Development branch, Montreal, QC, Canada
| | - Sebastien Plouffe
- Defence Therapeutics Inc., Research and Development branch, Montreal, QC, Canada
| | - Moutih Rafei
- Molecular Biology Program, Université de Montréal, Montreal, QC, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
14
|
da Silva AV, Serrenho I, Araújo B, Carvalho AM, Baltazar G. Secretome as a Tool to Treat Neurological Conditions: Are We Ready? Int J Mol Sci 2023; 24:16544. [PMID: 38003733 PMCID: PMC10671352 DOI: 10.3390/ijms242216544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/04/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Due to their characteristics, mesenchymal stem cells (MSCs) are considered a potential therapy for brain tissue injury or degeneration. Nevertheless, despite the promising results observed, there has been a growing interest in the use of cell-free therapies in regenerative medicine, such as the use of stem cell secretome. This review provides an in-depth compilation of data regarding the secretome composition, protocols used for its preparation, as well as existing information on the impact of secretome administration on various brain conditions, pointing out gaps and highlighting relevant findings. Moreover, due to the ability of MSCs to respond differently depending on their microenvironment, preconditioning of MSCs has been used to modulate their composition and, consequently, their therapeutic potential. The different strategies used to modulate the MSC secretome were also reviewed. Although secretome administration was effective in improving functional impairments, regeneration, neuroprotection, and reducing inflammation in brain tissue, a high variability in secretome preparation and administration was identified, compromising the transposition of preclinical data to clinical studies. Indeed, there are no reports of the use of secretome in clinical trials. Despite the existing limitations and lack of clinical data, secretome administration is a potential tool for the treatment of various diseases that impact the CNS.
Collapse
Affiliation(s)
- Andreia Valente da Silva
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Inês Serrenho
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6201-506 Covilhã, Portugal
- Center for Neuroscience and Cell Biology (CNC-UC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Beatriz Araújo
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6201-506 Covilhã, Portugal
| | | | - Graça Baltazar
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6201-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
| |
Collapse
|
15
|
Sahoo A, Damala M, Jaffet J, Prasad D, Basu S, Singh V. Expansion and characterization of human limbus-derived stromal/mesenchymal stem cells in xeno-free medium for therapeutic applications. Stem Cell Res Ther 2023; 14:89. [PMID: 37061739 PMCID: PMC10105964 DOI: 10.1186/s13287-023-03299-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/24/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have been proven to prevent and clear corneal scarring and limbal stem cell deficiency. However, using animal-derived serum in a culture medium raises the ethical and regulatory bar. This study aims to expand and characterize human limbus-derived stromal/mesenchymal stem cells (hLMSCs) for the first time in vitro in the xeno-free medium. METHODS Limbal tissue was obtained from therapeutic grade corneoscleral rims and subjected to explant culture till tertiary passage in media with and without serum (STEM MACS XF; SM), to obtain pure hLMSCs. Population doubling time, cell proliferation, expression of phenotypic markers, tri-lineage differentiation, colony-forming potential and gene expression analysis were carried out to assess the retention of phenotypic and genotypic characteristics of hLMSCs. RESULTS The serum-free medium supported the growth of hLMSCs, retaining similar morphology but a significantly lower doubling time of 23 h (*p < 0.01) compared to the control medium. FACS analysis demonstrated ≥ 90% hLMSCs were positive for CD90+, CD73+, CD105+, and ≤ 6% were positive for CD45-, CD34- and HLA-DR-. Immunofluorescence analysis confirmed similar expression of Pax6+, COL IV+, ABCG2+, ABCB5+, VIM+, CD90+, CD105+, CD73+, HLA-DR- and CD45-, αSMA- in both the media. Tri-lineage differentiation potential and gene expression of hLMSCs were retained similarly to that of the control medium. CONCLUSION The findings of this study demonstrate successful isolation, characterization and culture optimization of hLMSCs for the first time in vitro in a serum-free environment. This will help in the future pre-clinical and clinical applications of MSCs in translational research.
Collapse
Affiliation(s)
- Abhishek Sahoo
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Mukesh Damala
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Jilu Jaffet
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Deeksha Prasad
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sayan Basu
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India.
| | - Vivek Singh
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India.
| |
Collapse
|
16
|
Handral HK, Wyrobnik TA, Lam ATL. Emerging Trends in Biodegradable Microcarriers for Therapeutic Applications. Polymers (Basel) 2023; 15:polym15061487. [PMID: 36987266 PMCID: PMC10057597 DOI: 10.3390/polym15061487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Microcarriers (MCs) are adaptable therapeutic instruments that may be adjusted to specific therapeutic uses, making them an appealing alternative for regenerative medicine and drug delivery. MCs can be employed to expand therapeutic cells. MCs can be used as scaffolds for tissue engineering, as well as providing a 3D milieu that replicates the original extracellular matrix, facilitating cell proliferation and differentiation. Drugs, peptides, and other therapeutic compounds can be carried by MCs. The surface of the MCs can be altered, to improve medication loading and release, and to target specific tissues or cells. Allogeneic cell therapies in clinical trials require enormous volumes of stem cells, to assure adequate coverage for several recruitment locations, eliminate batch to batch variability, and reduce production costs. Commercially available microcarriers necessitate additional harvesting steps to extract cells and dissociation reagents, which reduces cell yield and quality. To circumvent such production challenges, biodegradable microcarriers have been developed. In this review, we have compiled key information relating to biodegradable MC platforms, for generating clinical-grade cells, that permit cell delivery at the target site without compromising quality or cell yields. Biodegradable MCs could also be employed as injectable scaffolds for defect filling, supplying biochemical signals for tissue repair and regeneration. Bioinks, coupled with biodegradable microcarriers with controlled rheological properties, might improve bioactive profiles, while also providing mechanical stability to 3D bioprinted tissue structures. Biodegradable materials used for microcarriers have the ability to solve in vitro disease modeling, and are advantageous to the biopharmaceutical drug industries, because they widen the spectrum of controllable biodegradation and may be employed in a variety of applications.
Collapse
Affiliation(s)
- Harish K. Handral
- Stem Cell Bioprocessing, Bioprocessing Technology Institute, A*STAR, Singapore 138668, Singapore
- Correspondence:
| | - Tom Adam Wyrobnik
- Stem Cell Bioprocessing, Bioprocessing Technology Institute, A*STAR, Singapore 138668, Singapore
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| | - Alan Tin-Lun Lam
- Stem Cell Bioprocessing, Bioprocessing Technology Institute, A*STAR, Singapore 138668, Singapore
| |
Collapse
|
17
|
Khaing ZZ, Chen JY, Safarians G, Ezubeik S, Pedroncelli N, Duquette RD, Prasse T, Seidlits SK. Clinical Trials Targeting Secondary Damage after Traumatic Spinal Cord Injury. Int J Mol Sci 2023; 24:3824. [PMID: 36835233 PMCID: PMC9960771 DOI: 10.3390/ijms24043824] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Spinal cord injury (SCI) often causes loss of sensory and motor function resulting in a significant reduction in quality of life for patients. Currently, no therapies are available that can repair spinal cord tissue. After the primary SCI, an acute inflammatory response induces further tissue damage in a process known as secondary injury. Targeting secondary injury to prevent additional tissue damage during the acute and subacute phases of SCI represents a promising strategy to improve patient outcomes. Here, we review clinical trials of neuroprotective therapeutics expected to mitigate secondary injury, focusing primarily on those in the last decade. The strategies discussed are broadly categorized as acute-phase procedural/surgical interventions, systemically delivered pharmacological agents, and cell-based therapies. In addition, we summarize the potential for combinatorial therapies and considerations.
Collapse
Affiliation(s)
- Zin Z. Khaing
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
| | - Jessica Y. Chen
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Gevick Safarians
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sohib Ezubeik
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Nicolas Pedroncelli
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Rebecca D. Duquette
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Tobias Prasse
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
- Department of Orthopedics and Trauma Surgery, University of Cologne, 50931 Cologne, Germany
| | - Stephanie K. Seidlits
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
18
|
Burns JS. The Evolving Landscape of Potency Assays. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1420:165-189. [PMID: 37258790 DOI: 10.1007/978-3-031-30040-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
There is a "goldilocks" aspect to potency assays. On the one hand, a comprehensive evaluation of the cell product with detailed quantitative measurement of the critical quality attribute/s of the desired biological activity is required. On the other hand, the potency assay benefits from simplification and lean approaches that avoid unnecessary complication and enhance robustness, to provide a reproducible and scalable product. There is a need to balance insightful knowledge of complex biological healing processes with straightforward manufacture of an advanced therapeutic medicinal product (ATMP) that can be administered in a trustworthy cost-effective manner. While earlier chapters within this book have highlighted numerous challenges facing the potency assay conundrum, this chapter offers a forward-looking perspective regarding the many recent advances concerning acellular products, cryopreservation, induced MSC, cell priming, nanotechnology, 3D culture, regulatory guidelines and evolving institutional roles, that are likely to facilitate potency assay development in the future.
Collapse
Affiliation(s)
- Jorge S Burns
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
19
|
A phase I study assessing the safety and tolerability of allogeneic mesenchymal stem cell infusion in adults with cystic fibrosis. J Cyst Fibros 2022:S1569-1993(22)01421-7. [PMID: 36549988 DOI: 10.1016/j.jcf.2022.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Mesenchymal stem cells are of particular interest in cystic fibrosis (CF) as a potential therapeutic. Data from pre-clinical studies suggest that allogeneic bone marrow-derived human mesenchymal stem cells (hMSCs) may provide a new therapeutic treatment for CF lung disease by attenuating pulmonary inflammation while decreasing bacterial growth and enhancing antibiotic efficacy. METHODS Fifteen adults with CF were enrolled in a phase 1 dose-escalation trial of a single intravenous infusion of hMSCs derived from bone marrow aspirates obtained from a single pre-clinically validated healthy volunteer donor. The study employed a 3+3 dose escalation design with subjects receiving a single, intravenous dose of either 1×106, 3×106, or 5×106 hMSCs/kg. Subjects were monitored inpatient for 24 hours and by outpatient visits and telephone calls for 12 months after the infusion. Safety and tolerability were evaluated by monitoring symptoms, patient reported outcome questionnaires, adverse events (AEs), physical exam findings, spirometry, and analyses of safety laboratories. Preliminary evidence for potential efficacy using inflammatory markers in the blood and sputum were also evaluated. RESULTS No dose-limiting toxicities, deaths or life-threatening adverse events were observed. Most AEs and serious adverse events (SAEs) were consistent with underlying CF. Vital signs, physical exam findings, spirometry and safety laboratory results showed no significant change from baseline. No trends over time were seen in serum or sputum inflammatory markers nor with clinical spirometry. CONCLUSION Allogeneic hMSC intravenous infusions were safe and well-tolerated in this phase 1 study and warrant additional clinical testing as a potential therapeutic for CF lung disease.
Collapse
|
20
|
Ding SL, Liu X, Zhao XY, Wang KT, Xiong W, Gao ZL, Sun CY, Jia MX, Li C, Gu Q, Zhang MZ. Microcarriers in application for cartilage tissue engineering: Recent progress and challenges. Bioact Mater 2022; 17:81-108. [PMID: 35386447 PMCID: PMC8958326 DOI: 10.1016/j.bioactmat.2022.01.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/11/2022] Open
Abstract
Successful regeneration of cartilage tissue at a clinical scale has been a tremendous challenge in the past decades. Microcarriers (MCs), usually used for cell and drug delivery, have been studied broadly across a wide range of medical fields, especially the cartilage tissue engineering (TE). Notably, microcarrier systems provide an attractive method for regulating cell phenotype and microtissue maturations, they also serve as powerful injectable carriers and are combined with new technologies for cartilage regeneration. In this review, we introduced the typical methods to fabricate various types of microcarriers and discussed the appropriate materials for microcarriers. Furthermore, we highlighted recent progress of applications and general design principle for microcarriers. Finally, we summarized the current challenges and promising prospects of microcarrier-based systems for medical applications. Overall, this review provides comprehensive and systematic guidelines for the rational design and applications of microcarriers in cartilage TE.
Collapse
Affiliation(s)
- Sheng-Long Ding
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Xin Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xi-Yuan Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ke-Tao Wang
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Wei Xiong
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Zi-Li Gao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cheng-Yi Sun
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Min-Xuan Jia
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cheng Li
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Qi Gu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regeneration, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Ming-Zhu Zhang
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| |
Collapse
|
21
|
Emerson AE, McCall AB, Brady SR, Slaby EM, Weaver JD. Hydrogel Injection Molding to Generate Complex Cell Encapsulation Geometries. ACS Biomater Sci Eng 2022; 8:4002-4013. [DOI: 10.1021/acsbiomaterials.2c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Amy E. Emerson
- School of Biological and Health Systems Engineering, Arizona State University, 550 East Orange Street, Tempe, Arizona 85281, United States
| | - Alec B. McCall
- School of Biological and Health Systems Engineering, Arizona State University, 550 East Orange Street, Tempe, Arizona 85281, United States
| | - Sarah R. Brady
- School of Biological and Health Systems Engineering, Arizona State University, 550 East Orange Street, Tempe, Arizona 85281, United States
| | - Emily M. Slaby
- School of Biological and Health Systems Engineering, Arizona State University, 550 East Orange Street, Tempe, Arizona 85281, United States
| | - Jessica D. Weaver
- School of Biological and Health Systems Engineering, Arizona State University, 550 East Orange Street, Tempe, Arizona 85281, United States
| |
Collapse
|
22
|
Ivanovska A, Wang M, Arshaghi TE, Shaw G, Alves J, Byrne A, Butterworth S, Chandler R, Cuddy L, Dunne J, Guerin S, Harry R, McAlindan A, Mullins RA, Barry F. Manufacturing Mesenchymal Stromal Cells for the Treatment of Osteoarthritis in Canine Patients: Challenges and Recommendations. Front Vet Sci 2022; 9:897150. [PMID: 35754551 PMCID: PMC9230578 DOI: 10.3389/fvets.2022.897150] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/14/2022] [Indexed: 12/28/2022] Open
Abstract
The recent interest in advanced biologic therapies in veterinary medicine has opened up opportunities for new treatment modalities with considerable clinical potential. Studies with mesenchymal stromal cells (MSCs) from animal species have focused on in vitro characterization (mostly following protocols developed for human application), experimental testing in controlled studies and clinical use in veterinary patients. The ability of MSCs to interact with the inflammatory environment through immunomodulatory and paracrine mechanisms makes them a good candidate for treatment of inflammatory musculoskeletal conditions in canine species. Analysis of existing data shows promising results in the treatment of canine hip dysplasia, osteoarthritis and rupture of the cranial cruciate ligament in both sport and companion animals. Despite the absence of clear regulatory frameworks for veterinary advanced therapy medicinal products, there has been an increase in the number of commercial cell-based products that are available for clinical applications, and currently the commercial use of veterinary MSC products has outpaced basic research on characterization of the cell product. In the absence of quality standards for MSCs for use in canine patients, their safety, clinical efficacy and production standards are uncertain, leading to a risk of poor product consistency. To deliver high-quality MSC products for veterinary use in the future, there are critical issues that need to be addressed. By translating standards and strategies applied in human MSC manufacturing to products for veterinary use, in a collaborative effort between stem cell scientists and veterinary researchers and surgeons, we hope to facilitate the development of quality standards. We point out critical issues that need to be addressed, including a much higher level of attention to cell characterization, manufacturing standards and release criteria. We provide a set of recommendations that will contribute to the standardization of cell manufacturing methods and better quality assurance.
Collapse
Affiliation(s)
- Ana Ivanovska
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, Galway, Ireland
| | - Mengyu Wang
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, Galway, Ireland
| | - Tarlan Eslami Arshaghi
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, Galway, Ireland
| | - Georgina Shaw
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, Galway, Ireland
| | | | | | | | - Russell Chandler
- Orthopaedic Referral Service, Alphavet Veterinary Centre, Newport, United Kingdom
| | - Laura Cuddy
- Small Animal Surgery, Canine Sports Medicine and Rehabilitation, Veterinary Specialists Ireland, Summerhill, Ireland
| | - James Dunne
- Knocknacarra Veterinary Clinic, Ark Vets Galway, Galway, Ireland
| | - Shane Guerin
- Small Animal Surgery, Gilabbey Veterinary Hospital, Cork, Ireland
| | | | - Aidan McAlindan
- Northern Ireland Veterinary Specialists, Hillsborough, United Kingdom
| | - Ronan A Mullins
- Department of Small Animal Surgery, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Frank Barry
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
23
|
Zheng D, Bhuvan T, Payne NL, Heng TSP. Secondary Lymphoid Organs in Mesenchymal Stromal Cell Therapy: More Than Just a Filter. Front Immunol 2022; 13:892443. [PMID: 35784291 PMCID: PMC9243307 DOI: 10.3389/fimmu.2022.892443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have demonstrated therapeutic potential in inflammatory models of human disease. However, clinical translation has fallen short of expectations, with many trials failing to meet primary endpoints. Failure to fully understand their mechanisms of action is a key factor contributing to the lack of successful commercialisation. Indeed, it remains unclear how the long-ranging immunomodulatory effects of MSCs can be attributed to their secretome, when MSCs undergo apoptosis in the lung shortly after intravenous infusion. Their apoptotic fate suggests that efficacy is not based solely on their viable properties, but also on the immune response to dying MSCs. The secondary lymphoid organs (SLOs) orchestrate immune responses and play a key role in immune regulation. In this review, we will discuss how apoptotic cells can modify immune responses and highlight the importance of MSC-immune cell interactions in SLOs for therapeutic outcomes.
Collapse
Affiliation(s)
- Di Zheng
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Tejasvini Bhuvan
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Natalie L. Payne
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Tracy S. P. Heng
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC, Australia
- *Correspondence: Tracy S. P. Heng,
| |
Collapse
|
24
|
Levi S, Yen FC, Baruch L, Machluf M. Scaffolding technologies for the engineering of cultured meat: Towards a safe, sustainable, and scalable production. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
25
|
A Roadmap for the Production of a GMP-Compatible Cell Bank of Allogeneic Bone Marrow-Derived Clonal Mesenchymal Stromal Cells for Cell Therapy Applications. Stem Cell Rev Rep 2022; 18:2279-2295. [PMID: 35175538 PMCID: PMC8852915 DOI: 10.1007/s12015-022-10351-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 12/22/2022]
Abstract
Background Allogeneic mesenchymal stromal cells (MSCs) have been used extensively in various clinical trials. Nevertheless, there are concerns about their efficacy, attributed mainly to the heterogeneity of the applied populations. Therefore, producing a consistent population of MSCs is crucial to improve their therapeutic efficacy. This study presents a good manufacturing practice (GMP)-compatible and cost-effective protocol for manufacturing, banking, and lot-release of a homogeneous population of human bone marrow-derived clonal MSCs (cMSCs). Methods Here, cMSCs were isolated based on the subfractionation culturing method. Afterward, isolated clones that could reproduce up to passage three were stored as the seed stock. To select proliferative clones, we used an innovative, cost-effective screening strategy based on lengthy serial passaging. Finally, the selected clones re-cultured from the seed stock to establish the following four-tired cell banking system: initial, master, working, and end of product cell banks (ICB, MCB, WCB, and EoPCB). Results Through a rigorous screening strategy, three clones were selected from a total of 21 clones that were stored during the clonal isolation process. The selected clones met the identity, quality, and safety assessments criteria. The validated clones were stored in the four-tiered cell bank system under GMP conditions, and certificates of analysis were provided for the three-individual ready-to-release batches. Finally, a stability study validated the EoPCB, release, and transport process of the frozen final products. Conclusion Collectively, this study presents a technical and translational overview of a GMP-compatible cMSCs manufacturing technology that could lead to the development of similar products for potential therapeutic applications. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s12015-022-10351-x.
Collapse
|
26
|
Md Fadilah NI, Mohd Abdul Kader Jailani MS, Badrul Hisham MAI, Sunthar Raj N, Shamsuddin SA, Ng MH, Fauzi MB, Maarof M. Cell secretomes for wound healing and tissue regeneration: Next generation acellular based tissue engineered products. J Tissue Eng 2022; 13:20417314221114273. [PMID: 35923177 PMCID: PMC9340325 DOI: 10.1177/20417314221114273] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/01/2022] [Indexed: 12/20/2022] Open
Abstract
Wound represents a significant socioeconomic burden for both affected individuals and as a whole healthcare system. Accordingly, stem cells have garnered attention due to their differentiation capacity and ability to aid tissue regeneration by releasing biologically active molecules, found in the cells' cultivated medium which known as conditioned medium (CM) or secretomes. This acellular approach provides a huge advantage over conventional treatment options, which are mainly used cellular treatment at wound closure. Interestingly, the secretomes contained the cell-secreted proteins such as growth factors, cytokines, chemokines, extracellular matrix (ECM), and small molecules including metabolites, microvesicles, and exosomes. This review aims to provide a general view on secretomes and how it is proven to have great potential in accelerating wound healing. Utilizing the use of secretomes with its secreted proteins and suitable biomaterials for fabrications of acellular skin substitutes can be promising in treating skin loss and accelerate the healing process.
Collapse
Affiliation(s)
- Nur Izzah Md Fadilah
- Centre for Tissue Engineering and Regenerative
Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur,
Malaysia
| | | | - Muhd Aliff Iqmal Badrul Hisham
- Centre for Tissue Engineering and Regenerative
Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur,
Malaysia
| | - Nithiaraj Sunthar Raj
- Centre for Tissue Engineering and Regenerative
Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur,
Malaysia
| | - Sharen Aini Shamsuddin
- Centre for Tissue Engineering and Regenerative
Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur,
Malaysia
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative
Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur,
Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative
Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur,
Malaysia
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative
Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur,
Malaysia
| |
Collapse
|
27
|
Földes A, Reider H, Varga A, Nagy KS, Perczel-Kovach K, Kis-Petik K, DenBesten P, Ballagi A, Varga G. Culturing and Scaling up Stem Cells of Dental Pulp Origin Using Microcarriers. Polymers (Basel) 2021; 13:3951. [PMID: 34833250 PMCID: PMC8622966 DOI: 10.3390/polym13223951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Ectomesenchymal stem cells derived from the dental pulp are of neural crest origin, and as such are promising sources for cell therapy and tissue engineering. For safe upscaling of these cells, microcarrier-based culturing under dynamic conditions is a promising technology. We tested the suitability of two microcarriers, non-porous Cytodex 1 and porous Cytopore 2, for culturing well characterized dental pulp stem cells (DPSCs) using a shake flask system. Human DPSCs were cultured on these microcarriers in 96-well plates, and further expanded in shake flasks for upscaling experiments. Cell viability was measured using the alamarBlue assay, while cell morphology was observed by conventional and two-photon microscopies. Glucose consumption of cells was detected by the glucose oxidase/Clark-electrode method. DPSCs adhered to and grew well on both microcarrier surfaces and were also found in the pores of the Cytopore 2. Cells grown in tissue culture plates (static, non-shaking conditions) yielded 7 × 105 cells/well. In shake flasks, static preincubation promoted cell adhesion to the microcarriers. Under dynamic culture conditions (shaking) 3 × 107 cells were obtained in shake flasks. The DPSCs exhausted their glucose supply from the medium by day seven even with partial batch-feeding. In conclusion, both non-porous and porous microcarriers are suitable for upscaling ectomesenchymal DPSCs under dynamic culture conditions.
Collapse
Affiliation(s)
- Anna Földes
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (A.F.); (H.R.); (A.V.); (K.S.N.); (K.P.-K.)
| | - Hajnalka Reider
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (A.F.); (H.R.); (A.V.); (K.S.N.); (K.P.-K.)
- Department of Applied Biotechnology and Food Science, University of Technology and Economics, H-1089 Budapest, Hungary;
| | - Anita Varga
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (A.F.); (H.R.); (A.V.); (K.S.N.); (K.P.-K.)
- Department of Applied Biotechnology and Food Science, University of Technology and Economics, H-1089 Budapest, Hungary;
| | - Krisztina S. Nagy
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (A.F.); (H.R.); (A.V.); (K.S.N.); (K.P.-K.)
- Institute of Biophysics and Radiation Biology, Semmelweis University, H-1089 Budapest, Hungary;
| | - Katalin Perczel-Kovach
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (A.F.); (H.R.); (A.V.); (K.S.N.); (K.P.-K.)
- Department of Community Dentistry, Semmelweis University, H-1089 Budapest, Hungary
| | - Katalin Kis-Petik
- Institute of Biophysics and Radiation Biology, Semmelweis University, H-1089 Budapest, Hungary;
| | - Pamela DenBesten
- Department of Orofacial Science, University of California, San Francisco, CA 94143, USA;
| | - András Ballagi
- Department of Applied Biotechnology and Food Science, University of Technology and Economics, H-1089 Budapest, Hungary;
- Gedeon Richter Plc, H-1089 Budapest, Hungary
| | - Gábor Varga
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (A.F.); (H.R.); (A.V.); (K.S.N.); (K.P.-K.)
- Centre for Translational Medicine, Semmelweis University, H-1089 Budapest, Hungary
| |
Collapse
|
28
|
Mesenchymal stromal cell apoptosis is required for their therapeutic function. Nat Commun 2021; 12:6495. [PMID: 34764248 PMCID: PMC8586224 DOI: 10.1038/s41467-021-26834-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 10/21/2021] [Indexed: 12/21/2022] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) ameliorate a wide range of diseases in preclinical models, but the lack of clarity around their mechanisms of action has impeded their clinical utility. The therapeutic effects of MSCs are often attributed to bioactive molecules secreted by viable MSCs. However, we found that MSCs underwent apoptosis in the lung after intravenous administration, even in the absence of host cytotoxic or alloreactive cells. Deletion of the apoptotic effectors BAK and BAX prevented MSC death and attenuated their immunosuppressive effects in disease models used to define MSC potency. Mechanistically, apoptosis of MSCs and their efferocytosis induced changes in metabolic and inflammatory pathways in alveolar macrophages to effect immunosuppression and reduce disease severity. Our data reveal a mode of action whereby the host response to dying MSCs is key to their therapeutic effects; findings that have broad implications for the effective translation of cell-based therapies. Mesenchymal stromal cells (MSCs) demonstrate therapeutic benefits in multiple diseases, but the mechanisms remain unclear as infused MSCs do not persist in the body. Here, the authors show that MSC apoptosis is an important mechanistic element, as MSCs rendered genetically incapable of apoptosis lose their ability to ameliorate disease.
Collapse
|
29
|
Kornmuller A, Flynn LE. Development and characterization of matrix-derived microcarriers from decellularized tissues using electrospraying techniques. J Biomed Mater Res A 2021; 110:559-575. [PMID: 34581474 DOI: 10.1002/jbm.a.37306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/27/2021] [Accepted: 08/31/2021] [Indexed: 12/18/2022]
Abstract
Stirred bioreactor systems integrating microcarriers represent a promising approach for therapeutic cell manufacturing. While a variety of microcarriers are commercially available, current options do not integrate the tissue-specific composition of the extracellular matrix (ECM), which can play critical roles in directing cell function. The current study sought to generate microcarriers comprised exclusively of ECM from multiple tissue sources. More specifically, porcine decellularized dermis, porcine decellularized myocardium, and human decellularized adipose tissue were digested with α-amylase to obtain ECM suspensions that could be electrosprayed into liquid nitrogen to generate 3D microcarriers that were stable over a range of ECM concentrations without the need for chemical crosslinking or other additives. Characterization studies confirmed that all three microcarrier types had similar soft and compliant mechanical properties and were of a similar size range, but that their composition varied depending on the native tissue source. In vivo testing in immunocompetent mice revealed that the microcarriers integrated into the host tissues, supporting the infiltration of host cells including macrophages and endothelial cells at 2 weeks post-implantation. In vitro cell culture studies validated that the novel microcarriers supported the attachment of tissue-specific stromal cell populations under dynamic culture conditions within spinner flasks, with a significant increase in live cell numbers observed over 1 week on the dermal- and adipose-derived microcarriers. Overall, the findings demonstrate the versatility of the electrospraying methods and support the further development of the microcarriers as cell culture and delivery platforms.
Collapse
Affiliation(s)
- Anna Kornmuller
- School of Biomedical Engineering, Amit Chakma Engineering Building, The University of Western Ontario, London, Ontario, Canada
| | - Lauren E Flynn
- School of Biomedical Engineering, Amit Chakma Engineering Building, The University of Western Ontario, London, Ontario, Canada.,Department of Chemical & Biochemical Engineering, Thompson Engineering Building, The University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
30
|
Claridge B, Lozano J, Poh QH, Greening DW. Development of Extracellular Vesicle Therapeutics: Challenges, Considerations, and Opportunities. Front Cell Dev Biol 2021; 9:734720. [PMID: 34616741 PMCID: PMC8488228 DOI: 10.3389/fcell.2021.734720] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) hold great promise as therapeutic modalities due to their endogenous characteristics, however, further bioengineering refinement is required to address clinical and commercial limitations. Clinical applications of EV-based therapeutics are being trialed in immunomodulation, tissue regeneration and recovery, and as delivery vectors for combination therapies. Native/biological EVs possess diverse endogenous properties that offer stability and facilitate crossing of biological barriers for delivery of molecular cargo to cells, acting as a form of intercellular communication to regulate function and phenotype. Moreover, EVs are important components of paracrine signaling in stem/progenitor cell-based therapies, are employed as standalone therapies, and can be used as a drug delivery system. Despite remarkable utility of native/biological EVs, they can be improved using bio/engineering approaches to further therapeutic potential. EVs can be engineered to harbor specific pharmaceutical content, enhance their stability, and modify surface epitopes for improved tropism and targeting to cells and tissues in vivo. Limitations currently challenging the full realization of their therapeutic utility include scalability and standardization of generation, molecular characterization for design and regulation, therapeutic potency assessment, and targeted delivery. The fields' utilization of advanced technologies (imaging, quantitative analyses, multi-omics, labeling/live-cell reporters), and utility of biocompatible natural sources for producing EVs (plants, bacteria, milk) will play an important role in overcoming these limitations. Advancements in EV engineering methodologies and design will facilitate the development of EV-based therapeutics, revolutionizing the current pharmaceutical landscape.
Collapse
Affiliation(s)
- Bethany Claridge
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Jonathan Lozano
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Qi Hui Poh
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - David W. Greening
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
31
|
Biomaterials and Adipose-Derived Mesenchymal Stem Cells for Regenerative Medicine: A Systematic Review. MATERIALS 2021; 14:ma14164641. [PMID: 34443163 PMCID: PMC8400778 DOI: 10.3390/ma14164641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022]
Abstract
The use of biological templates for the suitable growth of adipose-derived mesenchymal stem cells (AD-MSC) and “neo-tissue” construction has exponentially increased over the last years. The bioengineered scaffolds still have a prominent and biocompatible framework playing a role in tissue regeneration. In order to supply AD-MSCs, biomaterials, as the stem cell niche, are more often supplemented by or stimulate molecular signals that allow differentiation events into several strains, besides their secretion of cytokines and effects of immunomodulation. This systematic review aims to highlight the details of the integration of several types of biomaterials used in association with AD-MSCs, collecting notorious and basic data of in vitro and in vivo assays, taking into account the relevance of the interference of the cell lineage origin and handling cell line protocols for both the replacement and repairing of damaged tissues or organs in clinical application. Our group analyzed the quality and results of the 98 articles selected from PubMed, Scopus and Web of Science. A total of 97% of the articles retrieved demonstrated the potential in clinical applications. The synthetic polymers were the most used biomaterials associated with AD-MSCs and almost half of the selected articles were applied on bone regeneration.
Collapse
|
32
|
Henckes NAC, Faleiro D, Chuang LC, Cirne-Lima EO. Scaffold strategies combined with mesenchymal stem cells in vaginal construction: a review. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:26. [PMID: 34337675 PMCID: PMC8326237 DOI: 10.1186/s13619-021-00088-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/17/2021] [Indexed: 11/10/2022]
Abstract
Tissue engineering has provided new treatment alternatives for tissue reconstruction. Advances in the tissue engineering field have resulted in mechanical support and biological substitutes to restore, maintain or improve tissue/organs structures and functions. The application of tissue engineering technology in the vaginal reconstruction treatment can not only provide mechanical requirements, but also offer tissue repairing as an alternative to traditional approaches. In this review, we discuss recent advances in cell-based therapy in combination with scaffolds strategies that can potentially be adopted for gynaecological transplantation.
Collapse
Affiliation(s)
- Nicole Andréa Corbellini Henckes
- Programa de Pós-Graduação em Ciências da Saúde-Ginecologia e Obstetrícia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| | - Dalana Faleiro
- Programa de Pós-Graduação em Ciências da Saúde-Ginecologia e Obstetrícia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Laura Chao Chuang
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Elizabeth Obino Cirne-Lima
- Programa de Pós-Graduação em Ciências da Saúde-Ginecologia e Obstetrícia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Departamento de Patologia Clínica Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
33
|
Földes A, Sang-Ngoen T, Kádár K, Rácz R, Zsembery Á, DenBesten P, Steward MC, Varga G. Three-Dimensional Culture of Ameloblast-Originated HAT-7 Cells for Functional Modeling of Defective Tooth Enamel Formation. Front Pharmacol 2021; 12:682654. [PMID: 34149428 PMCID: PMC8206558 DOI: 10.3389/fphar.2021.682654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/19/2021] [Indexed: 01/04/2023] Open
Abstract
Background: Amelogenesis, the formation of dental enamel, is well understood at the histomorphological level but the underlying molecular mechanisms are poorly characterized. Ameloblasts secrete enamel matrix proteins and Ca2+, and also regulate extracellular pH as the formation of hydroxyapatite crystals generates large quantities of protons. Genetic or environmental impairment of transport and regulatory processes (e.g. dental fluorosis) leads to the development of enamel defects such as hypomineralization. Aims: Our aims were to optimize the culture conditions for the three-dimensional growth of ameloblast-derived HAT-7 cells and to test the effects of fluoride exposure on HAT-7 spheroid formation. Methods: To generate 3D HAT-7 structures, cells were dispersed and plated within a Matrigel extracellular matrix scaffold and incubated in three different culture media. Spheroid formation was then monitored over a two-week period. Ion transporter and tight-junction protein expression was investigated by RT-qPCR. Intracellular Ca2+ and pH changes were measured by microfluorometry using the fluorescent dyes fura-2 and BCECF. Results: A combination of Hepato-STIM epithelial cell differentiation medium and Matrigel induced the expansion and formation of 3D HAT-7 spheroids. The cells retained their epithelial cell morphology and continued to express both ameloblast-specific and ion transport-specific marker genes. Furthermore, like two-dimensional HAT-7 monolayers, the HAT-7 spheroids were able to regulate their intracellular pH and to show intracellular calcium responses to extracellular stimulation. Finally, we demonstrated that HAT-7 spheroids may serve as a disease model for studying the effects of fluoride exposure during amelogenesis. Conclusion: In conclusion, HAT-7 cells cultivated within a Matrigel extracellular matrix form three-dimensional, multi-cellular, spheroidal structures that retain their functional capacity for pH regulation and intracellular Ca2+ signaling. This new 3D model will allow us to gain a better understanding of the molecular mechanisms involved in amelogenesis, not only in health but also in disorders of enamel formation, such as those resulting from fluoride exposure.
Collapse
Affiliation(s)
- Anna Földes
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | | | - Kristóf Kádár
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Róbert Rácz
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Ákos Zsembery
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Pamela DenBesten
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, United States
| | - Martin C Steward
- Department of Oral Biology, Semmelweis University, Budapest, Hungary.,School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Gábor Varga
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
34
|
Jayaraman P, Lim R, Ng J, Vemuri MC. Acceleration of Translational Mesenchymal Stromal Cell Therapy Through Consistent Quality GMP Manufacturing. Front Cell Dev Biol 2021; 9:648472. [PMID: 33928083 PMCID: PMC8076909 DOI: 10.3389/fcell.2021.648472] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Human mesenchymal stromal cell (hMSC) therapy has been gaining immense interest in regenerative medicine and quite recently for its immunomodulatory properties in COVID-19 treatment. Currently, the use of hMSCs for various diseases is being investigated in >900 clinical trials. Despite the huge effort, setting up consistent and robust scalable manufacturing to meet regulatory compliance across various global regions remains a nagging challenge. This is in part due to a lack of definitive consensus for quality control checkpoint assays starting from cell isolation to expansion and final release criterion of clinical grade hMSCs. In this review, we highlight the bottlenecks associated with hMSC-based therapies and propose solutions for consistent GMP manufacturing of hMSCs starting from raw materials selection, closed and modular systems of manufacturing, characterization, functional testing, quality control, and safety testing for release criteria. We also discuss the standard regulatory compliances adopted by current clinical trials to broaden our view on the expectations across different jurisdictions worldwide.
Collapse
Affiliation(s)
| | - Ryan Lim
- Thermo Fisher Scientific, Singapore, Singapore
| | | | | |
Collapse
|
35
|
Ma YS, Xin R, Yang XL, Shi Y, Zhang DD, Wang HM, Wang PY, Liu JB, Chu KJ, Fu D. Paving the way for small-molecule drug discovery. Am J Transl Res 2021; 13:853-870. [PMID: 33841626 PMCID: PMC8014367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Small-molecule drugs are organic compounds affecting molecular pathways by targeting important proteins, which have a low molecular weight, making them penetrate cells easily. Small-molecule drugs can be developed from leads derived from rational drug design or isolated from natural resources. As commonly used medications, small-molecule drugs can be taken orally, which enter cells to act on intracellular targets. These characteristics make small-molecule drugs promising candidates for drug development, and they are increasingly favored in the pharmaceutical market. Despite the advancements in molecular genetics and effective new processes in drug development, the drugs currently used in clinical practice are inadequate due to their poor efficacy or severe side effects. Therefore, developing new safe and efficient drugs is a top priority for disease control and curing.
Collapse
Affiliation(s)
- Yu-Shui Ma
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and TechnologyChangsha 410004, Hunan, China
- Cancer Institute, Nantong Tumor HospitalNantong 226631, China
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Rui Xin
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Xiao-Li Yang
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Yi Shi
- Cancer Institute, Nantong Tumor HospitalNantong 226631, China
| | - Dan-Dan Zhang
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Hui-Min Wang
- Cancer Institute, Nantong Tumor HospitalNantong 226631, China
| | - Pei-Yao Wang
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Ji-Bin Liu
- Cancer Institute, Nantong Tumor HospitalNantong 226631, China
| | - Kai-Jian Chu
- Department of Biliary Tract Surgery I, Third Affiliated Hospital of Second Military Medical UniversityShanghai 200438, China
| | - Da Fu
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| |
Collapse
|
36
|
Gastelurrutia P, Prat-Vidal C, Vives J, Coll R, Bayes-Genis A, Gálvez-Montón C. Transitioning From Preclinical Evidence to Advanced Therapy Medicinal Product: A Spanish Experience. Front Cardiovasc Med 2021; 8:604434. [PMID: 33614746 PMCID: PMC7890001 DOI: 10.3389/fcvm.2021.604434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/04/2021] [Indexed: 12/28/2022] Open
Abstract
A systematic and ordered product development program, in compliance with current quality and regulatory standards, increases the likelihood of yielding a successful advanced therapy medicinal product (ATMP) for clinical use as safe and effective therapy. As this is a novel field, little accurate information is available regarding the steps to be followed, and the information to be produced to support the development and use of an ATMP. Notably, successful clinical translation can be somewhat cumbersome for academic researchers. In this article, we have provided a summary of the available information, supported by our experience in Spain throughout the development of an ATMP for myocardial infarction, from the pre-clinical stage to phase I clinical trial approval.
Collapse
Affiliation(s)
- Paloma Gastelurrutia
- Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain.,Insuficiencia Cardíaca y Regeneración Cardíaca Research Program, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain.,Centro de Investigación Biomédica en Red Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Prat-Vidal
- Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain.,Insuficiencia Cardíaca y Regeneración Cardíaca Research Program, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain.,Centro de Investigación Biomédica en Red Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| | - Joaquim Vives
- Servei de Teràpia Cel·lular, Banc de Sang i Teixits, Barcelona, Spain.,Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ruth Coll
- Servei de Teràpia Cel·lular, Banc de Sang i Teixits, Barcelona, Spain
| | - Antoni Bayes-Genis
- Insuficiencia Cardíaca y Regeneración Cardíaca Research Program, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain.,Centro de Investigación Biomédica en Red Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain.,Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carolina Gálvez-Montón
- Insuficiencia Cardíaca y Regeneración Cardíaca Research Program, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain.,Centro de Investigación Biomédica en Red Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
37
|
Kirsch M, Rach J, Handke W, Seltsam A, Pepelanova I, Strauß S, Vogt P, Scheper T, Lavrentieva A. Comparative Analysis of Mesenchymal Stem Cell Cultivation in Fetal Calf Serum, Human Serum, and Platelet Lysate in 2D and 3D Systems. Front Bioeng Biotechnol 2021; 8:598389. [PMID: 33520956 PMCID: PMC7844400 DOI: 10.3389/fbioe.2020.598389] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
In vitro two-dimensional (2D) and three-dimensional (3D) cultivation of mammalian cells requires supplementation with serum. Mesenchymal stem cells (MSCs) are widely used in clinical trials for bioregenerative medicine and in most cases, in vitro expansion and differentiation of these cells are required before application. Optimized expansion and differentiation protocols play a key role in the treatment outcome. 3D cell cultivation systems are more comparable to in vivo conditions and can provide both, more physiological MSC expansion and a better understanding of intercellular and cell-matrix interactions. Xeno-free cultivation conditions minimize risks of immune response after implantation. Human platelet lysate (hPL) appears to be a valuable alternative to widely used fetal calf serum (FCS) since no ethical issues are associated with its harvest, it contains a high concentration of growth factors and cytokines and it can be produced from expired platelet concentrate. In this study, we analyzed and compared proliferation, as well as osteogenic and chondrogenic differentiation of human adipose tissue-derived MSCs (hAD-MSC) using three different supplements: FCS, human serum (HS), and hPL in 2D. Furthermore, online monitoring of osteogenic differentiation under the influence of different supplements was performed in 2D. hPL-cultivated MSCs exhibited a higher proliferation and differentiation rate compared to HS- or FCS-cultivated cells. We demonstrated a fast and successful chondrogenic differentiation in the 2D system with the addition of hPL. Additionally, FCS, HS, and hPL were used to formulate Gelatin-methacryloyl (GelMA) hydrogels in order to evaluate the influence of the different supplements on the cell spreading and proliferation of cells growing in 3D culture. In addition, the hydrogel constructs were cultivated in media supplemented with three different supplements. In comparison to FCS and HS, the addition of hPL to GelMA hydrogels during the encapsulation of hAD-MSCs resulted in enhanced cell spreading and proliferation. This effect was promoted even further by cultivating the hydrogel constructs in hPL-supplemented media.
Collapse
Affiliation(s)
- Marline Kirsch
- Institute of Technical Chemistry, Leibniz University Hannover, Hanover, Germany
| | - Jessica Rach
- German Red Cross Blood Service NSTOB, Institute Springe, Springe, Germany
| | - Wiebke Handke
- Bavarian Red Cross Blood Service, Institute Nuremberg, Nuremberg, Germany
| | - Axel Seltsam
- Bavarian Red Cross Blood Service, Institute Nuremberg, Nuremberg, Germany
| | - Iliyana Pepelanova
- Institute of Technical Chemistry, Leibniz University Hannover, Hanover, Germany
| | - Sarah Strauß
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hanover, Germany
| | - Peter Vogt
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hanover, Germany
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University Hannover, Hanover, Germany
| | | |
Collapse
|
38
|
Pressure Stimuli Improve the Proliferation of Wharton's Jelly-Derived Mesenchymal Stem Cells under Hypoxic Culture Conditions. Int J Mol Sci 2020; 21:ijms21197092. [PMID: 32993025 PMCID: PMC7583852 DOI: 10.3390/ijms21197092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are safe, and they have good therapeutic efficacy through their paracrine action. However, long-term culture to produce sufficient MSCs for clinical use can result in side-effects, such as an inevitable senescence and the reduction of the therapeutic efficacy of the MSCs. In order to overcome this, the primary culture conditions of the MSCs can be modified to simulate the stem cells’ niche environment, resulting in accelerated proliferation, the achievement of the target production yield at earlier passages, and the improvement of the therapeutic efficacy. We exposed Wharton’s jelly-derived MSCs (WJ-MSCs) to pressure stimuli during the primary culture step. In order to evaluate the proliferation, stemness, and therapeutic efficacy of WJ-MSCs, image, genetic, and Western blot analyses were carried out. Compared with standard incubation culture conditions, the cell proliferation was significantly improved when the WJ-MSCs were exposed to pressure stimuli. However, the therapeutic efficacy (the promotion of cell proliferation and anti-apoptotic effects) and the stemness of the WJ-MSCs was maintained, regardless of the culture conditions. Exposure to pressure stimuli is a simple and efficient way to improve WJ-MSC proliferation without causing changes in stemness and therapeutic efficacy. In this way, clinical-grade WJ-MSCs can be produced rapidly and used for therapeutic applications.
Collapse
|