1
|
Song Z, Chen G, Chen CYC. AI empowering traditional Chinese medicine? Chem Sci 2024; 15:d4sc04107k. [PMID: 39355231 PMCID: PMC11440359 DOI: 10.1039/d4sc04107k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/22/2024] [Indexed: 10/03/2024] Open
Abstract
For centuries, Traditional Chinese Medicine (TCM) has been a prominent treatment method in China, incorporating acupuncture, herbal remedies, massage, and dietary therapy to promote holistic health and healing. TCM has played a major role in drug discovery, with over 60% of small-molecule drugs approved by the FDA from 1981 to 2019 being derived from natural products. However, TCM modernization faces challenges such as data standardization and the complexity of TCM formulations. The establishment of comprehensive TCM databases has significantly improved the efficiency and accuracy of TCM research, enabling easier access to information on TCM ingredients and encouraging interdisciplinary collaborations. These databases have revolutionized TCM research, facilitating advancements in TCM modernization and patient care. In addition, advancements in AI algorithms and database data quality have accelerated progress in AI for TCM. The application of AI in TCM encompasses a wide range of areas, including herbal screening and new drug discovery, diagnostic and treatment principles, pharmacological mechanisms, network pharmacology, and the incorporation of innovative AI technologies. AI also has the potential to enable personalized medicine by identifying patterns and correlations in patient data, leading to more accurate diagnoses and tailored treatments. The potential benefits of AI for TCM are vast and diverse, promising continued progress and innovation in the field.
Collapse
Affiliation(s)
- Zhilin Song
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China
- AI for Science (AI4S)-Preferred Program, School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China
| | - Guanxing Chen
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University Shenzhen Guangdong 518107 China
| | - Calvin Yu-Chian Chen
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China
- AI for Science (AI4S)-Preferred Program, School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China
- Department of Medical Research, China Medical University Hospital Taichung 40447 Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University Taichung 41354 Taiwan
- Guangdong L-Med Biotechnology Co., Ltd Meizhou Guangdong 514699 China
| |
Collapse
|
2
|
Shi T, Lin J, Liang S, Song Y, Zhao X, Xiao M, Ti H. Sangbaipi decoction exerted in vitro and in vivo anti-influenza effect through inhibiting viral proteins. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118258. [PMID: 38663783 DOI: 10.1016/j.jep.2024.118258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024]
Abstract
HEADINGS ETHNOPHARMACOLOGICAL RELEVANCE Sangbaipi Decoction (SBPD) is an effective treatment for lung diseases caused by phlegm-heat obstruction according to Jingyue Quanshu, and soothes panting by purging the lung meridian. It is composed of anti-pyretic herbs (e.g., Scutellaria baicalensis Georgi and Coptis chinensis Franch.) and antitussive herbs (e.g., Cortex Mori and Armeniacae Semen Amarum). Therefore, we hypothesized that SBPD has therapeutic effects on lung injury caused by influenza virus. AIM OF THE STUDY This study aimed to explore anti-influenza activity, active components, and mechanisms of SBPD. MATERIALS AND METHODS The anti-influenza activities of SBPD were determined in 48 h drug-treated MDCK cell model using CPE and plaque reduction assays, and 24 h drug-treated A549 cells using qRT-PCR. The in vivo efficacy of SBPD (1.0 g/kg/day and 0.5 g/kg/day) was evaluated in PR8 infected BALB/c mice. The chemical component was assessed through HPLC-Q-TOF MS/MS analysis. Network pharmacology was built via TCMSP, GeneCards, DisgeNet, OMIM, DrugBank databases, and Cytoscape software. Additionally, TOA, HI and NAI assays were employed to investigate impact on the virus replication cycle with different concentrations of SBPD (2.5 mg/mL, 1.25 mg/mL, or 0.625 mg/mL). RESULTS In MDCK infected with viruses A/PR/8/34, A/Hong Kong/1/68, or A/California/4/2009, the IC50 values of SBPD were 0.80 mg/mL, 1.20 mg/mL, and 1.25 mg/mL. In A549 cells, SBPD treatment reduced cytokine expression (e.g., TNF-α, IL-6, IL-1β) (p < 0.05). In PR8 infected BALB/c mice, SBPD improved the survival rate of infected mice, reduced lung index (p < 0.05), protected lung tissue from pathological damage, and regulated cytokine overexpression (p < 0.05). 29 components of SBPD were identified in SBPD treated mouse serum including some phytochemicals targeting influenza proteins. HI and NAI assays suggested the potential antiviral mechanism of SBPD through inhibition of HA and NA. CONCLUSION This study is the first to demonstrate the anti-influenza and the anti-inflammatory effects of SBPD in vitro and in vivo. Its major anti-influenza phytochemicals were explored and its inhibitory effects on HA and NA protein were proved. It provides more options for anti-influenza drug discovery.
Collapse
Affiliation(s)
- Tongmei Shi
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jieling Lin
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shiyun Liang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yu Song
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences(China National Analytical Center, Guangzhou), Guangzhou, 510070, China
| | - Xin Zhao
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences(China National Analytical Center, Guangzhou), Guangzhou, 510070, China
| | - Mengjie Xiao
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences(China National Analytical Center, Guangzhou), Guangzhou, 510070, China
| | - Huihui Ti
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Zong YH, Cao JF, Zhao Y, Gao M, Chen WL, Wu M, Xu X, Xu ZY, Zhang XQ, Tang JZ, Liu Y, Hu XS, Wang SQ, Zhang X. Mechanism of Lian Hua Qing Wen capsules regulates the inflammatory response caused by M 1 macrophage based on cellular experiments and computer simulations. Acta Trop 2024; 257:107320. [PMID: 39002739 DOI: 10.1016/j.actatropica.2024.107320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
PURPOSE The polarization of macrophages with the resulting inflammatory response play a crucial part in tissue and organ damage due to inflammatory. Study has proved Lian Hua Qing Wen capsules (LHQW) can reduce activation of inflammatory response and damage of tissue derived from the inflammatory reactions. However, the mechanism of LHQW regulates the macrophage-induced inflammatory response is unclear. Therefore, we investigated the mechanism of LHQW regulated the inflammatory response of M1 macrophages by cellular experiments and computer simulations. METHODS This study has analysed the targets and mechanisms of macrophage regulating inflammatory response at gene and protein levels through bioinformatics. The monomeric components of LHQW were analyzed by High Performance Liquid Chromatography (HPLC). We established the in vitro cell model by M1 macrophages (Induction of THP-1 cells into M1 macrophages). RT-qPCR and immunofluorescence were used to detect changes in gene and protein levels of key targets after LHQW treatment. Computer simulations were utilized to verify the binding stability of monomeric components and protein targets. RESULTS Macrophages had 140,690 gene targets, inflammatory response had 12,192 gene targets, intersection gene targets were 11,772. Key monomeric components (including: Pinocembrin, Fargesone-A, Nodakenin and Bowdichione) of LHQW were screened by HPLC. The results of cellular experiments indicated that LHQW could significantly reduce the mRNA expression of CCR5, CSF2, IFNG and TNF, thereby alleviating the inflammatory response caused by M1 macrophage. The computer simulations further validated the binding stability and conformation of key monomeric components and key protein targets, and IFNG/Nodakenin was able to form the most stable binding conformation for its action. CONCLUSION In this study, the mechanism of LHQW inhibits the polarization of macrophages and the resulting inflammatory response was investigated by computer simulations and cellular experiments. We found that LHQW may not only reduce cell damage and death by acting on TNF and CCR5, but also inhibit the immune recognition process and inflammatory response by regulating CSF2 and IFNG to prevent polarization of macrophages. Therefore, these results suggested that LHQW may act through multiple targets to inhibit the polarization of macrophages and the resulting inflammatory response.
Collapse
Affiliation(s)
| | - Jun-Feng Cao
- College of Medicine, Southwest Jiaotong University, Chengdu, PR China
| | | | - Miao Gao
- Chengdu Medical College, Chengdu, PR China
| | | | - Mei Wu
- Chengdu Medical College, Chengdu, PR China
| | - Xiang Xu
- Chengdu Medical College, Chengdu, PR China
| | | | | | | | - Yulin Liu
- Chengdu Medical College, Chengdu, PR China
| | | | | | - Xiao Zhang
- Chengdu Medical College, Chengdu, PR China.
| |
Collapse
|
4
|
Hao JW, Chen ND, Fan XX, Wang WT, Jiang HH, Zhang ZY, Gong RZ, Ruan XL, Chen X. Rapid determination of total flavonoid content, xanthine oxidase inhibitory activities, and antioxidant activity in Prunus mume by near-infrared spectroscopy. J Pharm Biomed Anal 2024; 246:116164. [PMID: 38776585 DOI: 10.1016/j.jpba.2024.116164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Evaluating the quality of herbal medicine based on the content and activity of its main components is highly beneficial. Developing an eco-friendly determination method has significant application potential. In this study, we propose a new method to simultaneously predict the total flavonoid content (TFC), xanthine oxidase inhibitory (XO) activity, and antioxidant activity (AA) of Prunus mume using near-infrared spectroscopy (NIR). Using the sodium nitrite-aluminum nitrate-sodium hydroxide colorimetric method, uric acid colorimetric method, and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) free radical scavenging activity as reference methods, we analyzed TFC, XO, and AA in 90 P. mume samples collected from different locations in China. The solid samples were subjected to NIR. By employing spectral preprocessing and optimizing spectral bands, we established a rapid prediction model for TFC, XO, and AA using partial least squares regression (PLS). To improve the model's performance and eliminate irrelevant variables, competitive adaptive reweighted sampling (CARS) was used to calculate the pretreated full spectrum. Evaluation model indicators included the root mean square error of cross-validation (RMSECV) and determination coefficient (R2) values. The TFC, XO, and AA model, combining optimal spectral preprocessing and spectral bands, had RMSECV values of 0.139, 0.117, and 0.121, with RCV2 values exceeding 0.92. The root mean square error of prediction (RMSEP) for the TFC, XO, and AA model on the prediction set was 0.301, 0.213, and 0.149, with determination coefficient (RP2) values of 0.915, 0.933, and 0.926. The results showed a strong correlation between NIR with TFC, XO, and AA in P. mume. Therefore, the established model was effective, suitable for the rapid quantification of TFC, XO, and AA. The prediction method is simple and rapid, and can be extended to the study of medicinal plant content and activity.
Collapse
Affiliation(s)
- Jing-Wen Hao
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an City 237012, China; Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu'an City 237012, China; Anhui Engineering Technology Center for Conservation and Utilization of Traditional Chinese Medicine Resource, Lu'an City 237012, China; Lu'an City Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu'an City 237012, China
| | - Nai-Dong Chen
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an City 237012, China; Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu'an City 237012, China; Anhui Engineering Technology Center for Conservation and Utilization of Traditional Chinese Medicine Resource, Lu'an City 237012, China; College of Pharmacy, Anhui University of Chinese Medicine, No 1. Qianjiang Road, Hefei City, Anhui Province 230012, PR China; Lu'an City Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu'an City 237012, China.
| | - Xuan-Xuan Fan
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an City 237012, China; Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu'an City 237012, China; College of Pharmacy, Anhui University of Chinese Medicine, No 1. Qianjiang Road, Hefei City, Anhui Province 230012, PR China
| | - Wei-Ting Wang
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an City 237012, China; Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu'an City 237012, China; College of Pharmacy, Anhui University of Chinese Medicine, No 1. Qianjiang Road, Hefei City, Anhui Province 230012, PR China
| | - Huan-Huan Jiang
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an City 237012, China; Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu'an City 237012, China; Anhui Engineering Technology Center for Conservation and Utilization of Traditional Chinese Medicine Resource, Lu'an City 237012, China; Lu'an City Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu'an City 237012, China
| | - Zi-Yi Zhang
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an City 237012, China; Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu'an City 237012, China; Anhui Engineering Technology Center for Conservation and Utilization of Traditional Chinese Medicine Resource, Lu'an City 237012, China; Lu'an City Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu'an City 237012, China
| | - Rui-Ze Gong
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an City 237012, China; Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu'an City 237012, China; Anhui Engineering Technology Center for Conservation and Utilization of Traditional Chinese Medicine Resource, Lu'an City 237012, China; Lu'an City Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu'an City 237012, China
| | - Xiao-Li Ruan
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an City 237012, China; Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu'an City 237012, China; Anhui Engineering Technology Center for Conservation and Utilization of Traditional Chinese Medicine Resource, Lu'an City 237012, China; Lu'an City Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu'an City 237012, China
| | - Xue Chen
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an City 237012, China; Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu'an City 237012, China; Anhui Engineering Technology Center for Conservation and Utilization of Traditional Chinese Medicine Resource, Lu'an City 237012, China; Lu'an City Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu'an City 237012, China
| |
Collapse
|
5
|
Li H, Li J, Zhang Y, Zhao C, Ge J, Sun Y, Fu H, Li Y. The therapeutic effect of traditional Chinese medicine on breast cancer through modulation of the Wnt/β-catenin signaling pathway. Front Pharmacol 2024; 15:1401979. [PMID: 38783943 PMCID: PMC11111876 DOI: 10.3389/fphar.2024.1401979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
Breast cancer, the most prevalent malignant tumor among women globally, is significantly influenced by the Wnt/β-catenin signaling pathway, which plays a crucial role in its initiation and progression. While conventional chemotherapy, the standard clinical treatment, suffers from significant drawbacks like severe side effects, high toxicity, and limited prognostic efficacy, Traditional Chinese Medicine (TCM) provides a promising alternative. TCM employs a multi-targeted therapeutic approach, which results in fewer side effects and offers a high potential for effective treatment. This paper presents a detailed analysis of the therapeutic impacts of TCM on various subtypes of breast cancer, focusing on its interaction with the Wnt/β-catenin signaling pathway. Additionally, it explores the effectiveness of both monomeric and compound forms of TCM in the management of breast cancer. We also discuss the potential of establishing biomarkers for breast cancer treatment based on key proteins within the Wnt/β-catenin signaling pathway. Our aim is to offer new insights into the prevention and treatment of breast cancer and to contribute to the standardization of TCM.
Collapse
Affiliation(s)
- Hongkun Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiawei Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yifan Zhang
- College of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chengcheng Zhao
- Experimental Teaching and Practical Training Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jun Ge
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yujiao Sun
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hui Fu
- College of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingpeng Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
6
|
Effectiveness and Safety of Lianhua Qingwen Capsules for COVID-19: A Propensity-Score Matched Cohort Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:6028554. [PMID: 36846053 PMCID: PMC9957644 DOI: 10.1155/2023/6028554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/05/2022] [Indexed: 02/19/2023]
Abstract
As a traditional Chinese medicine, Lianhua Qingwen capsules have been widely used to treat Coronavirus Disease 2019 (COVID-19). This study was aimed to demonstrate the association between treatment with Lianhua Qingwen capsules and the clinical outcomes of hospitalized patients with COVID-19. This retrospective study was conducted at four hospitals in Central China. Data of hospitalized COVID-19 patients were collected between December 19, 2019 and April 26, 2020. Based on whether Lianhua Qingwen capsules were used, patients were classified into Lianhua Qingwen and non-Lianhua Qingwen (control) groups. To control for confounding factors, we used conditional logistic regression in a propensity-score matched (PSM) cohort (1 : 1 balanced), as well as logistic regression without matching as sensitivity analysis. A total of 4918 patients were included, 2760 of whom received Lianhua Qingwen capsules and 2158 of whom did not. In the PSM model, after adjusting for confounders, the in-hospital mortality was similar between the Lianhua Qingwen group and the control group (6.8% vs. 3.3%, adjusted OR, 0.66 [95% CI, 0.38-1.15], p = 0.138). The negative conversion rate of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection was higher in the Lianhua Qingwen group (88.3% vs. 96.1%, adjusted OR, 4.02 [95% CI, 2.58-6.25], p < 0.001). The incidence of acute liver injury was comparable between the two groups (14.0% vs. 11.5%, adjusted OR: 0.85 [95% CI, 0.71-1.02], p = 0.083), and the incidence of acute kidney injury was lower in the Lianhua Qingwen group (5.3% vs. 3.0%, adjusted OR: 0.71 [95% CI, 0.50-1.00], p = 0.048). Treatment with Lianhua Qingwen capsules was not significantly associated with in-hospital mortality in COVID-19 patients. In the Lianhua Qingwen group, the negative conversion rate of SARS-CoV-2 infection was higher and the incidence of acute kidney injury was lower than in the control group.
Collapse
|
7
|
Chen Q, Liu M, Lin Y, Wang K, Li J, Li P, Yang L, Jia L, Zhang B, Guo H, Li P, Song H. Topography of respiratory tract and gut microbiota in mice with influenza A virus infection. Front Microbiol 2023; 14:1129690. [PMID: 36910185 PMCID: PMC9992211 DOI: 10.3389/fmicb.2023.1129690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
Introduction Influenza A virus (IAV)-induced dysbiosis may predispose to severe bacterial superinfections. Most studies have focused on the microbiota of single mucosal surfaces; consequently, the relationships between microbiota at different anatomic sites in IAV-infected mice have not been fully studied. Methods We characterized respiratory and gut microbiota using full-length 16S rRNA gene sequencing by Nanopore sequencers and compared the nasopharyngeal, oropharyngeal, lung and gut microbiomes in healthy and IAV-infected mice. Results The oropharyngeal, lung and gut microbiota of healthy mice were dominated by Lactobacillus spp., while nasopharyngeal microbiota were comprised primarily of Streptococcus spp. However, the oropharyngeal, nasopharyngeal, lung, and gut microbiota of IAV-infected mice were dominated by Pseudomonas, Escherichia, Streptococcus, and Muribaculum spp., respectively. Lactobacillus murinus was identified as a biomarker and was reduced at all sites in IAV-infected mice. The microbiota composition of lung was more similar to that of the nasopharynx than the oropharynx in healthy mice. Discussion These findings suggest that the main source of lung microbiota in mice differs from that of adults. Moreover, the similarity between the nasopharyngeal and lung microbiota was increased in IAV-infected mice. We found that IAV infection reduced the similarity between the gut and oropharyngeal microbiota. L. murinus was identified as a biomarker of IAV infection and may be an important target for intervention in post-influenza bacterial superinfections.
Collapse
Affiliation(s)
- Qichao Chen
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China.,Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Manjiao Liu
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, Jiangsu Province, China.,Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, Jiangsu Province, China
| | - Yanfeng Lin
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China.,Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Kaiying Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Jinhui Li
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Peihan Li
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Lang Yang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Leili Jia
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Bei Zhang
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, Jiangsu Province, China.,Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, Jiangsu Province, China
| | - Hao Guo
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, Jiangsu Province, China.,Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, Jiangsu Province, China
| | - Peng Li
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Hongbin Song
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China.,Chinese PLA Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
8
|
Zhang B, Pei W, Cai P, Wang Z, Qi F. Recent advances in Chinese patent medicines entering the international market. Drug Discov Ther 2022; 16:258-272. [PMID: 36543180 DOI: 10.5582/ddt.2022.01115] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
As an indispensable part of Traditional Chinese medicine (TCM), Chinese patent medicines have played an important role in preventing and treating diseases in China. Since they are easy to use, easy to store, and cost-effective, Chinese patent medicines have been generally accepted and widely used in Chinese clinical practice as a vital medical resource. In recent years, as TCM has developed and it has been accepted around the world, many Chinese patent medicine companies have gained international market access and successfully registered several Chinese patent medicines as over-the-counter (OTC) or prescription drugs in regions and countries that primarily use Western medicine such as the EU, Russia, Canada, Singapore, and Vietnam. Moreover, several Chinese patent medicines have been obtained the US Food and Drug Administration (FDA) approval conducting phase II or III clinical trials in the US. The current work has focused on several Chinese patent medicines that have been successfully registered or that have been submitted for registration abroad. Summarized here are recent advances in the efficacy and molecular mechanisms of these Chinese patent medicines to treat respiratory infectious diseases (Lianhua Qingwen capsules, Jinhua Qinggan granules, and Shufeng Jiedu Capsules), cardiovascular and cerebrovascular diseases (Compound Danshen Dripping Pills, Huatuo Zaizao pills, and Tongxinluo Capsules), cancers (a Kanglaite injection and a Shenqi Fuzheng Injection), and gynecological diseases (Guizhi Fuling Capsules). The hope is that this review will contribute to a better understanding of Chinese patent medicines by people around the world.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Traditional Chinese Medicine Orthopedics, Neck-Shoulder and Lumbocrural Pain Hospital affiliated to Shandong First Medical University, Ji'nan, China
| | - Wenjian Pei
- Traditional Chinese Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Ji'nan, China
| | - Pingping Cai
- Traditional Chinese Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Ji'nan, China
| | - Zhixue Wang
- Traditional Chinese Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Ji'nan, China
| | - Fanghua Qi
- Traditional Chinese Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Ji'nan, China
| |
Collapse
|
9
|
Li W, Li T, Zhao C, Song T, Mi Y, Chuangfeng Z, Hou Y, Jia Z. XiaoEr LianHuaQinqGan alleviates viral pneumonia in mice infected by influenza A and respiratory syncytial viruses. PHARMACEUTICAL BIOLOGY 2022; 60:2355-2366. [PMID: 36444944 PMCID: PMC9809968 DOI: 10.1080/13880209.2022.2147961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/10/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Xiaoer lianhuaqinqgan (XELH), developed based on Lianhua Qingwen (LHQW) prescription, contains 13 traditional Chinese medicines. It has completed the investigational new drug application to treat respiratory viral infections in children in China. OBJECTIVE This study demonstrates the pharmacological effects of XELH against viral pneumonia. MATERIALS AND METHODS The antiviral and anti-inflammatory effects of XELH were investigated in vitro using H3N2-infected A549 and LPS-stimulated RAW264.7 cells and in vivo using BALB/c mice models of influenza A virus (H3N2) and respiratory syncytial virus (RSV)-infection. Mice were divided into 7 groups (n = 20): Control, Model, LHQW (0.5 g/kg), XELH-low (2 g/kg), XELH-medium (4 g/kg), XELH-high (8 g/kg), and positive drug (20 mg/kg oseltamivir or 60 mg/kg ribavirin) groups. The anti-inflammatory effects of XELH were tested in a rat model of LPS-induced fever and a mouse model of xylene-induced ear edoema. RESULTS In vitro, XELH inhibited the pro-inflammatory cytokines and replication of H1N1, H3N2, H1N1, FluB, H9N2, H6N2, H7N3, RSV, and HCoV-229E viruses, with (IC50 47.4, 114, 79, 250, 99.2, 170, 79, 62.5, and 93 μg/mL, respectively). In vivo, XELH reduced weight loss and lung index, inhibited viral replication and macrophage M1 polarization, ameliorated lung damage, decreased inflammatory cell infiltration and pro-inflammatory cytokines expression in lung tissues, and increased the CD4+/CD8+ ratio. XELH inhibited LPS-induced fever in rats and xylene-induced ear edoema in mice. CONCLUSION XELH efficacy partially depends on integrated immunoregulatory effects. XELH is a promising therapeutic option against childhood respiratory viral infections.
Collapse
Affiliation(s)
- Wenyan Li
- Hebei Yiling Hospital, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, Hebei, China
| | - Tongtong Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Chi Zhao
- Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tao Song
- Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, Hebei, China
| | - Yao Mi
- Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, Hebei, China
| | - Zhang Chuangfeng
- Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, Hebei, China
| | - Yunlong Hou
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, Hebei, China
- Shijiazhuang Compound Traditional Chinese Medicine Technology Innovation Center, Shijiazhuang, Hebei, China
| | - Zhenhua Jia
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- Shijiazhuang Compound Traditional Chinese Medicine Technology Innovation Center, Shijiazhuang, Hebei, China
- Hebei Yiling Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
10
|
Dong Y, Zhai W, Fang B, Liu C, Yuan S, Wang Y, Song Q, Li H, Chen B, Cui D, Wang J, Wu Q, Zhou C, Zhou M, Li S, Zhuang X, Xu Q, Zheng Y, Wu Y, Zheng J, Cao M. A retrospective study of Pupingqinghua prescription versus Lianhuaqingwen in Chinese participants infected with SARS-CoV-2 Omicron variants. Front Pharmacol 2022; 13:988524. [PMID: 36278166 PMCID: PMC9585249 DOI: 10.3389/fphar.2022.988524] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/05/2022] [Indexed: 08/27/2023] Open
Abstract
Background: Coronavirus disease (COVID-19) seriously endangers global public health. Pupingqinghua prescription (PPQH) is an herbal formula from traditional Chinese medicine used for treatment of SARS-CoV-2 infection. This study aims to evaluate the clinical efficacy and safety of PPQH in Chinese participants infected with the SARS-CoV-2 Omicron variant. Methods: A total of 873 SARS-CoV-2 (Omicron)-infected patients were included. Among them, the patients were divided into the PPQH group (653 cases) and LHQW group (220 cases) according to different medications. The effectiveness indicators (hematological indicators, Ct values of novel Coronavirus nucleic acid tests, and viral load-shedding time) and safety indicators (liver and kidney function and adverse events) were analyzed. Results: There was no significant difference in baseline characteristics between the PPQH group and the LHQW group, except the gender; After the treatment, the levels of IL-5, IL-6, IL-10, NK cells, and INF-α of the patients in the PPQH group showed a downward trend (p < 0.05); The viral load shedding time was 5.0 (5.0, 7.0) in the PPQH group and 5.0 (4.0, 7.0) in the LHQW group; both PPQH and LHQW can shorten the duration of symptoms of fever, cough, and sore throat. The re-positive rate of COVID-19 test was 1.5 % in the PPQH group and 2.3 % in the LHQW group. In terms of safety, the levels of γ-GTT decreased significantly (p < 0.01); gastrointestinal reaction was the primary adverse reaction, and the reaction rate was 4.7 % in the PPQH group and 9.5 % in the LHQW group. Conclusion: PPQH can shorten the length of hospital stay and improve clinical symptoms of patients with SARS-COV-2 (Omicron), and it also has a good safety profile.
Collapse
Affiliation(s)
- Yidan Dong
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Zhai
- Renji Hospital, School of Medicine in Shanghai Jiao Tong University, Shanghai, China
| | - Bangjiang Fang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenyang Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Suyun Yuan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Youhua Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qixiang Song
- Renji Hospital, School of Medicine in Shanghai Jiao Tong University, Shanghai, China
| | - Hai Li
- Renji Hospital, School of Medicine in Shanghai Jiao Tong University, Shanghai, China
| | - Bin Chen
- Renji Hospital, School of Medicine in Shanghai Jiao Tong University, Shanghai, China
| | - Dan Cui
- Renji Hospital, School of Medicine in Shanghai Jiao Tong University, Shanghai, China
| | - Jun Wang
- Renji Hospital, School of Medicine in Shanghai Jiao Tong University, Shanghai, China
| | - Qiong Wu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chang Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Maolin Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuchun Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu Zhuang
- Renji Hospital, School of Medicine in Shanghai Jiao Tong University, Shanghai, China
| | - Qingrong Xu
- Renji Hospital, School of Medicine in Shanghai Jiao Tong University, Shanghai, China
| | - Yu Zheng
- Renji Hospital, School of Medicine in Shanghai Jiao Tong University, Shanghai, China
| | - Yingen Wu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junhua Zheng
- Renji Hospital, School of Medicine in Shanghai Jiao Tong University, Shanghai, China
| | - Min Cao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Li L, Wang X, Guo X, Li Y, Song Q, Li A. Network pharmacology and computer-aided drug design to explored potential targets of Lianhua Qingwen and Qingfei Paidu decoction for COVID-19. Front Pharmacol 2022; 13:1013428. [PMID: 36210820 PMCID: PMC9540507 DOI: 10.3389/fphar.2022.1013428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2, has spread globally, affecting people’s lives worldwide and hindering global development. Traditional Chinese Medicine (TCM) plays a unique role in preventing and treating COVID-19. Representative prescriptions for the COVID-19 treatment, Lianhua Qingwen (LHQW) and Qingfei Paidu Decoction (QFPD), effectively alleviate COVID-19 symptoms, delaying its progression and preventing its occurrence. Despite the extensive similarity in their therapeutic effects, the mechanisms and advantages of LHQW and QFPD in in treating mild-to-moderate COVID-19 remain elusive. To characterize the mechanisms of LHQW and QFPD in treating COVID-19, we used integrated network pharmacology and system biology to compare the LHQW and QFPD components, active compounds and their targets in Homo sapiens. LHQW and QFPD comprise 196 and 310 active compounds, some of which have identical targets. These targets are enriched in pathways associated with inflammation, immunity, apoptosis, oxidative stress, etc. However, the two TCM formulas also have specific active compounds and targets. In LHQW, arctiin, corymbosin, and aloe-emodin target neurological disease-related genes (GRM1 and GRM5), whereas in QFPD, isofucosterol, baicalein, nobiletin, oroxylin A, epiberberine, and piperlonguminine target immunity- and inflammation-related genes (mTOR and PLA2G4A). Our findings indicate that LHQW may be suitable for treating mild-to-moderate COVID-19 with nervous system symptoms. Moreover, QFPD may effectively regulate oxidative stress damage and inflammatory symptoms induced by SARS-CoV-2. These findings may provide references for the clinical application of LHQW and QFPD.
Collapse
Affiliation(s)
- Liyuan Li
- College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiaoying Wang
- College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiao Guo
- College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yikun Li
- College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Qiuhang Song
- College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, China
- *Correspondence: Qiuhang Song, ; Aiying Li,
| | - Aiying Li
- College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China
- *Correspondence: Qiuhang Song, ; Aiying Li,
| |
Collapse
|
12
|
Zaman N, Parvaiz N, Farid R, Navid A, Abbas G, Azam SS. Senna makki and other active phytochemicals: Myths and realities behind covid19 therapeutic interventions. PLoS One 2022; 17:e0268454. [PMID: 35700199 PMCID: PMC9197063 DOI: 10.1371/journal.pone.0268454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/30/2022] [Indexed: 11/19/2022] Open
Abstract
This study aims to investigate the binding potential of chemical compounds of Senna in comparison with the experimentally tested active phytochemicals against SARS-CoV-2 protein targets to assist in prevention of infection by exploring multiple treatment options. The entire set of phytochemicals from both the groups were subjected to advanced computational analysis that explored functional molecular descriptors from a set of known medicinal-based active therapeutics followed by MD simulations on multiple SARS-CoV-2 target proteins. Our findings manifest the importance of hydrophobic substituents in chemical structures of potential inhibitors through cross-validation with the FDA-approved anti-3CLpro drugs. Noteworthy improvement in end-point binding free energies and pharmacokinetic profiles of the proposed compounds was perceived in comparison to the control drug, vizimpro. Moreover, the identification of common drug targets namely; AKT1, PTGS1, TNF, and DPP4 between proposed active phytochemicals and Covid19 using network pharmacological analysis further substantiate the importance of medicinal scaffolds. The structural dynamics and binding affinities of phytochemical compounds xanthoangelol_E, hesperetin, and beta-sitosterol reported as highly potential against 3CLpro in cell-based and cell-free assays are consistent with the computational analysis. Whereas, the secondary metabolites such as sennosides A, B, C, D present in higher amount in Senna exhibited weak binding affinity and instability against the spike protein, helicase nsp13, RdRp nsp12, and 3CLpro. In conclusion, the results contravene fallacious efficacy claims of Senna tea interventions circulating on electronic/social media as Covid19 cure; thus emphasizing the importance of well-examined standardized data of the natural products in hand; thereby preventing unnecessary deaths under pandemic hit situations worldwide.
Collapse
Affiliation(s)
- Naila Zaman
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Nousheen Parvaiz
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rabia Farid
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Afifa Navid
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ghulam Abbas
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Syed Sikander Azam
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
- * E-mail: ,
| |
Collapse
|
13
|
Gao J, Xiao G, Fan G, Zhang H, Zhu Y, lu: M. “三药三方”治疗COVID-19的临床和药理研究进展. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
An integrative approach to harnessing the potential of Traditional Indian Medicinal plants for acute viral infections. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Fan SJ, Liao JK, Wei L, Wang BY, Kai L, Tan DX. Treatment efficacy of Lianhua Qingwen capsules for eraly-stage COVID-19. Am J Transl Res 2022; 14:1332-1338. [PMID: 35273735 PMCID: PMC8902566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To systematically determine the effect of Lianhua Qingwen Capsules on the early antiviral and anti-inflammatory action against COVID-19 (Coronavirus 2019) and its applicational value in the treatment of COVID-19. METHODS The clinical data of 66 early-mid-stage COVID-19 patients admitted to hospitals in Guangzhou between January 2020 and April 2020 were retrospectively analyzed. The patients receiving Lianhua Qingwen Capsule treatment were assigned to the observation group (n=33) and those given conventional therapy were included in the control group (n=33). The two groups were compared in terms of clinical effects and main symptom (fever, cough and fatigue) disappearance rate. RESULTS In comparison with the control group, 1) the total effective rate was significantly higher in the observation group (P<0.05); 2) the disappearance rates of fever, cough and fatigue were statistically higher in the observation group; 3) the treatment time was significantly shorter and patient recovery was significantly better in the observation group; 4) the laboratory index levels [white blood cell (WBC), interleukin-6 (IL-6), serum amyloid A (SAA)] were better in the observation group. CONCLUSION Lianhua Qingwen Capsules can significantly improve the total effective rate for COVID-19 patients, as well as shorten the hospital stay and treatment time, which is worth of promotion in the clinic.
Collapse
Affiliation(s)
- Si-Jia Fan
- Department of Emergency Intensive Care Unit, South China Hospital, Health Science Center, Shenzhen UniversityShenzhen 518116, Guangdong, China
| | - Jian-Kun Liao
- Department of Emergency Intensive Care Unit, South China Hospital, Health Science Center, Shenzhen UniversityShenzhen 518116, Guangdong, China
| | - Liu Wei
- Department of Intensive Care Unit, SongGang People’s HospitalShenzhen 518105, Guangdong, China
| | - Bai-Yu Wang
- Department of Anesthesiology, Jilin Cancer HospitalChangchun 130012, Jilin, China
| | - Liu Kai
- Department of Emergency Intensive Care Unit, South China Hospital, Health Science Center, Shenzhen UniversityShenzhen 518116, Guangdong, China
| | - Du-Xun Tan
- Department of Emergency Intensive Care Unit, South China Hospital, Health Science Center, Shenzhen UniversityShenzhen 518116, Guangdong, China
| |
Collapse
|
16
|
Jin YH, Jeon S, Lee J, Kim S, Jang MS, Park CM, Song JH, Kim HR, Kwon S. Anticoronaviral Activity of the Natural Phloroglucinols, Dryocrassin ABBA and Filixic Acid ABA from the Rhizome of Dryopteris crassirhizoma by Targeting the Main Protease of SARS-CoV-2. Pharmaceutics 2022; 14:pharmaceutics14020376. [PMID: 35214108 PMCID: PMC8879496 DOI: 10.3390/pharmaceutics14020376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 11/16/2022] Open
Abstract
The rhizome of Dryopteris crassirhizoma Nakai. (Dryopteridaceae) has been used in traditional medicine in East Asia and has recently been reported to have anticancer, anti-inflammation, and antibacterial activity as well as antiviral activity. Natural phloroglucinols from D. crassirhizoma, dryocrassin ABBA and filixic acid ABA were reported to inhibit influenza virus infection with an inhibitory activity on neuraminidase. In this study, we found that dryocrassin ABBA and filixic acid ABA have an inhibitory activity against the main protease of SARS-CoV-2. Therefore, dryocrassin ABBA and filixic acid ABA exhibited inhibitory activity against SARS-CoV-2 infection in Vero cells dose-dependently using the immunofluorescence-based antiviral assays. Moreover, these compounds inhibited SARS-CoV and MERS-CoV infection, suggesting their broad-spectrum anticoronaviral activity. In addition, a 5-day repeated-dose toxicity study of dryocrassin ABBA and filixic acid ABA suggested that an approximately lethal dose of these compounds in mice was >10 mg/kg. Pharmacokinetic studies of dryocrassin ABBA showed good microsomal stability, low hERG inhibition, and low CYP450 inhibition. In vivo pharmacokinetic properties of dryocrassin ABBA showed a long half-life (5.5–12.6 h) and high plasma exposure (AUC 19.3–65 μg·h/mL). Therefore, dryocrassin ABBA has therapeutic potential against emerging coronavirus infections, including COVID-19.
Collapse
Affiliation(s)
- Young-Hee Jin
- KM Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Korea
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; (M.S.J.); (C.M.P.); (J.H.S.); (H.R.K.)
- Correspondence: (Y.-H.J.); (S.K.); Tel.: +82-42-610-8850 (Y.-H.J.); +82-42-868-9675 (S.K.)
| | - Sangeun Jeon
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam 13488, Korea; (S.J.); (J.L.); (S.K.)
| | - Jihye Lee
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam 13488, Korea; (S.J.); (J.L.); (S.K.)
| | - Seungtaek Kim
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam 13488, Korea; (S.J.); (J.L.); (S.K.)
| | - Min Seong Jang
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; (M.S.J.); (C.M.P.); (J.H.S.); (H.R.K.)
- Department of Non-Clinical Studies, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Chul Min Park
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; (M.S.J.); (C.M.P.); (J.H.S.); (H.R.K.)
| | - Jong Hwan Song
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; (M.S.J.); (C.M.P.); (J.H.S.); (H.R.K.)
| | - Hyoung Rae Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; (M.S.J.); (C.M.P.); (J.H.S.); (H.R.K.)
| | - Sunoh Kwon
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; (M.S.J.); (C.M.P.); (J.H.S.); (H.R.K.)
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
- Correspondence: (Y.-H.J.); (S.K.); Tel.: +82-42-610-8850 (Y.-H.J.); +82-42-868-9675 (S.K.)
| |
Collapse
|
17
|
Wang DC, Yu M, Xie WX, Huang LY, Wei J, Lei YH. Meta-analysis on the effect of combining Lianhua Qingwen with Western medicine to treat coronavirus disease 2019. JOURNAL OF INTEGRATIVE MEDICINE 2022; 20:26-33. [PMID: 34782291 PMCID: PMC8560181 DOI: 10.1016/j.joim.2021.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/14/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) has become a worldwide life-threatening pandemic. Lianhua Qingwen is believed to possess the ability to treat or significantly improve the symptoms of COVID-19. These claims make it important to systematically evaluate the effects of using Lianhua Qingwen with Western medicine to treat COVID-19. OBJECTIVE To evaluate the safety and efficacy of combination therapy, employing Lianhua Qingwen with Western medicine, to treat COVID-19, using a meta-analysis approach. SEARCH STRATEGY China National Knowledge Infrastructure, Wanfang Database, VIP Database, PubMed, Embase, and Cochrane Library databases were searched for studies evaluating the effect of Lianhua Qingwen-Western medicine combination therapy in the treatment of COVID-19. INCLUSION CRITERIA (1) Research object: hospitalized patients meeting the diagnostic criteria of COVID-19 were included. (2) Intervention measures: patients in the treatment group received Lianhua Qingwen treatment combined with Western medicine, while the control group received either Western medicine or Chinese medicine treatment. (3) Research type: randomized controlled trials and retrospective study were included. DATA EXTRACTION AND ANALYSIS Two researchers extracted the first author, the proportion of males and females, age, body temperature, course of treatment, rate of disappearance of main symptoms, duration of fever, adverse reactions, and total effectiveness from the literature. Odds ratio (OR) and 95% confidence interval (CI) were used as the effect value for count data, and mean difference (MD) and 95% CI were used as the effect value for measurement data. RESULTS Six articles met the inclusion criteria, including a total of 856 COVID-19 patients. The meta-analysis showed that Lianhua Qingwen combination therapy achieved higher rates of fever reduction (OR = 3.43, 95% CI [1.78, 6.59], P = 0.0002), cough reduction (OR = 3.39, 95% CI [1.85, 6.23], P < 0.0001), recovery from shortness of breath (OR = 10.62, 95% CI [3.71, 30.40], P < 0.0001) and recovery from fatigue (OR = 2.82, 95% CI [1.44, 5.53], P = 0.003), higher total effectiveness rate (OR = 2.51, 95% CI [1.73, 3.64], P < 0.00001), and shorter time to recovery from fever (MD = -1.00, 95% CI [-1.04, 0.96], P < 0.00001), and did not increase the adverse reaction rate (OR = 0.65, 95% CI [0.42, 1.01], P = 0.06), compared to the single medication control. CONCLUSION The Lianhua Qingwen and Western medicine combination therapy is highly effective for COVID-19 patients and has good clinical safety. As only a small number of studies and patients were included in this review, more high-quality, multicenter, large-sample-size, randomized, double-blind, controlled trials are still needed for verification.
Collapse
Affiliation(s)
- Deng-Chao Wang
- Department of General Surgery, Zigong Fourth People's Hospital, Zigong 643000, Sichuan Province, China.
| | - Miao Yu
- Department of Basic Medicine, Sichuan Vocational College of Health and Rehabilitation, Zigong 643000, Sichuan Province, China
| | - Wen-Xian Xie
- Department of Basic Medicine, Sichuan Vocational College of Health and Rehabilitation, Zigong 643000, Sichuan Province, China
| | - Li-Yan Huang
- Department of Pathology, West China Second Hospital of Sichuan University, Chengdu 610000, Sichuan Province, China
| | - Jian Wei
- Department of General Surgery, Zigong Fourth People's Hospital, Zigong 643000, Sichuan Province, China
| | - Yue-Hua Lei
- Department of General Surgery, Zigong Fourth People's Hospital, Zigong 643000, Sichuan Province, China
| |
Collapse
|
18
|
Guo DA, Yao CL, Wei WL, Zhang JQ, Bi QR, Li JY, Khan I, Bauer R. Traditional Chinese medicines against COVID-19: A global overview. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/2311-8571.353502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
19
|
Hai P, Rao K, Jiang N, Liu D, Wang R, Gao Y, Liu X, Deng S, Zhou Y, Chen X, Li X, Li R. Structure elucidation, biogenesis, and bioactivities of acylphloroglucinol-derived meroterpenoid enantiomers from Dryopteris crassirhizoma. Bioorg Chem 2021; 119:105567. [PMID: 34971945 DOI: 10.1016/j.bioorg.2021.105567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/27/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022]
Abstract
Twenty-four racemic acylphloroglucinol meroterpenoids including eighteen unusual stuctures (3 ∼ 10, 13, 14, and 17 ∼ 24), and a major component filixic acid ABA (25), were isolated from Dryopteris crassirhizoma. Structurally, the dimeric acylphloroglucinol derivatives possess unprecedented skeletons of mixed acylphloroglucinol and sesquiterpene biosynthetic origin. The stereochemistries of six reported meroterpenoids with undefined chiral centers were reassigned. Two intriguing methods by analyzing a) the regularity of chemical shift variation of protons and carbons around the stereogenic centers, and b) pyridine-induced deshielding effect of hydroxy groups, to discriminate relative configurations of flexible long-chain alcohol with chiral centers separated by three or seven covalent bonds, were successfully applied. A non-enzymatic biosynthesis of 1 ∼ 24 was assumed based on a rare single-crystal cluster formed with two diastereomeric enantiomer pairs (±1/±2) and chiral HPLC analyses. Meroterpenoids 13 and 14 showed obvious inhibitory effects on NO production in LPS-induced RAW264.7, and suppressed the expression of iNOS, COX-2, IL-1β, and IL-18. Their anti-inflammatory activity was closely related to the inhibition of the formation and function of inflammasomes. Additionally, the known 25 showed antiviral efficacy against the influenza viruse A/Puerto Rico/8/1934 (H1N1).
Collapse
Affiliation(s)
- Ping Hai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Kairui Rao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Na Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Dan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ruirui Wang
- School of Pharmaceutical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Yuan Gao
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin 644000, China
| | - Xiaocong Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Sihao Deng
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin 644000, China
| | - Yu Zhou
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin 644000, China
| | - Xuanqin Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiaonian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Rongtao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
20
|
Chen S, Yang X, Wei Z, Zhang Y, Huang Y, Shi Z, Zhang Z, Wang J, Zhang H, Ma J, Xiao X, Niu M. Establishment of an anti-inflammation-based bioassay for the quality control of the 13-component TCM formula (Lianhua Qingwen). PHARMACEUTICAL BIOLOGY 2021; 59:537-545. [PMID: 33941036 PMCID: PMC8110188 DOI: 10.1080/13880209.2021.1917627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/26/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
CONTEXT Owing to the complexity of chemical ingredients in traditional Chinese medicine (TCM), it is difficult to maintain quality and efficacy by relying only on chemical markers. OBJECTIVE Lianhua Qingwen capsule (LHQW) was selected as an example to discuss the feasibility of a bioassay for quality control. MATERIALS AND METHODS Network pharmacology was used to screen potential targets in LHQW with respect to its anti-inflammatory effects. An in vitro cell model was used to validate the prediction. An anti-inflammatory bioassay was established for the quality evaluation of LHQW in 40 batches of marketed products and three batches of destructed samples. RESULTS The tumor necrosis factor/interleukin-6 (TNF/IL-6) pathway via macrophage was selected as the potential target of LHQW. The IC50 value of LHQW on RAW 264.7 was 799.8 μg/mL. LHQW had significant inhibitory effects on the expression of IL-6 in a dose-dependent manner (p < 0.05). The anti-inflammatory biopotency of LHQW was calculated based on the inhibitory bioactivity on IL-6. The biopotency of 40 marketed samples ranged from 404 U/μg to 2171 U/μg, with a coefficient of variation (CV) of 37.91%. By contrast, the contents of forsythin indicated lower CV (28.05%) than the value of biopotency. Moreover, the biopotencies of destructed samples declined approximate 50%, while the contents of forsythin did not change. This newly established bioassay revealed a better ability to discriminate the quality variations of LHQW as compared to the routine chemical determination. CONCLUSIONS A well-established bioassay may have promising ability to reveal the variance in quality of TCM.
Collapse
Affiliation(s)
- Shuaishuai Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- China Military Institute of Chinese Medicine, The Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Xiaojuan Yang
- China Military Institute of Chinese Medicine, The Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Ziying Wei
- China Military Institute of Chinese Medicine, The Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Yanru Zhang
- China Military Institute of Chinese Medicine, The Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
- College of Pharmacy and Chemistry, Dali University, Dali, China
| | - Ying Huang
- China Military Institute of Chinese Medicine, The Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Zhuo Shi
- China Military Institute of Chinese Medicine, The Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Ziteng Zhang
- China Military Institute of Chinese Medicine, The Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Jiabo Wang
- China Military Institute of Chinese Medicine, The Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Haizhu Zhang
- College of Pharmacy and Chemistry, Dali University, Dali, China
| | - Jianli Ma
- Department of Pharmacy, The Fourth Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Xiaohe Xiao
- China Military Institute of Chinese Medicine, The Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Ming Niu
- Department of Hematology, The Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
| |
Collapse
|
21
|
Gong X, Yuan B, Yuan Y, Li F. Efficacy and Safety of Lianhuaqingwen Capsules for the Prevention of Coronavirus Disease 2019: A Prospective Open-Label Controlled Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:7962630. [PMID: 34858512 PMCID: PMC8632393 DOI: 10.1155/2021/7962630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/30/2021] [Indexed: 12/23/2022]
Abstract
Coronavirus disease 2019 (COVID-19) has become a global pandemic. Community and close contact exposures continue to drive the COVID-19 pandemic. There is no confirmed effective treatment for suspected cases and close contacts. Lianhuaqingwen (LH) capsules, a repurposed Chinese herbal product that is currently on the market, have proven effective for influenza and COVID-19. To determine the safety and efficacy of LH capsules for the prevention of COVID-19, we conducted a prospective open-label controlled trial of LH capsules on subjects who had close contact with people infected with COVID-19. Subjects received LH capsules (4 capsules, three times daily) or the usual medical observation for 14 days. The primary endpoint was the rate of positive nucleic acid tests of nasal and pharyngeal swabs during the quarantine medical observation period. We included 1976 patients, including 1101 in the treatment group and 875 in the control group. The rate of positive nucleic acid tests in the treatment group was significantly lower than that in the control group (0.27% vs. 1.14%, respectively; mean difference: -0.87%; 95% CI: -1.83 to -0.13; p=0.0174) during the quarantine medical observation period (14 days). Among subjects with different close contact states, there was no significant difference in the rate of positive nucleic acid test results among close contacts in the treatment group and the control group (6.45% vs. 11.43%, respectively; p=0.6762). Among secondary close contacts, the rate of positive nucleic acid tests in the treatment group was significantly lower than that in the control group (0.09% vs. 0.71%, respectively; p=0.0485). No serious adverse events were reported. Taken together, and in light of the safety and effectiveness profiles, these results show that LH capsules can be considered to prevent the progression of COVID-19 after close contact with an infected person. This trial is registered with ChiCTR2100043012.
Collapse
Affiliation(s)
- Xiaowei Gong
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Boyun Yuan
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Yadong Yuan
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Fengju Li
- Department of Medical Imaging, Hebei Provincial Corps Hospital of CPAPF, Shijiazhuang, Hebei Province, China
| |
Collapse
|
22
|
Yang R, Yang H, Wei J, Li W, Yue F, Song Y, He X, Hu K. Mechanisms Underlying the Effects of Lianhua Qingwen on Sepsis-Induced Acute Lung Injury: A Network Pharmacology Approach. Front Pharmacol 2021; 12:717652. [PMID: 34721017 PMCID: PMC8551812 DOI: 10.3389/fphar.2021.717652] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022] Open
Abstract
Background and Purpose: Sepsis is a life-threatening condition associated with secondary multiple organ injury. Acute lung injury (ALI) caused by sepsis has high morbidity and mortality in critical care units. Lianhua Qingwen (LHQW) is a traditional Chinese medicine composing of 11 herbs and 2 medicinal minerals. LHQW exhibits anti-inflammatory activity and is effective in treating pneumonia. Our study aimed to evaluate the effect of LHQW on sepsis-induced ALI and its underlying mechanism. Materials and Methods: A network pharmacology approach was used to predict the bioactive components and effective targets of LHQW in treating ALI. We established ALI model C57/BL6 mice via an intraperitoneal injection of LPS and inhibited p53 expression by pifithrin-α, in order to validate the mechanism by which LHQW exerted protective role in ALI. Hematoxylin-eosin staining was conducted to assess the severity of lung injury. The severity of inflammation was evaluated based on MPO (myeloperoxidase) activity. TUNEL assay was employed to detect apoptotic cells. The levels of p53 and caspase-3 were tested by immunohistochemical staining and Western blotting. The expression levels of Bcl-2, Bax, cytochrome C and caspase-9 were detected by Western blotting. Results: A total of 80 genes were associated with LHQW in the treatment of ALI. After PPI network construction, four active components (quercetin, luteolin, kaempferol and wogonin) and 10 target genes (AKT1, TP53, IL6, VEGFA, TNF, JUN, STAT3, MAPK8, MAPK1, and EGF) were found to be essential for ALI treatment. GO and KEGG analyses indicated that apoptosis pathway was mainly involved in the LHQW-ALI network. Animal experiments showed that LHQW was able to attenuate LPS-induced ALI, and medium-dose LHQW exhibited the most prominent effect. LHQW could inhibit the overexpression of p53 induced by LPS and suppress p53-mediated intrinsic apoptotic pathways by decreasing the levels of Bax, caspase-3 and caspase-9, increasing the expression of Bcl-2, and attenuating the release of cytochrome C in ALI mice. Conclusion: This study reveals that LHQW may alleviate LPS-induced ALI via inhibiting p53-mediated intrinsic apoptosis pathways.
Collapse
Affiliation(s)
- Ruhao Yang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Haizhen Yang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jie Wei
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenqiang Li
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fang Yue
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Song
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin He
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
23
|
Zhang X, You L, Zhang X, Wang F, Wang Y, Zhou J, Liu C, Qu F. Neurobehavioral alternations of the female offspring born to polycystic ovary syndrome model rats administered by Chinese herbal medicine. Chin Med 2021; 16:97. [PMID: 34600579 PMCID: PMC8487466 DOI: 10.1186/s13020-021-00512-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/21/2021] [Indexed: 11/15/2022] Open
Abstract
Background Chinese herbal medicine (CHM) has significant effects that improve the reproductive functions of patients with polycystic ovary syndrome (PCOS). However, the intergenerational effects of CHM on offspring and the underlying mechanism of CHM remain unclear. This study aimed to explore the effects and the underlying mechanism of CHM, specifically the Bu-Shen-Tian-Jing formula (BSTJF), on model rats with polycystic ovary syndrome (PCOS) and the neurobehavioral alterations of female offspring born to PCOS rats administered BSTJF. Methods High-performance liquid chromatography-mass spectrometry (HPLC–MS) and network pharmacology analysis were performed to identify the active ingredients and potential targets of BSTJF. Moreover, PCOS model rats were used to validate the role of BSTJF in reproduction and progeny neural development and to confirm the network pharmacological targets. Results A total of 91 constituents were characterized from BSTJF. The 20 most significant KEGG pathways and the high-frequency genes of these pathways were predicted to be putative targets of these molecules. The rat experiment showed that the downregulation of FOS protein expression in the ovarian granulosa cells of the PCOS group was reversed by BSTJF. The target residence time of the 5-week-old female offspring of the BSTJF group was higher than that of the PCOS group in the water maze experiment. Compared to the PCOS group, the changes in dendritic spine density, ultrastructure of neurons and synapses, and Gabrb1 and Grin2b protein expression levels in the hippocampus of female offspring were partially reversed in the BSTJF group. Conclusions BSTJF can effectively improve ovarian follicle development in PCOS rats and has positive effects on pubertal neurobehavioral alterations in the female offspring of these rats by reversing dendritic spine density, the ultrastructure of neurons and synapses, and the Gabrb1 and Grin2b protein expression levels in the hippocampus. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00512-4.
Collapse
Affiliation(s)
- Xian Zhang
- Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, 310006, China
| | - Lifang You
- First People's Hospital of Yuhang District, Hangzhou, 311103, Zhejiang, China
| | - Xiaohui Zhang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fangfang Wang
- Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, 310006, China
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jue Zhou
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Chang Liu
- The Second Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310053, China
| | - Fan Qu
- Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, 310006, China.
| |
Collapse
|
24
|
Huang K, Zhang P, Zhang Z, Youn JY, Wang C, Zhang H, Cai H. Traditional Chinese Medicine (TCM) in the treatment of COVID-19 and other viral infections: Efficacies and mechanisms. Pharmacol Ther 2021; 225:107843. [PMID: 33811957 PMCID: PMC8011334 DOI: 10.1016/j.pharmthera.2021.107843] [Citation(s) in RCA: 275] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
COVID-19 has remained an uncontained, worldwide pandemic. While battling for the disease in China, six Traditional Chinese Medicine (TCM) recipes have been shown to be remarkably effective for treating patients with COVID-19. The present review discusses principles of TCM in curing infectious disease, and clinical evidence and mechanisms of the 6 most effective TCM recipes used in treating COVID-19 in 92% of all of the confirmed cases in China. Applications of TCM and specific recipes in the treatment of other viral infections, such as those caused by SARS-CoV, MERS-CoV, hepatitis B virus, hepatitis C virus, influenza A virus (including H1N1 and H7N9), influenza B, dengue virus as well as Ebola virus, are also discussed. Among the 6 TCM recipes, Jinhua Qinggan (JHQG) granules and Lianhua Qingwen (LHQW) capsules are recommended during medical observation; Lung Cleansing and Detoxifying Decoction (LCDD) is recommended for the treatment of both severe and non-severe patients; Xuanfeibaidu (XFBD) granules are recommended for treating moderate cases; while Huashibaidu (HSBD) and Xuebijing (XBJ) have been used in managing severe cases effectively. The common components and the active ingredients of the six TCM recipes have been summarized to reveal most promising drug candidates. The potential molecular mechanisms of the active ingredients in the six TCM recipes that target ACE2, 3CLpro and IL-6, revealed by molecular biological studies and/or network pharmacology prediction/molecular docking analysis/visualization analysis, are fully discussed. Therefore, further investigation of these TCM recipes may be of high translational value in enabling novel targeted therapies for COVID-19, potentially via purification and characterization of the active ingredients in the effective TCM recipes.
Collapse
Affiliation(s)
- Kai Huang
- Department of Anesthesiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, United States of America
| | - Pan Zhang
- Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Zhenghao Zhang
- Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Ji Youn Youn
- Department of Anesthesiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, United States of America
| | - Chen Wang
- Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China.
| | - Hongchun Zhang
- Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Hua Cai
- Department of Anesthesiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, United States of America.
| |
Collapse
|
25
|
Du X, Shi L, Cao W, Zuo B, Zhou A. Add-on effect of Chinese herbal medicine in the treatment of mild to moderate COVID-19: A systematic review and meta-analysis. PLoS One 2021; 16:e0256429. [PMID: 34415962 PMCID: PMC8378756 DOI: 10.1371/journal.pone.0256429] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 08/06/2021] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION Coronavirus disease 2019 (COVID-19) has emerged as a global pandemic since its outbreak in Wuhan, China. It is an urgent task to prevent and treat COVID-19 effectively early. In China's experience combating the COVID-19 pandemic, Chinese herbal medicine (CHM) has played an indispensable role. A large number of epidemiological investigations have shown that mild to moderate COVID-19 accounts for the largest proportion of cases. It is of great importance to treat such COVID-19 cases, which can help control epidemic progression. Many trials have shown that CHM combined with conventional therapy in the treatment of mild to moderate COVID-19 was superior to conventional therapy alone. This review was designed to evaluate the add-on effect of CHM in the treatment of mild to moderate COVID-19. METHODS Eight electronic databases including PubMed, EMBASE, Cochrane Central Register of Controlled Trials, the Clinical Trials.gov website, China National Knowledge Infrastructure (CNKI), China Science and Technology Journal Database (VIP), Wanfang Database and China Biology Medicine (CBM) were searched from December 2019 to March 2021 without language restrictions. Two reviewers searched and selected studies, and extracted data according to inclusion and exclusion criteria independently. Cochrane Risk of Bias (ROB) tool was used to assess the methodological quality of the included RCTs. Review Manager 5.3.0 software was used for statistical analysis. RESULTS Twelve eligible RCTs including 1393 participants were included in this meta-analysis. Our meta-analyses found that lung CT parameters [RR = 1.26, 95% CI (1.15, 1.38), P<0.00001] and the clinical cure rate [RR = 1.26, 95%CI (1.16, 1.38), P<0.00001] of CHM combined with conventional therapy in the treatment of mild to moderate COVID-19 were better than those of conventional therapy. The rate of conversion to severe cases [RR = 0.48, 95%CI (0.32, 0.73), P = 0.0005], TCM symptom score of fever [MD = -0.62, 95%CI (-0.79, -0.45), P<0.00001], cough cases [RR = 1.43, 95%CI (1.16, 1.75), P = 0.0006], TCM symptom score of cough[MD = -1.07, 95%CI (-1.29, -0.85), P<0.00001], TCM symptom score of fatigue[MD = -0.66, 95%CI (-1.05, -0.28), P = 0.0007], and CRP[MD = -5.46, 95%CI (-8.19, -2.72), P<0.0001] of combination therapy was significantly lower than that of conventional therapy. The WBC count was significantly higher than that of conventional therapy[MD = 0.38, 95%CI (0.31, 0.44), P<0.00001]. Our meta-analysis results were robust through sensitivity analysis. CONCLUSION Chinese herbal medicine combined with conventional therapy may be effective and safe in the treatment of mild to moderate COVID-19. More high-quality RCTs are needed in the future.
Collapse
Affiliation(s)
- Xuqin Du
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, People's Republic of China
| | - Lipeng Shi
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, People's Republic of China
| | - Wenfu Cao
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, People's Republic of China.,Department of Chinese Traditional Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Biao Zuo
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, People's Republic of China
| | - Aimin Zhou
- Department of Cardiovascular U nit, Traditional Chinese medicine hospital Dianjiang Chongqing, Chongqing, People's Republic of China
| |
Collapse
|
26
|
Liang C, Hui N, Liu Y, Qiao G, Li J, Tian L, Ju X, Jia M, Liu H, Cao W, Yu P, Li H, Ren X. Insights into forsythia honeysuckle (Lianhuaqingwen) capsules: A Chinese herbal medicine repurposed for COVID-19 pandemic. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 1:100027. [PMID: 35399819 PMCID: PMC7833308 DOI: 10.1016/j.phyplu.2021.100027] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 04/17/2023]
Abstract
Background In December 2019, a novel coronavirus, SARS-CoV-2 caused a series of acute atypical respiratory diseases worldwide. However, there is still a lack of drugs with clear curative effects, and the clinical trial research of vaccines has not been completely finished. Purpose LH capsules are approved TCM patent medicine that are widely used for the treatment of respiratory tract infectious diseases caused by colds and flu. On April 12, 2020, LH capsules and granules were officially repurposed by the China Food and Drug Administration (CFDA) for patients with mild COVID-19 based on their safety and efficacy demonstrated through multicentre, randomized, controlled clinical trials. We hope to conduct a comprehensive review of it through modern pharmacy methods, and try to explain its possible mechanism. Methods Using the full names of LH capsules Lianhuaqingwen, Lianhua Qingwen andSARS-COV-2, COVID-19 as the keywords of the search terms, systemically search for existing related papers in various databases such as Web of Science and PubMed. And completed the collection of clinical data in ClinicalTrials.gov and Chinese Clinical Trial Registry. Last but not least, we have sorted out the anti-inflammatory and antiviral mechanisms of LH capsules through literature and Selleck. Results This review systematically sorted out the active ingredients in LH capsules. Furthermore, the related pharmacological and clinical trials of LH capsule on SARS-CoV-2, IAV and IBV were discussed in detail. Moreover, the present review provides the first summary of the potential molecular mechanism of specific substances in LH capsules involved in resistance to SARS-COV-2 infection and the inhibition of cytokine storm syndrome (CSS) caused by IL-6. Conclusion This review summarizes the available reports and evidence that support the use of LH capsules as potential drug candidates for the prevention and treatment of COVID-19. However, TCM exerts its effects through multiple targets and multiple pathways, and LH capsules are not an exception. Therefore, the relevant mechanisms need to be further improved and experimentally verified.
Collapse
Key Words
- 3C-like protease (3CLpro)
- 3CLpro, 3C-like protease
- ACE2, Angiotensin-converting enzyme 2
- AECOPD, Acute exacerbation of chronic obstructive pulmonary disease
- AIDS, Acquired immune deficiency syndrome
- AQP3, Aquaporins 3
- ARDS, Acute respiratory distress syndrome
- CAT, COPD assessment test
- CC50, 50% Cytotoxic concentration
- CCL-2/MCP-1, C—C motif ligand 2/monocyte chemoattractant protein-1
- CFDA, China Food and Drug Administration
- COPD, Chronic obstructive pulmonary disease
- COVID-19
- COVID-19, Coronavirus disease 2019
- CPE, Cytopathic effect
- CSS, Cytokine storm syndrome
- CT, Computed tomography
- CXCL-10/IP-10, C-X-C Motif Chemokine Ligand 10/ Interferon Gamma-induced Protein 10
- Cytokine storm syndrome (CSS)
- DMSO, Dimethyl sulfoxide
- E protein, Envelope protein
- ERK, Extracellular signal-regulated kinase
- FBS, Fatal bovine serum
- Forsythia honeysuckle (Lianhuaqingwen,LH) capsules
- Grb2, Growth factor receptor-bound protein 2
- HIV, Human immunodeficiency virus
- HPLC, High-performance liquid chromatography
- HSV-1, Herpes simplex virus type 1
- HVJ, Hemagglutinating virus of Japan
- Hep-2, Human epithelial type 2
- Huh-7, Human Hepatocellular Carcinoma-7
- IAV, Influenza A virus
- IBV, Influenza B virus
- IC50, 50% Inhibition concentration
- IFN-λ1, Interferon-λ1
- IL-6, Interleukin-6
- IL-6R, IL-6 Receptor
- IL-8, Interleukin-8
- IP-10, Interferon-inducible protein-10
- JAK/STAT, Janus kinase/signal transducers and activators of transcription
- JAK1/2, Janus kinase1/2
- LD50, 50% Lethal dose
- LH capsules, Forsythia honeysuckle (Lianhuaqingwen) capsules
- M protein, Membrane protein
- MAPK, Mitogen-activated protein kinase
- MCP-1, Monocyte chemotactic protein 1
- MDCK, Madin-darby canine kidney
- MEK, Mitogen-activated protein kinase kinase
- MERS, Middle east respiratory syndrome
- MIP-1β, Macrophage Inflammatory Protein-1β
- MLD50, 50% Minimum lethal dose
- MOF, Multifunctional organ damage
- MOI, Multiplicity of infection
- MTT, Methyl Thiazolyl Tetrazolium
- NF-kB, Nuclear transcription factor kappa-B
- NHC, National Health Commission
- ORFs, Open reading frames
- PBS, Phosphate buffered saline
- PHN, Phillyrin
- PI3K, Phosphoinositide 3-kinases
- PKA/p-CREB, Protein kinase A /phosphorylated cAMP response element-binding protein
- PKB, Akt, Protein kinase B
- PLpro, Papain-like proteases
- PRC, People's Republic of China
- QC, Quality control
- RANTES, Regulated on activation normal T cell expressed and secreted
- RSV, Respiratory syncytial virus
- RT-PCR, Reverse transcription PCR
- Ras, Ras GTPase
- SARS-CoV-2
- TCID50, 50% Tissue culture infective dose
- TD0, Non-toxic Dose
- TD50, Half-toxic dose
- Vero E6, African Green Monkey Kidney Epithelial-6
- gp-130, Glycoprotein 130
- mIL-6R, Membrane-bound form IL-6 Receptor
- mTOR, Mammalian target of rapamycin
- nsps, Non-structural proteins
- qPCR, Quantitative PCR
Collapse
Affiliation(s)
- Chengyuan Liang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Nan Hui
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Yuzhi Liu
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Guaiping Qiao
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Juan Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Lei Tian
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Xingke Ju
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Minyi Jia
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Hong Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai 519030, PR China
| | - Wenqiang Cao
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai 519030, PR China
| | - Pengcheng Yu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Han Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
27
|
Wang Z, Yang L. Chinese herbal medicine: Fighting SARS-CoV-2 infection on all fronts. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113869. [PMID: 33485973 PMCID: PMC7825841 DOI: 10.1016/j.jep.2021.113869] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/07/2021] [Accepted: 01/18/2021] [Indexed: 05/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes coronavirus disease 2019 (COVID-19), a highly pathogenic virus that has spread rapidly across the entire world. There is a critical need to develop safe and effective drugs, especially broad-spectrum antiviral and organ protection agents in order to treat and prevent this dangerous disease. It is possible that Chinese herbal medicine may play an essential role in the treatment of patients with SARS-CoV-2 infection. AIM OF THE REVIEW We aim to review the use of Chinese herbal medicine in the treatment of COVID-19 both in vitro and in clinical practice. Our goal was to provide a better understanding of the potential therapeutic effects of Chinese herbal medicine and to establish a "Chinese protocol" for the treatment of COVID-19. MATERIALS AND METHODS We systematically reviewed published research relating to traditional Chinese herbal medicines and the treatment of SARS-CoV-2 from inception to the 6th January 2021 by screening a range of digital databases (Web of Science, bioRxiv, medRxiv, China National Knowledge Infrastructure, X-MOL, Wanfang Data, Google Scholar, PubMed, Elsevier, and other resources) and public platforms relating to the management of clinical trials. We included the active ingredients of Chinese herbal medicines, monomer preparations, crude extracts, and formulas for the treatment of COVID-19. RESULTS In mainland China, a range of Chinese herbal medicines have been recognized as very promising anti-SARS-CoV-2 agents, including active ingredients (quercetagetin, osajin, tetrandrine, proscillaridin A, and dihydromyricetin), monomer preparations (xiyanping injection, matrine-sodium chloride injection, diammonium glycyrrhizinate enteric-coated capsules, and sodium aescinate injection), crude extracts (Scutellariae Radix extract and garlic essential oil), and formulas (Qingfei Paidu decoction, Lianhuaqingwen capsules, and Pudilan Xiaoyan oral liquid). All these agents have potential activity against SARS-CoV-2 and have attracted significant attention due to their activities both in vitro and in clinical practice. CONCLUSIONS As a key component of the COVID-19 treatment regimen, Chinese herbal medicines have played an irreplaceable role in the treatment of SARS-CoV-2 infection. The "Chinese protocol" has already demonstrated clear clinical importance. The use of Chinese herbal medicines that are capable of inhibiting SARS-Cov-2 infection may help to address this immediate unmet clinical need and may be attractive to other countries that are also seeking new options for effective COVID-19 treatment. Our analyses suggest that countries outside of China should also consider protocols involving Chinese herbal medicines combat this fast-spreading viral infection.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, PR China; School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, PR China.
| | - Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, PR China.
| |
Collapse
|
28
|
Xia QD, Xun Y, Lu JL, Lu YC, Yang YY, Zhou P, Hu J, Li C, Wang SG. Network pharmacology and molecular docking analyses on Lianhua Qingwen capsule indicate Akt1 is a potential target to treat and prevent COVID-19. Cell Prolif 2020; 53:e12949. [PMID: 33140889 PMCID: PMC7705900 DOI: 10.1111/cpr.12949] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
Objectives Coronavirus disease 2019 (COVID‐19) is rapidly spreading worldwide. Lianhua Qingwen capsule (LQC) has shown therapeutic effects in patients with COVID‐19. This study is aimed to discover its molecular mechanism and provide potential drug targets. Materials and Methods An LQC target and COVID‐19–related gene set was established using the Traditional Chinese Medicine Systems Pharmacology database and seven disease‐gene databases. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and protein‐protein interaction (PPI) network were performed to discover the potential mechanism. Molecular docking was performed to visualize the patterns of interactions between the effective molecule and targeted protein. Results A gene set of 65 genes was generated. We then constructed a compound‐target network that contained 234 nodes of active compounds and 916 edges of compound‐target pairs. The GO and KEGG indicated that LQC can act by regulating immune response, apoptosis and virus infection. PPI network and subnetworks identified nine hub genes. The molecular docking was conducted on the most significant gene Akt1, which is involved in lung injury, lung fibrogenesis and virus infection. Six active compounds of LQC can enter the active pocket of Akt1, namely beta‐carotene, kaempferol, luteolin, naringenin, quercetin and wogonin, thereby exerting potential therapeutic effects in COVID‐19. Conclusions The network pharmacological strategy integrates molecular docking to unravel the molecular mechanism of LQC. Akt1 is a promising drug target to reduce tissue damage and help eliminate virus infection.
Collapse
Affiliation(s)
- Qi-Dong Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Xun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun-Lin Lu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Chao Lu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan-Yuan Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhou
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shao-Gang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Xi S, Li Y, Yue L, Gong Y, Qian L, Liang T, Ye Y. Role of Traditional Chinese Medicine in the Management of Viral Pneumonia. Front Pharmacol 2020; 11:582322. [PMID: 33192523 PMCID: PMC7642817 DOI: 10.3389/fphar.2020.582322] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/15/2020] [Indexed: 11/24/2022] Open
Abstract
Viral pneumonia is one kind of acute respiratory tract infection caused by the virus. There have been many outbreaks of viral pneumonia with high contagiousness and mortality both in China and abroad, such as the great influenza in 1918, the severe acute respiratory syndrome (SARS) coronavirus in 2003, the Influenza A (H1N1) virus in 2009, and the Middle East Respiratory Syndrome coronavirus (MERS-CoV) in 2012 and the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019. These outbreaks and/or pandemic have significant impact on human life, social behaviors, and economic development. Moreover, no specific drug has been developed for these viruses. Traditional Chinese medicine (TCM) plays an important role in the treatment of viral pneumonia during these outbreaks especially in SARS and SARS-CoV-2 because studies suggest that TCM formulations may target several aspects of the disease and may have lesser side effects than manufactured pharmaceuticals. In recent years, a lot of clinicians and researchers have made a series of in-depth explorations and investigations on the treatment of viral pneumonia with TCM, which have understood TCM therapeutic mechanisms more specifically and clearly. But critical analysis of this research in addition to further studies are needed to assess the potential of TCM in the treatment of viral pneumonia.
Collapse
Affiliation(s)
- Shengyan Xi
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China.,Department of Traditional Chinese Medicine, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Yunhong Li
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Lifeng Yue
- The 3rd Neurology Department, Emergency Department, Gastroenterology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yuewen Gong
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Linchao Qian
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China.,Department of Traditional Chinese Medicine, Xiang'an Hospital of Xiamen University, Xiamen, China.,School of Traditional Chinese Medicine, Xiamen University Malaysia, Sepang, Malaysia
| | - Tengxiao Liang
- The 3rd Neurology Department, Emergency Department, Gastroenterology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yong'an Ye
- The 3rd Neurology Department, Emergency Department, Gastroenterology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
30
|
Li LC, Zhang ZH, Zhou WC, Chen J, Jin HQ, Fang HM, Chen Q, Jin YC, Qu J, Kan LD. Lianhua Qingwen prescription for Coronavirus disease 2019 (COVID-19) treatment: Advances and prospects. Biomed Pharmacother 2020; 130:110641. [PMID: 34321172 PMCID: PMC7437484 DOI: 10.1016/j.biopha.2020.110641] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/09/2020] [Accepted: 08/16/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND An outbreak of Coronavirus Disease 2019 (COVID-19) which was infected by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is still spreading and has led to unprecedented health emergency over the world. Though no specific drug has been developed so far, emerging agents have been confirmed effective or potentially beneficial to restrain it. Lianhua Qingwen (LHQW) is a commonly used Chinese medical preparation to treat viral influenza, including in the fight against SARS in 2002-2003 in China. Recent data also showed that LHQW played a vigorous role in COVID-19 treatment. PURPOSE This review will elucidate the pre-clinical and clinical evidence of LHQW in lung protection and antiviral activities, and provide timely data delivery for the exploration of effective treatment strategies in the therapy of COVID-19. STUDY DESIGN AND METHOD The research data were obtained from the academic databases (up to August 8, 2020) including Pubmed, CNKI and Web of Science, on ethnobotany and ethno medicines. The search keywords for screening the literature information were "virus", "COVID-19", or "SARS-CoV-2", and "Lianhua Qingwen". The documents were filtered and summarized for final evaluation. RESULTS The collected evidence demonstrated that LHQW exhibited benefits against COVID-19. Impressively, LHQW in conjunction with conventional treatment could significantly improve COVID-19 patients as a synergetic strategy. The mechanisms were mainly involved the antiviral activity, and regulation of inflammation response as well as immune function. CONCLUSION Although the data were far from adequate, the latest advances had shown the benefits of LHQW in COVID-19, especially in combination with other antiviral drugs. This review provides comprehensive evidence of LHQW as a complementary strategy for treating COVID-19. Nevertheless, imperious researches should be conducted to clarify the unconfirmed effects, regulatory mechanisms and adverse reactions of LHQW in treating COVID-19 by means of well designed randomized controlled trials.
Collapse
Affiliation(s)
- Liu-Cheng Li
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, PR China
| | - Zhi-Hui Zhang
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, PR China,Shanghai TCM-Integrated Institute of Vascular Anomalies, Shanghai, 200082, PR China
| | - Wen-Cheng Zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, 310018, PR China,Department of Pharmacy, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, 310018, PR China
| | - Jie Chen
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, PR China
| | - Hua-Qian Jin
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, PR China
| | - Hong-Mei Fang
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, PR China
| | - Qin Chen
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, PR China
| | - Ye-Cheng Jin
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, PR China.
| | - Jiao Qu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, 210023, PR China.
| | - Lian-Di Kan
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, PR China.
| |
Collapse
|
31
|
Hu C, Liang M, Gong F, He B, Zhao D, Zhang G. Efficacy of Lianhua Qingwen Compared with Conventional Drugs in the Treatment of Common Pneumonia and COVID-19 Pneumonia: A Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:5157089. [PMID: 32963563 PMCID: PMC7501551 DOI: 10.1155/2020/5157089] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/19/2020] [Accepted: 09/09/2020] [Indexed: 12/24/2022]
Abstract
METHODS Seven English and Chinese databases were used to search for qualified experimental studies as of July 27, 2020. All data were extracted directly from the included studies, and no special conversion formula was used. The weighted mean difference (WMD), 95% confidence interval (CI), and odds ratio (OR) were used for evaluation. RESULTS Forty-two studies involving 3793 subjects met the qualification criteria. For common pneumonia, a short duration of flu-like symptoms (WMD = -1.81, 95% CI = -2.12 to -1.50, P < 0.001), sputum (WMD = -1.10, 95% CI = -1.50 to -0.70, P < 0.001), pulmonary rale (WMD = -2.03, 95% CI = -2.74 to -1.31, P < 0.001), pulmonary imaging improvement (WMD = -1.88, 95% CI = -2.28 to -1.47, P < 0.001), curative effect (OR = 3.65, 95% CI = 2.81 to 4.76, P < 0.001), and healing period (WMD = -1.68, 95% CI = -2.62 to -0.74, P < 0.001) were associated with the Lianhua Qingwen group; subgroup analysis based on flu-like symptoms showed statistically significant improvements in fever and cough. For COVID-19 pneumonia, improvements in flu-like symptoms (OR = 3.18, 95% CI = 2.36 to 4.29, P < 0.001), shortness of breath (OR = 10.62, 95% CI = 3.71 to 30.40, P < 0.001), curative effect (OR = 2.49, 95% CI = 1.76 to 3.53, P < 0.001), healing period (WMD = -2.06, 95% CI = -3.36 to -0.75, P = 0.002), and conversion of severe cases (OR = 0.46, 95% CI = 0.27 to 0.77, P = 0.003) were associated with the Lianhua Qingwen group; subgroup analysis indicated statistically significant improvements of fever, cough, fatigue, and muscle pain in the Lianhua Qingwen group compared to the conventional drug group. Regarding adverse reactions, no significant difference was detected for common pneumonia (OR = 0.75, 95% CI = 0.54 to 1.05, P = 0.097). CONCLUSIONS Lianhua Qingwen combined with conventional drugs may be a promising therapy for treating common pneumonia and COVID-19 pneumonia.
Collapse
Affiliation(s)
- Caiyun Hu
- Department of Scientific Research, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, 117 Meishan Road, Hefei, Anhui, China
| | - Mingming Liang
- Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, China
| | - Fengfeng Gong
- Fuyang Hospital of Anhui Medical University, No. 99 Huangshan Road, Fuyang, Anhui, China
| | - Bin He
- Department of Scientific Research, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, 117 Meishan Road, Hefei, Anhui, China
| | - Dongdong Zhao
- Infection Department, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui, China
| | - Guoliang Zhang
- Department of Scientific Research, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, 117 Meishan Road, Hefei, Anhui, China
| |
Collapse
|
32
|
Benarba B, Pandiella A. Medicinal Plants as Sources of Active Molecules Against COVID-19. Front Pharmacol 2020; 11:1189. [PMID: 32848790 PMCID: PMC7427466 DOI: 10.3389/fphar.2020.01189] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/22/2020] [Indexed: 01/08/2023] Open
Abstract
The Severe Acute Respiratory Syndrome-related Coronavirus 2 (SARS-CoV-2) or novel coronavirus (COVID-19) infection has been declared world pandemic causing a worrisome number of deaths, especially among vulnerable citizens, in 209 countries around the world. Although several therapeutic molecules are being tested, no effective vaccines or specific treatments have been developed. Since the COVID-19 outbreak, different traditional herbal medicines with promising results have been used alone or in combination with conventional drugs to treat infected patients. Here, we review the recent findings regarding the use of natural products to prevent or treat COVID-19 infection. Furthermore, the mechanisms responsible for this preventive or therapeutic effect are discussed. We conducted literature research using PubMed, Google Scholar, Scopus, and WHO website. Dissertations and theses were not considered. Only the situation reports edited by the WHO were included. The different herbal products (extracts) and purified molecules may exert their anti-SARS-CoV-2 actions by direct inhibition of the virus replication or entry. Interestingly, some products may block the ACE-2 receptor or the serine protease TMPRRS2 required by SARS-CoV-2 to infect human cells. In addition, natural products were shown to inhibit the SARS-CoV-2 life-cycle related proteins such as papain-like or chymotrypsin-like proteases. In conclusion, we suggest that natural products could be used alone or in combination as alternative medicines to treat/prevent COVID-19 infection. Moreover, their structures may offer clues for the development of anti-SARS-CoV-2 drugs.
Collapse
Affiliation(s)
- Bachir Benarba
- Laboratory Research on Biological Systems and Geomatics, Faculty of Nature and Life Sciences, University of Mascara, Mascara, Algeria,*Correspondence: Bachir Benarba,
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-IBSAL-Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|