1
|
Albornoz N, Álvarez-Indo J, de la Peña A, Arias-Muñoz E, Coca A, Segovia-Miranda F, Kerr B, Budini M, Criollo A, García-Robles MA, Morselli E, Soza A, Burgos PV. Targeting the immunoproteasome in hypothalamic neurons as a novel therapeutic strategy for high-fat diet-induced obesity and metabolic dysregulation. J Neuroinflammation 2024; 21:191. [PMID: 39095788 PMCID: PMC11297766 DOI: 10.1186/s12974-024-03154-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/14/2024] [Indexed: 08/04/2024] Open
Abstract
OBJECTIVE Obesity represents a significant global health challenge characterized by chronic low-grade inflammation and metabolic dysregulation. The hypothalamus, a key regulator of energy homeostasis, is particularly susceptible to obesity's deleterious effects. This study investigated the role of the immunoproteasome, a specialized proteasomal complex implicated in inflammation and cellular homeostasis, during metabolic diseases. METHODS The levels of the immunoproteasome β5i subunit were analyzed by immunostaining, western blotting, and proteasome activity assay in mice fed with either a high-fat diet (HFD) or a regular diet (CHOW). We also characterized the impact of autophagy inhibition on the levels of the immunoproteasome β5i subunit and the activation of the AKT pathway. Finally, through confocal microscopy, we analyzed the contribution of β5i subunit inhibition on mitochondrial function by flow cytometry and mitophagy assay. RESULTS Using an HFD-fed obese mouse model, we found increased immunoproteasome levels in hypothalamic POMC neurons. Furthermore, we observed that palmitic acid (PA), a major component of saturated fats found in HFD, increased the levels of the β5i subunit of the immunoproteasome in hypothalamic neuronal cells. Notably, the increase in immunoproteasome expression was associated with decreased autophagy, a critical cellular process in maintaining homeostasis and suppressing inflammation. Functionally, PA disrupted the insulin-glucose axis, leading to reduced AKT phosphorylation and increased intracellular glucose levels in response to insulin due to the upregulation of the immunoproteasome. Mechanistically, we identified that the protein PTEN, a key regulator of insulin signaling, was reduced in an immunoproteasome-dependent manner. To further investigate the potential therapeutic implications of these findings, we used ONX-0914, a specific immunoproteasome inhibitor. We demonstrated that this inhibitor prevents PA-induced insulin-glucose axis imbalance. Given the interplay between mitochondrial dysfunction and metabolic disturbances, we explored the impact of ONX-0914 on mitochondrial function. Notably, ONX-0914 preserved mitochondrial membrane potential and attenuated mitochondrial ROS production in the presence of PA. Moreover, we found that ONX-0914 reduced mitophagy in the presence of PA. CONCLUSIONS Our findings strongly support the pathogenic involvement of the immunoproteasome in hypothalamic neurons in the context of HFD-induced obesity and metabolic disturbances. Targeting the immunoproteasome highlights a promising therapeutic strategy to mitigate the detrimental effects of obesity on the insulin-glucose axis and cellular homeostasis. This study provides valuable insights into the mechanisms driving obesity-related metabolic diseases and offers potential avenues for developing novel therapeutic interventions.
Collapse
Affiliation(s)
- Nicolás Albornoz
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Javiera Álvarez-Indo
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Adely de la Peña
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Eloisa Arias-Muñoz
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Alanis Coca
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Fabián Segovia-Miranda
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Bredford Kerr
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Mauricio Budini
- Laboratory of Molecular and Cellular Pathology, Institute in Dentistry Sciences, Dentistry Faculty, University of Chile, Santiago, Chile
| | - Alfredo Criollo
- Cell and Molecular Biology Laboratory, Institute in Dentistry Sciences, Dentistry Faculty, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - María A García-Robles
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Eugenia Morselli
- Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile
| | - Andrea Soza
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
- Centro Basal Ciencia & Vida, Universidad San Sebastián, Santiago, Chile.
| | - Patricia V Burgos
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
- Centro Basal Ciencia & Vida, Universidad San Sebastián, Santiago, Chile.
| |
Collapse
|
2
|
Nie Y, Ma Z, Zhang B, Sun M, Zhang D, Li HH, Song X. The role of the immunoproteasome in cardiovascular disease. Pharmacol Res 2024; 204:107215. [PMID: 38744399 DOI: 10.1016/j.phrs.2024.107215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
The ubiquitinproteasome system (UPS) is the main mechanism responsible for the intracellular degradation of misfolded or damaged proteins. Under inflammatory conditions, the immunoproteasome, an isoform of the proteasome, can be induced, enhancing the antigen-presenting function of the UPS. Furthermore, the immunoproteasome also serves nonimmune functions, such as maintaining protein homeostasis and regulating signalling pathways, and is involved in the pathophysiological processes of various cardiovascular diseases (CVDs). This review aims to provide a comprehensive summary of the current research on the involvement of the immunoproteasome in cardiovascular diseases, with the ultimate goal of identifying novel strategies for the treatment of these conditions.
Collapse
Affiliation(s)
- Yifei Nie
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Zhao Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Baoen Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Meichen Sun
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Dongfeng Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Hui-Hua Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| |
Collapse
|
3
|
Li Y, Nan G, Hou X, Yan Y, Yang Y, Yang Y, Li K, Xiao Z. Non-peptidic immunoproteasome β5i-selective inhibitor as potential treatment for idiopathic pulmonary fibrosis: Virtual screening, hit evolution and lead identification. Eur J Med Chem 2023; 261:115856. [PMID: 37826934 DOI: 10.1016/j.ejmech.2023.115856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
The immunoproteasome has emerged as a potential therapeutic target for idiopathic pulmonary fibrosis (IPF). We report herein our efforts to discover novel non-peptidic immunoproteasome inhibitors as potential treatment for IPF. A structure-based virtual screening was initially performed and the hit compound VS-7 with an IC50 of 9.437 μM against β5i was identified. Hit evolution based on the interaction mode of VS-7 proceeded, and a potent β5i inhibitor 54 (IC50 = 8.463 nM) with favorable subunit-selective profiles was obtained. Compound 54 also imposed significant effects on the release of TNF-α and IL-6, the transcriptional activity of NF-κB, as well as TGF-β1 induced fibroblast proliferation, activation and collagen synthesis. Notably, when administered at 30 mg/kg in a bleomycin-induced IPF mouse model, compound 54 showed anti-fibrotic effects comparable to the clinical drug nintedanib. The results suggest that selective inhibition of immunoproteasome could be an effective approach to treat IPF.
Collapse
Affiliation(s)
- Yunxuan Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Guanglei Nan
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xianxin Hou
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yechao Yan
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yajun Yang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ying Yang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ke Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Zhiyan Xiao
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
4
|
Liu X, Du H, Pan Y, Li X. New insights into the effect of VMP1 on the treatment of pressure overload-induced pathological cardiac hypertrophy: Involving SERCA-regulated autophagic flux. Microvasc Res 2023; 150:104572. [PMID: 37353069 DOI: 10.1016/j.mvr.2023.104572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/08/2023] [Accepted: 06/17/2023] [Indexed: 06/25/2023]
Abstract
Pathological cardiac hypertrophy is an adaptive reaction in response to pressure or volume overload. Autophagy is critical for damage caused by pathological cardiac hypertrophy. Vacuole membrane protein 1 (VMP1) is an endoplasmic reticulum (ER) transmembrane protein that is effective in activating autophagy. However, the role of VMP1 in pathological cardiac hypertrophy and its underlying mechanisms remain elusive. This study was designed to explore the potential mechanisms of VMP1 on pressure overload-induced pathological cardiac hypertrophy. In this work, abdominal aorta constriction (AAC) surgery was used to induce pathological cardiac hypertrophy in male C57BL/6 mice. H9C2 cardiomyocytes were treated with phenylephrine stimulation (PE) to induce the hypertrophic response. The in vivo results revealed that mice with AAC surgery caused pathological cardiac hypertrophy as evidenced by improved cardiac function according to multiple echocardiographic parameters. Moreover, elevated VMP1 expression was also observed in mice after AAC surgery. VMP1 knockdown aggravated changes in cardiac structure, cardiac dysfunction, and fibrosis. Meanwhile, VMP1 knockdown suppressed autophagy and endoplasmic reticulum calcium ATPase (SERCA) activity in heart tissues. H9C2 cardiomyocytes with VMP1 overexpression were used to investigate the specific mechanism of VMP1 in pathological cardiac hypertrophy, and VMP1 overexpression increased autophagic flux by upregulating SERCA activity. In conclusion, these findings revealed that VMP1 protected against pressure overload-induced pathological cardiac hypertrophy by inducing SERCA-regulated autophagic flux. Our results provide valuable insights regarding the pathophysiology of pathological cardiac hypertrophy and clues to a novel target for the treatment of pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Xue Liu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Hongjiao Du
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yilong Pan
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xiaodong Li
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
5
|
Han X, Zhang YL, Lin QY, Li HH, Guo SB. ATGL deficiency aggravates pressure overload-triggered myocardial hypertrophic remodeling associated with the proteasome-PTEN-mTOR-autophagy pathway. Cell Biol Toxicol 2023; 39:2113-2131. [PMID: 35218467 PMCID: PMC10547847 DOI: 10.1007/s10565-022-09699-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 01/26/2022] [Indexed: 11/26/2022]
Abstract
Persistent myocardial hypertrophy frequently leads to heart failure (HF). Intramyocardial triacylglycerol (TAG) accumulation is closely related with cardiac remodeling and abnormal contractile function. Adipose triglyceride lipase (ATGL), a key enzyme in TAG metabolism, regulates cardiac function. However, its associated molecular pathways have not been fully defined. Here, cardiac hypertrophy and HF were induced in wild-type (WT) or ATGL knockout (KO) mice through transverse aortic constriction (TAC) for up to 4 weeks. TAC in WT mice significantly reduced cardiac function and autophagy while enhancing left ventricular hypertrophy, interstitial fibrosis, inflammatory response, superoxide generation, and cardiomyocyte apoptosis, accompanied with upregulation of the proteasome activity, reduction of PTEN level and activation of AKT-mTOR signaling, and these effects were further aggravated in ATGL KO mice. Interestingly, ATGL KO-mediated cardiac dysfunction and remodeling were markedly reversed by proteasome inhibitor (epoxomicin) or autophagic activator (rapamycin), but accelerated by PTEN inhibitor (VO-OHpic) or autophagy inhibitor 3-MA. Mechanistically, ATGL KO upregulated proteasome expression and activity, which in turn mediates PTEN degradation leading to activation of AKT-mTOR signaling and inhibition of autophagy, thereby enhancing hypertrophic remodeling and HF. In conclusion, ATGL KO contributes to TAC-induced cardiac dysfunction and adverse remodeling probably associated with the proteasome-PTEN-mTOR-autophagy pathway. Therefore, modulation of this pathway may have a therapeutic effect potential for hypertrophic heart disease. TAC-induced downregulation of ATGL results in increased proteasome (β1i/β2i/β5i) activity, which in turn promotes degradation of PTEN and activation of AKT-mTOR signaling and then inhibits autophagy and ATP production, thereby leading to cardiac hypertrophic remodeling and dysfunction. Conversely, blocking proteasome activity or activating autophagy attenuates these effects.
Collapse
Affiliation(s)
- Xiao Han
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yun-Long Zhang
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Qiu-Yue Lin
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Hui-Hua Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Shu-Bin Guo
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
6
|
Zhang X, Yuan S, Liu J, Tang Y, Wang Y, Zhan J, Fan J, Nie X, Zhao Y, Wen Z, Li H, Chen C, Wang DW. Overexpression of cytosolic long noncoding RNA cytb protects against pressure-overload-induced heart failure via sponging microRNA-103-3p. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:1127-1145. [PMID: 35251768 PMCID: PMC8881631 DOI: 10.1016/j.omtn.2022.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 02/06/2022] [Indexed: 12/13/2022]
Abstract
Long noncoding RNAs (lncRNAs) play crucial roles in cardiovascular diseases. To date, only limited studies have reported the role of mitochondria-derived lncRNAs in heart failure (HF). In the current study, recombinant adeno-associated virus 9 was used to manipulate lncRNA cytb (lnccytb) expression in vivo. Fluorescence in situ hybridization (FISH) assay was used to determine the location of lnccytb, while microRNA (miRNA) sequencing and bioinformatics analyses were applied to identify the downstream targets. The competitive endogenous RNA (ceRNA) function of lnccytb was evaluated by biotin-coupled miRNA pull-down assays and luciferase reporter assays. Results showed that lnccytb expression was decreased in the heart of mice with transverse aortic constriction (TAC), as well as in the heart and plasma of patients with HF. FISH assay and absolute RNA quantification via real-time reverse transcription PCR suggested that the reduction of the lnccytb transcripts mainly occurred in the cytosol. Upregulation of cytosolic lnccytb attenuated cardiac dysfunction in TAC mice. Moreover, overexpression of cytosolic lnccytb in cardiomyocytes alleviated isoprenaline-induced reactive oxidative species (ROS) production and hypertrophy. Mechanistically, lnccytb acted as a ceRNA via sponging miR-103-3p, ultimately mitigating the suppression of PTEN by miR-103-3p. In summary, we demonstrated that the overexpression of cytosolic lnccytb could ameliorate HF.
Collapse
Affiliation(s)
- Xudong Zhang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, China
| | - Shuai Yuan
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, China
| | - Jingbo Liu
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, China
| | - Yuyan Tang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, China
| | - Yan Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, China
| | - Jiabing Zhan
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, China
| | - Jiahui Fan
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, China
| | - Xiang Nie
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, China
| | - Yanru Zhao
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, China
| | - Zheng Wen
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, China
| | - Huaping Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, China
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, China
- Corresponding author Chen Chen, Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, China.
| | - Dao Wen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, China
- Corresponding author Dao Wen Wang, Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, China.
| |
Collapse
|
7
|
Angiotensin II Induces Cardiac Edema and Hypertrophic Remodeling through Lymphatic-Dependent Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5044046. [PMID: 35222798 PMCID: PMC8881141 DOI: 10.1155/2022/5044046] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/17/2021] [Accepted: 01/25/2022] [Indexed: 12/14/2022]
Abstract
Cardiac lymphatic vessel growth (lymphangiogenesis) and integrity play an essential role in maintaining tissue fluid balance. Inhibition of lymphatic lymphangiogenesis is involved in cardiac edema and cardiac remodeling after ischemic injury or pressure overload. However, whether lymphatic vessel integrity is disrupted during angiotensin II- (Ang II-) induced cardiac remodeling remains to be investigated. In this study, cardiac remodeling models were established by Ang II (1000 ng/kg/min) in VEGFR-3 knockdown (Lyve-1Cre VEGFR-3f/−) and wild-type (VEGFR-3f/f) littermates. Our results indicated that Ang II infusion not only induced cardiac lymphangiogenesis and upregulation of VEGF-C and VEGFR-3 expression in the time-dependent manner but also enhanced proteasome activity, MKP5 and VE-cadherin degradation, p38 MAPK activation, and lymphatic vessel hyperpermeability. Moreover, VEGFR-3 knockdown significantly inhibited cardiac lymphangiogenesis in mice, resulting in exacerbation of tissue edema, hypertrophy, fibrosis superoxide production, inflammation, and heart failure (HF). Conversely, administration of epoxomicin (a selective proteasome inhibitor) markedly mitigated Ang II-induced cardiac edema, remodeling, and dysfunction; upregulated MKP5 and VE-cadherin expression; inactivated p38 MAPK; and reduced lymphatic vessel hyperpermeability in WT mice, indicating that inhibition of proteasome activity is required to maintain lymphatic endothelial cell (LEC) integrity. Our results show that both cardiac lymphangiogenesis and lymphatic barrier hyperpermeability are implicated in Ang II-induced adaptive hypertrophic remodeling and dysfunction. Proteasome-mediated hyperpermeability of LEC junctions plays a predominant role in the development of cardiac remodeling. Selective stimulation of lymphangiogenesis or inhibition of proteasome activity may be a potential therapeutic option for treating hypertension-induced cardiac remodeling.
Collapse
|
8
|
Blood Immunoproteasome Activity Is Regulated by Sex, Age and in Chronic Inflammatory Diseases: A First Population-Based Study. Cells 2021; 10:cells10123336. [PMID: 34943847 PMCID: PMC8699521 DOI: 10.3390/cells10123336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 11/30/2022] Open
Abstract
Dysfunction of the immunoproteasome has been implicated in cardiovascular and pulmonary diseases. Its potential as a biomarker for predicting disease stages, however, has not been investigated so far and population-based analyses on the impact of sex and age are missing. We here analyzed the activity of all six catalytic sites of the proteasome in isolated peripheral blood mononuclear cells obtained from 873 study participants of the KORA FF4 study using activity-based probes. The activity of the immuno- and standard proteasome correlated clearly with elevated leukocyte counts of study participants. Unexpectedly, we observed a strong sex dimorphism for proteasome activity with significantly lower immunoproteasome activity in women. In aging, almost all catalytic activities of the proteasome were activated in aged women while maintained upon aging in men. We also noted distinct sex-related activation patterns of standard and immunoproteasome active sites in chronic inflammatory diseases such as diabetes, cardiovascular diseases, asthma, or chronic obstructive pulmonary disease as determined by multiple linear regression modeling. Our data thus provides a conceptual framework for future analysis of immunoproteasome function as a bio-marker for chronic inflammatory disease development and progression.
Collapse
|
9
|
Zhou Y, Gou Z, Huang L, Fan Y, Zhang F, Lu L. Inhibition of immunoproteasome subunit low molecular mass polypeptide 7 with ONX-0914 improves hypoxic-ischemic brain damage via PI3K/Akt signaling. Neuroreport 2021; 32:1206-1215. [PMID: 34406990 PMCID: PMC8389355 DOI: 10.1097/wnr.0000000000001715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/17/2021] [Indexed: 11/26/2022]
Abstract
The immunoproteasome subunit low molecular mass polypeptide 7 (LMP7) leads to brain injuries, such as autoimmune neuritis and ischemic stroke, by activating inflammation. However, the roles and mechanisms of LMP7 in hypoxic-ischemic brain damage (HIBD) remain unclear. This study explored these issues in a rat model of HIBD. Pathology was evaluated using hematoxylin-eosin staining. LMP7 expression was detected using western blot analysis, reverse transcription-quantitative PCR (RT-qPCR), and immunohistochemical staining. The presence of proinflammatory cytokines, including tumor necrosis factor-a, interleukin-6, and interleukin-1β, was tested using ELISA and RT-qPCR. Behavioral performance was evaluated using a short-term neurological function score and the Morris water maze test. Compared to those in the Sham group, the HIBD group exhibited obvious upregulated LMP7 and pro-inflammatory cytokine levels. HIBD rats exhibited severe pathological and behavioral damage. LMP7 inhibition with ONX-0914 reduced proinflammatory cytokine expression, attenuated pathological damage, and enhanced behavioral performance of rats with HIBD. Inhibition of phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling with LY29400 increased LMP7 expression and abolished the protective effects of ONX-0914 in HIBD rats. Our findings indicate that LMP7 aggravates brain injury by triggering inflammatory responses in HIBD rats. LMP7 inhibition with ONX-0914 exerts protective effects on HIBD rats, possibly via PI3K/Akt signaling.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Pediatrics, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Zhixian Gou
- Department of Pediatrics, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Lin Huang
- Department of Pediatrics, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Yang Fan
- Department of Pediatrics, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Feng Zhang
- Department of Pediatrics, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Liqun Lu
- Department of Pediatrics, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Evangelisti A, Butler H, del Monte F. The Heart of the Alzheimer's: A Mindful View of Heart Disease. Front Physiol 2021; 11:625974. [PMID: 33584340 PMCID: PMC7873884 DOI: 10.3389/fphys.2020.625974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose of Review: This review summarizes the current evidence for the involvement of proteotoxicity and protein quality control systems defects in diseases of the central nervous and cardiovascular systems. Specifically, it presents the commonalities between the pathophysiology of protein misfolding diseases in the heart and the brain. Recent Findings: The involvement of protein homeostasis dysfunction has been for long time investigated and accepted as one of the leading pathophysiological causes of neurodegenerative diseases. In cardiovascular diseases instead the mechanistic focus had been on the primary role of Ca2+ dishomeostasis, myofilament dysfunction as well as extracellular fibrosis, whereas no attention was given to misfolding of proteins as a pathogenetic mechanism. Instead, in the recent years, several contributions have shown protein aggregates in failing hearts similar to the ones found in the brain and increasing evidence have highlighted the crucial importance that proteotoxicity exerts via pre-amyloidogenic species in cardiovascular diseases as well as the prominent role of the cellular response to misfolded protein accumulation. As a result, proteotoxicity, unfolding protein response (UPR), and ubiquitin-proteasome system (UPS) have recently been investigated as potential key pathogenic pathways and therapeutic targets for heart disease. Summary: Overall, the current knowledge summarized in this review describes how the misfolding process in the brain parallels in the heart. Understanding the folding and unfolding mechanisms involved early through studies in the heart will provide new knowledge for neurodegenerative proteinopathies and may prepare the stage for targeted and personalized interventions.
Collapse
Affiliation(s)
| | - Helen Butler
- School of Medicine, Department of Molecular and Cellular Biology and Pathobiology, Medical University of South Carolina, Charleston, SC, United States
| | - Federica del Monte
- Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
11
|
Liao J, An X, Yang X, Lin QY, Liu S, Xie Y, Bai J, Xia YL, Li HH. Deficiency of LMP10 Attenuates Diet-Induced Atherosclerosis by Inhibiting Macrophage Polarization and Inflammation in Apolipoprotein E Deficient Mice. Front Cell Dev Biol 2020; 8:592048. [PMID: 33195259 PMCID: PMC7644912 DOI: 10.3389/fcell.2020.592048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/05/2020] [Indexed: 12/22/2022] Open
Abstract
Macrophage polarization and inflammation are key factors for the onset and progression of atherosclerosis. The immunoproteasome complex consists of three inducible catalytic subunits (LMP2, LMP10, and LMP7) that play a critical role in the regulation of these risk factors. We recently demonstrated that the LMP7 subunit promotes diet-induced atherosclerosis via inhibition of MERTK-mediated efferocytosis. Here, we explored the role of another subunit of LMP10 in the disease process, using ApoE knockout (ko) mice fed on an atherogenic diet (ATD) containing 0.5% cholesterol and 20% fat for 8 weeks as an in vivo atherosclerosis model. We observed that ATD significantly upregulated LMP10 expression in aortic lesions, which were primarily co-localized with plaque macrophages. Conversely, deletion of LMP10 markedly attenuated atherosclerotic lesion area, CD68+ macrophage accumulation, and necrotic core expansion in the plaques, but did not change plasma metabolic parameters, lesional SM22α+ smooth muscle cells, or collagen content. Myeloid-specific deletion of LMP10 by bone marrow transplantation resulted in similar phenotypes. Furthermore, deletion of LMP10 remarkably reduced aortic macrophage infiltration and increased M2/M1 ratio, accompanied by decreased expression of pro-inflammatory M1 cytokines (MCP-1, IL-1, and IL-6) and increased expression of anti-inflammatory M2 cytokines (IL-4 and IL-10). In addition, we confirmed in cultured macrophages that LMP10 deletion blunted macrophage polarization and inflammation during ox-LDL-induced foam cell formation in vitro, which was associated with decreased IκBα degradation and NF-κB activation. Our results show that the immunoproteasome subunit LMP10 promoted diet-induced atherosclerosis in ApoE ko mice possibly through regulation of NF-κB-mediated macrophage polarization and inflammation. Targeting LMP10 may represent a new therapeutic approach for atherosclerosis.
Collapse
Affiliation(s)
- Jiawei Liao
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiangbo An
- Department of Interventional Therapy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaolei Yang
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qiu-Yue Lin
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shuang Liu
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, Dalian, China
| | - Yunpeng Xie
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jie Bai
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, Dalian, China
| | - Yun-Long Xia
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hui-Hua Li
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|