1
|
Huang J, Zhong Y, Cheng N, Zhang Z, Huang L, Song L, Cheng S, Zhao H, Liu D. Sishen pills inhibit inflammatory dendritic cell differentiation via miR-505-3p mediated E-cadherin downregulation in ulcerative colitis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156035. [PMID: 39342779 DOI: 10.1016/j.phymed.2024.156035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/28/2024] [Accepted: 09/07/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) is an autoimmune disease that is highly susceptible to recurrence, which is still a lack of effective drugs with minor side effects in clinic. Intervention of inflammatory differentiation of dendritic cells (DCs) might be an effective strategy to treat UC. Sishen Pills (SSP) is a classic Chinese herbal formula which has been demonstrated the protective effect of UC, but the mechanism remains unclear. PURPOSE To elucidate the protective effects of SSP against UC in mice and reveal its regulatory mechanism of DCs and the key active ingredients for the UC treatment based on transcriptomics, network pharmacology and experiments validation in vivo and vitro. METHOD The key active ingredients of SSP were detected and screened integrating LC-MS/MS and network pharmacology. A mouse UC model was induced with 3% sodium dextran sulfate and treated with SSP for 14 days to evaluate the efficacy. ELISA was used to detect the levels of IL-6, IL-1β and TNF-α in the colon; flow cytometry was used to detect the expression levels of DCs and their subpopulations; whole transcriptomic sequencing of differential RNAs in the colon and RT-PCR to detect key miRNAs to verify the sequencing results. Mouse bone marrow-derived dendritic cells (BMDCs) were isolated, an inflammatory model was constructed using 100 ng/ml LPS, and the effects of SSP on DC proliferation and apoptosis and their surface co-stimulatory molecule expression were examined; IL-6, IL-1β, TNF-α levels were measured by ELISA; RT-PCR and WB were performed to detect miR-505-3p, CDH1, E-cadherin expression. BMDCs with low expression of miR-505-3p were constructed by lentiviral transfection for further validation. The potential key ingredient was re-validated in vivo and vitro experiment. RESULTS Animal experiments showed that SSP alleviated DSS-induced UC symptoms and colonic pathological injury in mice, and inhibited IL-6, IL-1β, TNF-α secretion and inflammatory DC proliferation and activation maturation. Network pharmacology predicted that evodiamine, isobavachalcone, curcumin, and engenol may play a key role in SSP. RNA sequencing revealed that miR-505-3p, as the differential miRNA, shared a large number of transcription factors with E-cadherin, and was involved in inflammatory differentiation regulation. In vivo experiments confirmed that SSP accelerated apoptosis, slowed down proliferation, inhibited inflammatory differentiation and IL-6, IL-1β, and TNF-α secretion in BMDCs, and decreased miR-505-3p, CDH1, and E-cadherin levels. After knocking down miR-505-3p, SSP could not regulate the inflammatory differentiation and IL-6, IL-1β, TNF-α level in BMDCs. Additionally, evodiamine was found and verified to be the key active ingredient of SSP in preventing the inflammatory differatiation of DCs. CONCLUSION SSP prevented the inflammatory differentiation of DCs by downregulating the expression of miR-505-3p, in which Evodiamine may played a key role.
Collapse
Affiliation(s)
- Jiaqi Huang
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Youbao Zhong
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Nian Cheng
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Zheyan Zhang
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Li Huang
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Lizhao Song
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Shaomin Cheng
- Formula-Pattern Research Center of Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China.
| | - Haimei Zhao
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China.
| | - Duanyong Liu
- Formula-Pattern Research Center of Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; School of Nursing, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China.
| |
Collapse
|
2
|
Yuan Y, Hu H, Sun Z, Wang W, Wang Z, Zheng M, Xing Y, Zhang W, Wang M, Lu X, Li Y, Liang C, Lin Z, Xie C, Li J, Mao T. Combining Metagenomics, Network Pharmacology and RNA-Seq Strategies to Reveal the Therapeutic Effects and Mechanisms of Qingchang Wenzhong Decoction on Inflammatory Bowel Disease in Mice. Drug Des Devel Ther 2024; 18:4273-4289. [PMID: 39347539 PMCID: PMC11438451 DOI: 10.2147/dddt.s473688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
Background Inflammatory bowel disease (IBD) is a chronic and recurrent inflammatory disease that lacks effective treatments. Qingchang Wenzhong Decoction (QCWZD) is a clinically effective herbal prescription that has been proven to attenuate intestinal inflammation in IBD. However, its molecular mechanism of action has not been clearly elucidated. Purpose We aimed to probe the mechanism of QCWZD for the treatment of IBD. Methods The dextran sulfate sodium (DSS)-induced mouse model of IBD was used to identify the molecular targets involved in the mechanism of action of QCWZD. Metagenomics sequencing was utilized to analyze the differences in gut microbiota and the functional consequences of these changes. Network pharmacology combined with RNA sequencing (RNA-seq) were employed to predict the molecular targets and mechanism of action of QCWZD, and were validated through in vivo experiments. Results Our results demonstrated that QCWZD treatment alleviated intestinal inflammation and accelerated intestinal mucosal healing that involved restoration of microbial homeostasis. This hypothesis was supported by the results of bacterial metagenomics sequencing that showed attenuation of gut dysbiosis by QCWZD treatment, especially the depletion of the pathogenic bacterial genus Bacteroides, while increasing the beneficial microorganism Akkermansia muciniphila that led to altered bacterial gene functions, such as metabolic regulation. Network pharmacology and RNA-seq analyses showed that Th17 cell differentiation plays an important role in QCWZD-based treatment of IBD. This was confirmed by in vivo experiments showing a marked decrease in the percentage of CD3+CD4+IL-17+ (Th17) cells. Furthermore, our results also showed that the key factors associated with Th17 cell differentiation (IL-17, NF-κB, TNF-α and IL-6) in the colon were significantly reduced in QCWZD-treated colitis mice. Conclusion QCWZD exerted beneficial effects in the treatment of IBD by modulating microbial homeostasis while inhibiting Th17 cell differentiation and its associated pathways, providing a novel and promising therapeutic strategy for the treatment of IBD.
Collapse
Affiliation(s)
- Yali Yuan
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
- Hebei North University, Zhangjiakou, Hebei, People’s Republic of China
| | - Hairong Hu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Zhongmei Sun
- Tianjin Nankai Hospital, Tianjin, People’s Republic of China
| | - Wenting Wang
- Beitaipingzhuang Community Health Service Center, Beijing, People’s Republic of China
| | - Zhibin Wang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | | | - Yunqi Xing
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Wenji Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Muyuan Wang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Xinyu Lu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yitong Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Chengtao Liang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Zhengdao Lin
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Chune Xie
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, People’s Republic of China
| | - Junxiang Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Tangyou Mao
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Xie S, Fang L, Deng N, Shen J, Tan Z, Peng X. Targeting the Gut-Kidney Axis in Diarrhea with Kidney-Yang Deficiency Syndrome: The Role of Sishen Pills in Regulating TMAO-Mediated Inflammatory Response. Med Sci Monit 2024; 30:e944185. [PMID: 38898640 PMCID: PMC11305074 DOI: 10.12659/msm.944185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/03/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Sishen Pills (SSPs) are commonly used to treat diarrhea with kidney-yang deficiency syndrome. Trimethylamine-N-oxide (TMAO) is produced through the metabolism of gut microbiota and can participate in diarrhea in kidney-yang deficiency syndrome by mediating the "gut-kidney axis" to transmit inflammatory factors. This study combined network pharmacology with animal experiments to explore whether SSPs can treat diarrhea with kidney-yang deficiency syndrome by affecting the interaction between TMAO and gut microbiota. MATERIAL AND METHODS A mouse model of diarrhea with kidney-yang deficiency syndrome was constructed by using adenine and Folium sennae decoction, and SSP decoction was used for treatment. This study utilized network pharmacology to predict the potential mechanisms of SSPs in treating diarrhea with kidney-yang deficiency syndrome. 16S rRNA high-throughput sequencing was used to analyze gut mucosal microbial characteristics. ELISA was used to measure TMAO, NOD-like receptor thermal protein domain associated protein 3 (NLRP3), interleukin-1ß (IL-1ß), and transforming growth factor-ß1 (TGF-ß1) levels. We performed Masson and immunohistochemical (Occludin, ZO-1) staining of kidney and small intestinal tissues. The fluorescein diacetate (FDA) hydrolysis spectrophotometric method was used to assess the microbial activity in contents of the small intestine. RESULTS Network pharmacology analysis revealed that SSPs can modulate 108 target points involved in the development of diarrhea, including IL-1ß and TNF. The experimental results demonstrated that SSP decoction significantly improved the general behavioral profiles of the mice, and also reduced TMAO, NLRP3, IL-1ß, and TGF-ß1 levels (P<0.05). Correlation analysis revealed significant positive correlations between TMAO concentrations and NLRP3, IL-1ß and TGF-ß1 levels (P<0.05). Pathological analysis revealed improvements in renal fibrosis and increased expression of the Occludin and ZO-1 proteins in intestinal tissue. In the SSP group, there was a significant increase in microbial activity (P<0.001). According to the sequencing results, the characteristic bacteria of the SSP and NR groups included Succinatimonas hippei, uncultured Solirubrobacter sp., and Clostridium tyrobutyricum. Furthermore, TMAO, NLRP3, IL-1ß, and TGF-ß1 were significantly positively correlated (P<0.05) with Succinatimonas hippei and Clostridium tyrobutyricum. By modulating Firmicutes, Succinatimonas hippei, and Clostridium tyrobutyricum, SSP decoction lowers TMAO levels to alleviate diarrhea with kidney-yang deficiency syndrome. CONCLUSIONS TMAO likely plays a significant role in the "gut-kidney axis" of diarrhea with kidney-yang deficiency syndrome. By adjusting gut microbiota to reduce the inflammatory response that is transmitted through the "gut-kidney axis" as a result of elevated TMAO levels, SSP decoction can alleviate diarrhea with kidney-yang deficiency syndrome.
Collapse
Affiliation(s)
- Shiqin Xie
- Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Leyao Fang
- Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Na Deng
- Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Junxi Shen
- Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Zhoujin Tan
- Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Xinxin Peng
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| |
Collapse
|
4
|
Zhang B, Cheng Y, Jian Q, Xiang S, Xu Q, Wang C, Yang C, Lin J, Zheng C. Sishen Pill and its active phytochemicals in treating inflammatory bowel disease and colon cancer: an overview. Front Pharmacol 2024; 15:1375585. [PMID: 38650627 PMCID: PMC11033398 DOI: 10.3389/fphar.2024.1375585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024] Open
Abstract
The incidence of inflammatory bowel disease (IBD) and the associated risk of colon cancer are increasing globally. Traditional Chinese medicine (TCM) treatment has unique advantages. The Sishen Pill, a common Chinese patented drug used to treat abdominal pain and diarrhea, consists mainly of Psoraleae Fructus, Myristicae Semen, Euodiae Fructus, and Schisandra Chinensis. Modern research has confirmed that Sishen Pill and its active secondary metabolites, such as psoralen, myristicin, evodiamine, and schisandrin, can improve intestinal inflammation and exert antitumor pharmacological effects. Common mechanisms in treating IBD and colon cancer mainly include regulating inflammation-related signaling pathways such as nuclear factor-kappa B, mitogen-activated protein kinase, phosphatidylinositol 3-kinase, NOD-like receptor heat protein domain-related protein 3, and wingless-type MMTV integration site family; NF-E2-related factor 2 and hypoxia-inducible factor 1α to inhibit oxidative stress; mitochondrial autophagy and endoplasmic reticulum stress; intestinal immune cell differentiation and function through the Janus kinase/signal transducer and activator of transcription pathway; and improving the gut microbiota and intestinal barrier. Overall, existing evidence suggests the potential of the Sishen pill to improve IBD and suppress inflammation-to-cancer transformation. However, large-scale randomized controlled clinical studies and research on the safety of these clinical applications are urgently required.
Collapse
Affiliation(s)
- Boxun Zhang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yingying Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qin Jian
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sirui Xiang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qi Xu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuchu Wang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan Yang
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Provincial Engineering Research Center of Innovative Re-development of Famous Classical Formulas, Tianfu TCM Innovation Harbour, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Yuan Y, Wang F, Liu X, Shuai B, Fan H. The Role of AMPK Signaling in Ulcerative Colitis. Drug Des Devel Ther 2023; 17:3855-3875. [PMID: 38170149 PMCID: PMC10759424 DOI: 10.2147/dddt.s442154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic non-specific inflammatory bowel disease characterized by inflammation and ulcer formation of the intestinal mucosa. Due to its high recurrence rate, prolonged course, limited curative options, and significant impact on patients' quality of life, along with a notable potential for malignant transformation, UC is designated as a refractory global health challenge by the World Health Organization (WHO). The elucidation of the pathogenesis and therapeutic strategies for UC requires further in-depth investigation. AMP-activated protein kinase (AMPK) serves as a central regulator of cellular energy metabolic homeostasis. Emerging evidence indicates that interventions involving traditional Chinese medicine (TCM) components, as well as other pharmacological measures, exert beneficial effects on the intestinal mucosal inflammation and epithelial barrier dysfunction in UC by modulating AMPK signaling, thereby influencing biological processes such as cellular autophagy, apoptosis, inflammatory responses, macrophage polarization, and NLRP3 inflammasome-mediated pyroptosis. The role of AMPK in UC is of significant importance. This manuscript provides a comprehensive overview of the mechanisms through which AMPK is involved in UC, as well as a compilation of pharmacological agents capable of activating the AMPK signaling pathway within the context of UC. The primary objective is to facilitate a deeper comprehension of the pivotal role of AMPK in UC among researchers and clinical practitioners, thereby advancing the identification of novel therapeutic targets for interventions in UC.
Collapse
Affiliation(s)
- Yuyi Yuan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Fang Wang
- Department of Rehabilitation Medicine, Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Jingshan, Hubei, 431800, People’s Republic of China
| | - Xingxing Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Bo Shuai
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| |
Collapse
|
6
|
Abou Zaid ES, Mansour SZ, El-Sonbaty SM, Moawed FSM, Kandil EI, Haroun RAH. Boswellic acid coated zinc nanoparticles attenuate NF-κB-mediated inflammation in DSS-induced ulcerative colitis in rats. Int J Immunopathol Pharmacol 2023; 37:3946320221150720. [PMID: 36600460 PMCID: PMC9830081 DOI: 10.1177/03946320221150720] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Ulcerative colitis (UC) is a chronic non-specific inflammatory bowel disease, and until now therapeutic agents for UC still cannot exert satisfied effects. Therefore, this study aimed to investigate the ameliorative effect of boswellic acid coated zinc nanoparticles (BAs-ZnNPs) on dextran sodium sulphate (DSS) induced-UC in rats. METHODS Rats were divided into five groups; control, BAs-ZnNPs, DSS, DSS+BAs, and DSS + BAs-ZnNPs. The activity of alkaline phosphatase (ALP) was determined colorimetrically, while the concentration of IgM, IgG, TNF-α, IL-1β, and IL-8 were measured by ELISA. Levels of gene expression of NF-κB and COX-2 genes were evaluated by RT-qPCR, while the expression of protein levels of PI3K and STAT-3 were done by western blotting. Finally, histopathological examination of colon tissues of different groups of rats was done. RESULTS The depicted ball-like structure of the BAs-ZnNPs in the TEM images ranging in size from 50 to 100 nm in diameter while their formation was confirmed by UV-visible spectroscopy with a sharp peak of maximum absorbance at 266 nm. Our results revealed that BAs-ZnNPs exerted an anti-inflammatory effect in the experimental model of colitis, demonstrated histologically and biochemically as shown by the improvement of ALP, IgM, IgG, and the gene expression levels of NF-κB and COX-2. Also, this beneficial effect was associated with the reduction in the expression of TNF-α, IL-1β, IL-8, PI3K, and STAT-3. Thus, this effect improves the altered immune response associated with the colonic inflammation. CONCLUSION BAs-ZnNPs can be proposed as a therapeutic candidate to attenuate UC. The potential underlying mechanism includes suppression of ALP, IgM, IgG, IL-1β, and IL-8 levels via regulation of NF-κB and COX-2 gene expression and STAT-3 and PI3K protein expression in a UC rat model.
Collapse
Affiliation(s)
- Eman S Abou Zaid
- Biochemistry Department, Faculty of
Science, Ain Shams
University, Cairo, Egypt
| | - Somya Z Mansour
- Radiation Biology Department,
National
Centre for Radiation Research and Technology, Atomic Energy
Authority, Cairo, Egypt
| | - Sawsan M El-Sonbaty
- Radiation Microbiology Department,
National
Centre for Radiation Research and Technology, Atomic Energy
Authority, Cairo, Egypt
| | - Fatma SM Moawed
- Health Radiation Research
Department, National
Centre for Radiation Research and Technology, Atomic Energy
Authority, Cairo, Egypt
| | - Eman I Kandil
- Biochemistry Department, Faculty of
Science, Ain Shams
University, Cairo, Egypt
| | - Riham Abdel-Hamid Haroun
- Biochemistry Department, Faculty of
Science, Ain Shams
University, Cairo, Egypt,Riham Abdel-Hamid Haroun, Faculty of
Science, Ain Shams University, El-Khalyfa El-Mamoun Street Abbasya, Cairo 11566,
Egypt.
| |
Collapse
|
7
|
Ge W, Zhou BG, Zhong YB, Liu SQ, Huang JQ, Yuan WY, Xie CY, Liu DY, Wang HY, Zuo ZY. Sishen Pill Ameliorates Dextran Sulfate Sodium (DSS)-Induced Colitis with Spleen-Kidney Yang Deficiency Syndromes: Role of Gut Microbiota, Fecal Metabolites, Inflammatory Dendritic Cells, and TLR4/NF- κB Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6132289. [PMID: 36310616 PMCID: PMC9605852 DOI: 10.1155/2022/6132289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022]
Abstract
Sishen pill (SSP) is an old Chinese medicine used to treat colitis with spleen-kidney-yang deficiency (SKYD) syndromes. However, its exact mechanism of action has not yet been fully elucidated. The aim of this study was to evaluate the effects and potential mechanisms of SSP on colitis with SKYD syndromes in mice. Colitis with SKYD syndromes was induced by rhubarb, hydrocortisone, and dextran sulfate sodium (DSS), and treatment was provided with SSP. Flow cytometry was performed to examine the inflammatory dendritic cell (infDC) regulations of SSP. The changes in the gut microbiota (GM) and fecal metabolites post-SSP treatment were investigated using the combination of 16S rRNA sequencing and untargeted metabolomics. Additionally, we also examined whether SSPs could regulate the infDCs by modifying TLR4/NF-κB signaling pathways. Compared with the DSS group, the disease activity index, colonic weight, index of colonic weight, and colonic injury scores, as well as the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-12p70 decreased significantly in the DSS + SSP group, while free triiodothyronine (FT3), free tetraiodothyronine (FT4), testosterone (TESTO), body weight change, colonic length, and the levels of IL-10 increased. Also, SSP decreased the amounts of CD103+CD11c+iNOS+, CD103+CD11c+TNF-α +, CD11c+CD103+CD324+, CD103+CD11c+MHC-II+, and CD103+CD11c+CD115+. Interestingly, 16S rRNA sequencing and untargeted metabolomics showed that SSP treatment restored the dysbiosis of GM and improved the dysfunction in fecal metabolism in colitis mice with SKYD syndromes. Correlation analysis indicated that the modulatory effects of SSP on FT3, FT4, IL-10, colonic weight index, CD103+CD11c+TNF-α +, CD103+CD11c+MHC-II+, and 13 common differential metabolites were related to alterations in the abundance of Parvibacter, Aerococcus, norank_f_Lachnospiraceae, Lachnospiraceae_UCG-006, Akkermansia, and Rhodococcus in the GM. In addition, SSP markedly inhibited the activation of the TLR4, MyD88, TRAF6, TAB2, and NF-κBp65 proteins and activated IκB. These results indicate that SSP can effectively alleviate colitis mice with SKYD syndrome by regulating infDCs, GM, fecal metabolites, and TLR4/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Wei Ge
- Department of Proctology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, China
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Bu-Gao Zhou
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - You-Bao Zhong
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Su-Qing Liu
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jia-Qi Huang
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Wang-Yuan Yuan
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Chang-Ying Xie
- Department of Proctology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Duan-Yong Liu
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hai-Yan Wang
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Zheng-Yun Zuo
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
8
|
Yuan S, Wang Q, Li J, Xue JC, Li Y, Meng H, Hou XT, Nan JX, Zhang QG. Inflammatory bowel disease: an overview of Chinese herbal medicine formula-based treatment. Chin Med 2022; 17:74. [PMID: 35717380 PMCID: PMC9206260 DOI: 10.1186/s13020-022-00633-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/02/2022] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic recurrent inflammatory disease of the intestine, including Crohn’s disease (CD) and ulcerative colitis (UC), whose etiology and pathogenesis have not been fully understood. Due to its prolonged course and chronic recurrence, IBD imposes a heavy economic burden and psychological stress on patients. Traditional Chinese Herbal Medicine has unique advantages in IBD treatment because of its symptomatic treatment. However, the advantages of the Chinese Herbal Medicine Formula (CHMF) have rarely been discussed. In recent years, many scholars have conducted fundamental studies on CHMF to delay IBD from different perspectives and found that CHMF may help maintain intestinal integrity, reduce inflammation, and decrease oxidative stress, thus playing a positive role in the treatment of IBD. Therefore, this review focuses on the mechanisms associated with CHMF in IBD treatment. CHMF has apparent advantages. In addition to the exact composition and controlled quality of modern drugs, it also has multi-component and multi-target synergistic effects. CHMF has good prospects in the treatment of IBD, but its multi-agent composition and wide range of targets exacerbate the difficulty of studying its treatment of IBD. Future research on CHMF-related mechanisms is needed to achieve better efficacy.
Collapse
Affiliation(s)
- Shuo Yuan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China.,Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China
| | - Qi Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China
| | - Jiao Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China.,Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, 133002, Jilin, China
| | - Jia-Chen Xue
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China.,Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, 133002, Jilin, China
| | - You Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China
| | - Huan Meng
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China
| | - Xiao-Ting Hou
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China
| | - Ji-Xing Nan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China.
| | - Qing-Gao Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China. .,Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China. .,Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, 133002, Jilin, China.
| |
Collapse
|
9
|
Chen MJ, Feng Y, Gao L, Lin MX, Wang SD, Tong ZQ. Composite Sophora Colon-Soluble Capsule Ameliorates DSS-Induced Ulcerative Colitis in Mice via Gut Microbiota-Derived Butyric Acid and NCR + ILC3. Chin J Integr Med 2022; 29:424-433. [PMID: 35412217 DOI: 10.1007/s11655-022-3317-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To investigate the effects of composite Sophora colon-soluble Capsule (CSCC) on gut microbiota-mediated short-chain fatty acids (SCFAs) production and downstream group 3 innate lymphoid cells (ILC3s) of dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mice model. METHODS The main components of CSCC were analyzed by hybrid ultra-high-performance liquid chromatography ion mobility spectromety quadrupole time-of-flight mass spectrometry (UHPLC-IM-QTOF/MS). Twenty-four male BALB/c mice were randomly divided into 4 groups (n=6) by using a computer algorithm-generated random digital, including control, DSS model, mesalazine, and CSCC groups. A DSS-induced colitis mice model was established to determine the effects of CSCC by recording colonic weight, colonic length, index of colonic weight, and histological colonic score. The variations in ILC3s were assessed by immunofluorescence and flow cytometry. The results of gut microbiota and SCFAs were acquired by 16s rDNA and gas chromatography-mass spectrometry (GC-MS) analysis. The expression levels of NCR+ ILC3-, CCR6+ Nkp46- (Lti) ILC3-, and ILCreg-specific markers were detected by enzyme-linked immunosorbent assay, and real-time quantitative polymerase chain reaction and Western blot, respectively. RESULTS The main components of CSCC were matrine, ammothamnine, Sophora flavescens neoalcohol J, and Sophora oxytol U. After 7 days of treatment, CSCC significantly alleviated colitis by promoting the reproduction of intestinal probiotics manifested as upregulation of the abundance of Bacteroidetes species and specifically the Bacteroidales_S24-7 genus (P<0.05). Among the SCFAs, the content of butyric acid increased the most after CSCC treatment. Meanwhile, compared with the model group, Lti ILC3s and its biomarkers were significantly downregulated and NCR+ ILC3s were significantly elevated in the CSCC group (P<0.01). Further experiments revealed that ILC3s were differentiated from Lti ILC3s to NCR+ ILC3s, resulting in interleukin-22 production which regulates gut epithelial barrier function. CONCLUSION CSCC may exert a therapeutic effect on UC by improving the gut microbiota, promoting metabolite butyric acid production, and managing the ratio between NCR+ ILC3s and Lti ILC3s.
Collapse
Affiliation(s)
- Ming-Jun Chen
- Medical School of Chinese People's Liberation Army, Beijing, 100853, China
- Department of Traditional Chinese Medicine, The Second Medical Center & National Clinical Research Center of Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Yang Feng
- Department of Traditional Chinese Medicine, The Second Medical Center & National Clinical Research Center of Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Lu Gao
- Department of Traditional Chinese Medicine, The Second Medical Center & National Clinical Research Center of Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Ming-Xiong Lin
- Department of Traditional Chinese Medicine, The Second Medical Center & National Clinical Research Center of Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Shi-da Wang
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100850, China
| | - Zhan-Qi Tong
- Department of Traditional Chinese Medicine, The Second Medical Center & National Clinical Research Center of Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, 100853, China.
| |
Collapse
|
10
|
Wang M, Huang X, Kang Z, Huang J, Wei S, Zhao H, Zhong Y, Liu D. Mechanism of Sishen-Pill-Regulated Special Memory T and mTfh Cell via Involving JAK/STAT5 Pathway in Colitis Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6446674. [PMID: 35388299 PMCID: PMC8979676 DOI: 10.1155/2022/6446674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/13/2022] [Accepted: 03/11/2022] [Indexed: 12/03/2022]
Abstract
It is known that memory T cells (mT cell) and memory T follicular cells (mTfh) play vital roles in the IBD pathogenesis. Sishen Pill (SSP) is a classic prescription used to treat chronic ulcerative colitis (UC). However, it is still unclear whether SSP can regulate immune homeostasis induced by mT cell and mTfh to treat IBD. In this study, we measured mT cell and mTfh level to explore the conceivable mechanism of SSP-treated IBD. The mice colitis were induced by dextran sulfate sodium (DSS) and were treated by SSP for 7 days. The therapeutic effect of SSP was evaluated by macroscopic and microscopic observation; the mT cell, mTfh, and their subsets were analyzed by flow cytometry. Activation of the JAK/STAT signaling pathway was analyzed by using a Western blot. In the present study, SSP significantly reversed weight loss and colonic injury (colon weight increase and colonic length shortening) caused by 3% DSS in physiological saline solution. Flow cytometry showed that the percentages of CD4+ and CD8+ expressions on central memory T cells were enhanced after SSP treatment, while the CD4+ T cm, CD4+ mTfh (memory T follicular helper) cells and their subpopulations were also significantly increased. Moreover, SSP inhibited the expression of JAK/STAT signaling pathway proteins JAK1, PIAS3, STAT5, p-STAT5, BIM, BAX, caspase-3, and β-casein and promoted the expression of JAK3, PISA1, Bcl-2, and caveolin-1. In summary, SSP can regulate immune homeostasis induced by mT cell and mTfh in DSS-induced colitis, which is potentially correlated with JAK/STAT signaling pathway activation.
Collapse
Affiliation(s)
- Mengxue Wang
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Xiaoying Huang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Zengping Kang
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Jiaqi Huang
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Siyi Wei
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Haimei Zhao
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Youbao Zhong
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
- Experimental Animal Science and Technology Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Duanyong Liu
- Formula-Pattern Research Center of Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| |
Collapse
|
11
|
The Effects of Sishen Wan on T Cell Responses in Mice Models of Ulcerative Colitis Induced by Dextran Sodium Sulfate. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9957709. [PMID: 34956391 PMCID: PMC8702314 DOI: 10.1155/2021/9957709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022]
Abstract
Currently, it is unclear whether Sishen Wan (SSW) could modulate the balance of Th1 cells, Th17 cells, and Tregs and we evaluated the effects of SSW on T cell responses in mice models of ulcerative colitis (UC). The mice models of acute UC (4% dextran sodium sulfate (DSS), 8 days) and chronic UC (3% DSS, 16 days) with SSW were assayed. Colon tissues were collected for immunohistochemical analysis, enzyme linked immunosorbent assay (ELISA), and flow cytometry (FCM). The expressions of cytokines associated with Tregs, transcription factors of Th17 cells, the frequencies of Th1 cells, Th17 cells, and Tregs, and the functional plasticity of Th17 cells were detected. The frequency of IFN-γ+ T cells was not changed significantly with SSW treatment in acute DSS. In chronic models, the frequency of IFN-γ+ T cells was downregulated with SSW. Meanwhile, the levels of RORγt and the frequency of IL-17A+ Th17 cells showed no significant differences after SSW treatment. Despite no significant effect on the transdifferentiation of Th17 cells in chronic UC models, SSW transdifferentiated Th17 cells into IL-10+ Th17 cells and downregulated IFN-γ+ Th17 cells/IL-10+ Th17 cells in acute DSS. Moreover, there were no significant changes of cytokines secreted by Tregs in acute DSS after SSW treatment, but SSW facilitated the expressions of IL-10 and IL-35, as well as development of IL-10+ Tregs in chronic DSS. SSW showed depressive effects on the immunoreaction of Th17 cells and might promote the conversion of Th17 cells into IL-10+ Th17 cells in acute UC, while it inhibited the excessive reaction of Th1 cells, facilitated the development of Tregs, and enhanced the anti-inflammatory effects in chronic UC.
Collapse
|
12
|
The benzofuran glycosides from the fruits of Psoralea corylifolia L. Fitoterapia 2021; 155:105057. [PMID: 34655701 DOI: 10.1016/j.fitote.2021.105057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022]
Abstract
Six new glucosides of benzofuran (1-6), together with three known glucosides of benzofuran (8, 9, 14), nine flavonoids (12, 13, 15, 18, 19, 20, 21, 22 and 24), three coumarins (16, 17, 23) and four other-typic compounds (7, 10, 11 and 25) were isolated from the fruits of Psoralia corylifolia L. Their structures were elucidated by extensive spectroscopic methods. The biosynthesis pathway of benzofuran system was discussed. Besides, all isolated compounds and additional ring-opening derivatives of psoralen/isopsoralen (P-1, P-2, IP-1 and IP-2) were assayed for inhibition of nitric oxide (NO) production on lipopolysaccharides-induced RAW 264.7 macrophage cells. The results of the assay showed that the glycosides showed weaker or no effects, while most isolated non-glycoside compounds showed moderate or high activities. And the structure-activity relationships of non-glycoside compounds were discussed.
Collapse
|
13
|
Zhong YB, Kang ZP, Zhou BG, Wang HY, Long J, Zhou W, Zhao HM, Liu DY. Curcumin Regulated the Homeostasis of Memory T Cell and Ameliorated Dextran Sulfate Sodium-Induced Experimental Colitis. Front Pharmacol 2021; 11:630244. [PMID: 33597887 PMCID: PMC7882737 DOI: 10.3389/fphar.2020.630244] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
Immune memory is protective against reinvasion by pathogens in the homeostatic state, while immune memory disorders can cause autoimmune disease, including inflammatory bowel disease. Curcumin is a natural compound shown to be effective against human inflammatory bowel disease and experimental colitis, but the underlying mechanism is unclear. Here, experimental colitis was induced by dextran sulfate sodium (DSS) in this study. Significant changes in the percentages of naïve, central memory T (TCM), and effector memory (TEM) cells and their CD4+ and CD8+ subsets were found in the peripheral blood of mice with colitis using flow cytometry. After 7 days of continuous curcumin (100 mg/kg/day) administration, the DSS-induced experimental colitis was effectively relieved, with significant decreases in the ratio of day weight to initial body weight, colonic weight, pathological injury score, levels of proinflammatory cytokines IL-7, IL-15, and IL-21, colonic mucosal ulceration, and amount of inflammatory infiltrate. Importantly, curcumin significantly restored the percentages of naïve, TCM, and TEM cells and their CD4+ and CD8+ subpopulations. In addition, curcumin significantly inhibited the activation of the JAK1/STAT5 signaling pathway, downregulation of JAK1, STAT5, and p-STAT5 proteins in colon tissue, and upregulation of PIAS1 proteins. These results suggested that curcumin effectively regulated the differentiation of naïve, TCM, and TEM cells in the peripheral blood to alleviate DSS-induced experimental colitis, which might be related to the inhibition of JAK1/STAT5 signaling activity.
Collapse
Affiliation(s)
- You-Bao Zhong
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China.,College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China.,Laboratory Animal Research Center for Science and Technology, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Zeng-Ping Kang
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Bu-Gao Zhou
- Formula-Pattern Research Center of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Hai-Yan Wang
- Formula-Pattern Research Center of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jian Long
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Wen Zhou
- Science and Technology College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Hai-Mei Zhao
- College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Duan-Yong Liu
- Formula-Pattern Research Center of Jiangxi University of Traditional Chinese Medicine, Nanchang, China.,Science and Technology College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|