1
|
Kardam S, Ambasta RK, Kumar P. Overview of pro-inflammatory and pro-survival components in neuroinflammatory signalling and neurodegeneration. Ageing Res Rev 2024; 100:102465. [PMID: 39187022 DOI: 10.1016/j.arr.2024.102465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/07/2024] [Accepted: 08/18/2024] [Indexed: 08/28/2024]
Abstract
Neurodegenerative diseases (NDDs) are identified by the progressive deterioration of neurons and a subsequent decline in cognitive function, creating an enormous burden on the healthcare system globally. Neuroinflammation is an intricate procedure that initiates the immune response in the central nervous system (CNS) and significantly impacts the expansion of NDDs. This study scrutinizes the complicated interaction between neuronal degeneration and neuroinflammation, with an appropriate emphasis on their reciprocal impacts. It also describes how neuroinflammatory reactions in NDDs are controlled by activating certain pro-inflammatory transcription factors, including p38 MAPK, FAF1, Toll-like receptors (TLRs), and STAT3. Alternatively, it evaluates the impact of pro-survival transcription factors, such as the SOCS pathway, YY1, SIRT1, and MEF2, which provide neuroprotective protection against damage triggered by neuroinflammation. Moreover, we study the feasibility of accommodating drug repositioning as a therapeutic approach for treating neuroinflammatory disorders. This suggests the use of existing medications for novel utilization in the treatment of NDDs. Furthermore, the study intends to reveal novel biomarkers of neuroinflammation that contribute fundamental observation for the initial detection and diagnosis of these disorders. This study aims to strengthen therapy interference and augment patient outcomes by combining ongoing data and evaluating novel therapeutic and diagnostic approaches. The goal is to devote the growth of an effective strategy to reducing the impact of neuroinflammation on neuronal protection in NDDs.
Collapse
Affiliation(s)
- Shefali Kardam
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Biotechnology and Microbiology, SRM University, Sonepat, India; Department of Medicine, Vanderbilt University Medical Centre, Nashville, Tennessee, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|
2
|
Tang J, Liu C, Liu C, Hu Q, Fang Y, Chen Z. Evaluation of damage discrimination in dopaminergic neurons using dopamine transporter PET tracer [ 18F]FECNT-d 4. EJNMMI Res 2024; 14:78. [PMID: 39210186 PMCID: PMC11362440 DOI: 10.1186/s13550-024-01140-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a prevalent neurodegenerative disorder worldwide, diagnosed based on classic symptoms like motor dysfunction and cognitive impairments. With the development of various radioactive ligands, positron emission tomography (PET) imaging combined with specific radiolabelling probes has proven to be effective in aiding clinical PD diagnosis. Among these probes, 2β-Carbomethoxy-3β-(4-chlorophenyl)-8-(2-[18F]-fluoroethyl) nortropane ([18F]FECNT) has been utilized as a PET tracer to image dopamine transporter (DAT) integrity in striatal presynaptic dopaminergic terminals. However, the presence of brain-penetrant radioactive metabolites produced by [18F]FECNT may impact the accuracy of PET imaging. In previous research, we developed 2β-Carbomethoxy-3β-(4-chlorophenyl)-8-(2-[18F]-fluoroethyl-1,1,2,2-d4) nortropane ([18F]FECNT-d4), a deuterated derivative with enhanced stability in plasma and the striatum, along with a slower washout rate. In this study, we further investigated the potential of [18F]FECNT-d4 to detect dopaminergic neuron degeneration in Parkinson's disease. This involved PET imaging in unilaterally-lesioned PD model rats and in vitro autoradiography conducted on postmortem brain sections. RESULTS PET images revealed reduced specific uptake in the ipsilateral striatum of rats stereotactically injected with 6-hydroxydopamine hydrochloride (6-OHDA). Compared to the sham group, the ratio of standardized uptake value (SUV) in the ipsilateral to contralateral striatum decreased by 13%, 23%, and 63% in the mild, moderate, and severe lesioned groups, respectively. Dopaminergic denervation observed in PET imaging was further supported by behavioral assessments, immunostaining, and monoamine concentration tests. Moreover, the microPET results exhibited positive correlations with these measurements, except for the apomorphine-induced rotational behavior test, which showed a negative correlation. Additionally, [18F]FECNT-d4 uptake was approximately 40% lower in the postmortem striatal sections of a PD patient compared to a healthy subject. Furthermore, estimated human dosimetry (effective dose equivalent: 5.06 E-03 mSv/MBq), extrapolated from rat biodistribution data, remained below the current Food and Drug Administration limit for radiation exposure. CONCLUSION Our findings demonstrate that [18F]FECNT-d4 accurately estimates levels of dopaminergic neuron degeneration in the 6-OHDA-induced PD rat model and effectively distinguishes between PD patients and healthy individuals. This highly sensitive and safe PET probe holds promising potential for clinical application in the diagnosis and monitoring of Parkinson's disease.
Collapse
Affiliation(s)
- Jie Tang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20 Qianrong Road, Binhu District, Wuxi, 214063, China
| | - Congjin Liu
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, No. 12 Wulumuqi Middle Road, Jing'an District, Shanghai, 200040, China
| | - Chunyi Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20 Qianrong Road, Binhu District, Wuxi, 214063, China
| | - Qianyue Hu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20 Qianrong Road, Binhu District, Wuxi, 214063, China
| | - Yi Fang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20 Qianrong Road, Binhu District, Wuxi, 214063, China
| | - Zhengping Chen
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20 Qianrong Road, Binhu District, Wuxi, 214063, China.
| |
Collapse
|
3
|
Liu M, Wang Z, Shang H. Multiple system atrophy: an update and emerging directions of biomarkers and clinical trials. J Neurol 2024; 271:2324-2344. [PMID: 38483626 PMCID: PMC11055738 DOI: 10.1007/s00415-024-12269-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 04/28/2024]
Abstract
Multiple system atrophy is a rare, debilitating, adult-onset neurodegenerative disorder that manifests clinically as a diverse combination of parkinsonism, cerebellar ataxia, and autonomic dysfunction. It is pathologically characterized by oligodendroglial cytoplasmic inclusions containing abnormally aggregated α-synuclein. According to the updated Movement Disorder Society diagnostic criteria for multiple system atrophy, the diagnosis of clinically established multiple system atrophy requires the manifestation of autonomic dysfunction in combination with poorly levo-dopa responsive parkinsonism and/or cerebellar syndrome. Although symptomatic management of multiple system atrophy can substantially improve quality of life, therapeutic benefits are often limited, ephemeral, and they fail to modify the disease progression and eradicate underlying causes. Consequently, effective breakthrough treatments that target the causes of disease are needed. Numerous preclinical and clinical studies are currently focusing on a set of hallmarks of neurodegenerative diseases to slow or halt the progression of multiple system atrophy: pathological protein aggregation, synaptic dysfunction, aberrant proteostasis, neuronal inflammation, and neuronal cell death. Meanwhile, specific biomarkers and measurements with higher specificity and sensitivity are being developed for the diagnosis of multiple system atrophy, particularly for early detection of the disease. More intriguingly, a growing number of new disease-modifying candidates, which can be used to design multi-targeted, personalized treatment in patients, are being investigated, notwithstanding the failure of most previous attempts.
Collapse
Affiliation(s)
- Min Liu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, China
| | - Zhiyao Wang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
4
|
Bendetowicz D, Fabbri M, Sirna F, Fernagut PO, Foubert-Samier A, Saulnier T, Le Traon AP, Proust-Lima C, Rascol O, Meissner WG. Recent Advances in Clinical Trials in Multiple System Atrophy. Curr Neurol Neurosci Rep 2024; 24:95-112. [PMID: 38416311 DOI: 10.1007/s11910-024-01335-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 02/29/2024]
Abstract
PURPOSE OF REVIEW This review summarizes previous and ongoing neuroprotection trials in multiple system atrophy (MSA), a rare and fatal neurodegenerative disease characterized by parkinsonism, cerebellar, and autonomic dysfunction. It also describes the preclinical therapeutic pipeline and provides some considerations relevant to successfully conducting clinical trials in MSA, i.e., diagnosis, endpoints, and trial design. RECENT FINDINGS Over 30 compounds have been tested in clinical trials in MSA. While this illustrates a strong treatment pipeline, only two have reached their primary endpoint. Ongoing clinical trials primarily focus on targeting α-synuclein, the neuropathological hallmark of MSA being α-synuclein-bearing glial cytoplasmic inclusions. The mostly negative trial outcomes highlight the importance of better understanding underlying disease mechanisms and improving preclinical models. Together with efforts to refine clinical measurement tools, innovative statistical methods, and developments in biomarker research, this will enhance the design of future neuroprotection trials in MSA and the likelihood of positive outcomes.
Collapse
Affiliation(s)
- David Bendetowicz
- Univ. Bordeaux, CNRS, IMN, UMR5293, Bordeaux, France.
- CHU Bordeaux, Service de Neurologie des Maladies Neurodégénératives, IMNc, CRMR AMS, NS-Park/FCRIN Network, Bordeaux, France.
| | - Margherita Fabbri
- MSA French Reference Center, Univ. Hospital Toulouse, Toulouse, France
- Univ. Toulouse, CIC-1436, Departments of Clinical Pharmacology and Neurosciences, NeuroToul COEN Center, NS-Park/FCRIN Network, Toulouse University Hospital, Inserm, U1048/1214, Toulouse, France
| | - Federico Sirna
- Univ. Bordeaux, INSERM, BPH, U1219, IPSED, Bordeaux, France
| | - Pierre-Olivier Fernagut
- Université de Poitiers, Laboratoire de Neurosciences Expérimentales et Cliniques, INSERM UMR-S 1084, Poitiers, France
| | - Alexandra Foubert-Samier
- Univ. Bordeaux, CNRS, IMN, UMR5293, Bordeaux, France
- CHU Bordeaux, Service de Neurologie des Maladies Neurodégénératives, IMNc, CRMR AMS, NS-Park/FCRIN Network, Bordeaux, France
- Univ. Bordeaux, INSERM, BPH, U1219, IPSED, Bordeaux, France
| | | | - Anne Pavy Le Traon
- MSA French Reference Center, Univ. Hospital Toulouse, Toulouse, France
- Univ. Toulouse, CIC-1436, Departments of Clinical Pharmacology and Neurosciences, NeuroToul COEN Center, NS-Park/FCRIN Network, Toulouse University Hospital, Inserm, U1048/1214, Toulouse, France
| | | | - Olivier Rascol
- MSA French Reference Center, Univ. Hospital Toulouse, Toulouse, France
- Univ. Toulouse, CIC-1436, Departments of Clinical Pharmacology and Neurosciences, NeuroToul COEN Center, NS-Park/FCRIN Network, Toulouse University Hospital, Inserm, U1048/1214, Toulouse, France
| | - Wassilios G Meissner
- Univ. Bordeaux, CNRS, IMN, UMR5293, Bordeaux, France
- CHU Bordeaux, Service de Neurologie des Maladies Neurodégénératives, IMNc, CRMR AMS, NS-Park/FCRIN Network, Bordeaux, France
- Department of Medicine, University of Otago, Christchurch, and New Zealand Brain Research Institute, Christchurch, New Zealand
| |
Collapse
|
5
|
Choi HI, Kim T, Kim JW, Lee GJ, Choi J, Chae YJ, Kim E, Koo TS. Rat Pharmacokinetics and In Vitro Metabolite Identification of KM-819, a Parkinson's Disease Candidate, Using LC-MS/MS and LC-HRMS. Molecules 2024; 29:1004. [PMID: 38474516 DOI: 10.3390/molecules29051004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/31/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
FAF1 (FAS-associated factor 1) is involved in the activation of Fas cell surface death receptors and plays a role in apoptosis and necrosis. In patients with Parkinson's disease, FAF1 is overexpressed in dopaminergic neurons in the substantia nigra. KM-819, an FAF1 inhibitor, has shown potential for preventing dopaminergic neuronal cell death, promoting the degradation of α-synuclein and preventing its accumulation. This study aimed to develop and validate a quantitative analytical method for determining KM-819 levels in rat plasma using liquid chromatography-tandem mass spectrometry. This method was then applied to pharmacokinetic (PK) studies in rats. The metabolic stability of KM-819 was assessed in rat, dog, and human hepatocytes. In vitro metabolite identification and metabolic pathways were investigated in rat, dog, and human hepatocytes. The structural analog of KM-819, namely N-[1-(4-bromobenzyl)-3,5-dimethyl-1H-pyrazol-4-yl]-2-(phenylsulfanyl) acetamide, served as the internal standard (IS). Proteins were precipitated from plasma samples using acetonitrile. Analysis was carried out using a reverse-phase C18 column with a mobile phase consisting of 0.1% formic acid in distilled water and 0.1% formic acid in acetonitrile. The analytical method developed for KM-819 exhibited linearity within the concentration range of 0.002-10 μg/mL in rat plasma. The precision and accuracy of the intra- and inter-day measurements were <15% for the lower limit of quantification (LLOQ) and all quality control samples. KM-819 demonstrated stability under various sample storage conditions (6 h at room temperature (25 °C), four weeks at -20 °C, three freeze-thaw cycles, and pretreated samples in the autosampler). The matrix effect and dilution integrity met the criteria set by the Food and Drug Administration and the European Medicines Agency. This sensitive, rapid, and reliable analytical method was successfully applied in pharmacokinetic studies in rats. Pharmacokinetic analysis revealed the dose-independent kinetics of KM-819 at 0.5-5 mg/kg, with a moderate oral bioavailability of ~20% in rats. The metabolic stability of KM-819 was also found to be moderate in rat, dog, and human hepatocytes. Metabolite identification in rat, dog, and human hepatocytes resulted in the discovery of six, six, and eight metabolites, respectively. Glucuronidation and mono-oxidation have been proposed as the major metabolic pathways. Overall, these findings contribute to a better understanding of the pharmacokinetic characteristics of KM-819, thereby aiding future clinical studies.
Collapse
Affiliation(s)
- Hae-In Choi
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Taeheon Kim
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin Woo Kim
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Gi Ju Lee
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jinyoung Choi
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yoon-Jee Chae
- College of Pharmacy, Woosuk University, Wanju 55338, Republic of Korea
| | - Eunhee Kim
- College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
- Biopharmaceutical Division, Kainos Medicine Inc., Seongnam 13488, Republic of Korea
| | - Tae-Sung Koo
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
6
|
Real CC, Binda KH, Thomsen MB, Lillethorup TP, Brooks DJ, Landau AM. Selecting the Best Animal Model of Parkinson's Disease for Your Research Purpose: Insight from in vivo PET Imaging Studies. Curr Neuropharmacol 2023; 21:1241-1272. [PMID: 36797611 PMCID: PMC10286593 DOI: 10.2174/1570159x21666230216101659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 02/18/2023] Open
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative multisystem disorder leading to motor and non-motor symptoms in millions of individuals. Despite intense research, there is still no cure, and early disease biomarkers are lacking. Animal models of PD have been inspired by basic elements of its pathogenesis, such as dopamine dysfunction, alpha-synuclein accumulation, neuroinflammation and disruption of protein degradation, and these have been crucial for a deeper understanding of the mechanisms of pathology, the identification of biomarkers, and evaluation of novel therapies. Imaging biomarkers are non-invasive tools to assess disease progression and response to therapies; their discovery and validation have been an active field of translational research. Here, we highlight different considerations of animal models of PD that can be applied to future research, in terms of their suitability to answer different research questions. We provide the reader with important considerations of the best choice of model to use based on the disease features of each model, including issues related to different species. In addition, positron emission tomography studies conducted in PD animal models in the last 5 years are presented. With a variety of different species, interventions and genetic information, the choice of the most appropriate model to answer research questions can be daunting, especially since no single model recapitulates all aspects of this complex disorder. Appropriate animal models in conjunction with in vivo molecular imaging tools, if selected properly, can be a powerful combination for the assessment of novel therapies and developing tools for early diagnosis.
Collapse
Affiliation(s)
- Caroline Cristiano Real
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karina Henrique Binda
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Majken Borup Thomsen
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Thea Pinholt Lillethorup
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - David James Brooks
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Institute of Translational and Clinical Research, University of Newcastle, Upon Tyne, UK
| | - Anne Marlene Landau
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
7
|
Sidoroff V, Bower P, Stefanova N, Fanciulli A, Stankovic I, Poewe W, Seppi K, Wenning GK, Krismer F. Disease-Modifying Therapies for Multiple System Atrophy: Where Are We in 2022? JOURNAL OF PARKINSON'S DISEASE 2022; 12:1369-1387. [PMID: 35491799 PMCID: PMC9398078 DOI: 10.3233/jpd-223183] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multiple system atrophy is a rapidly progressive and fatal neurodegenerative disorder. While numerous preclinical studies suggested efficacy of potentially disease modifying agents, none of those were proven to be effective in large-scale clinical trials. Three major strategies are currently pursued in preclinical and clinical studies attempting to slow down disease progression. These target α-synuclein, neuroinflammation, and restoration of neurotrophic support. This review provides a comprehensive overview on ongoing preclinical and clinical developments of disease modifying therapies. Furthermore, we will focus on potential shortcomings of previous studies that can be avoided to improve data quality in future studies of this rare disease.
Collapse
Affiliation(s)
- Victoria Sidoroff
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Pam Bower
- The Multiple System Atrophy Coalition, Inc., McLean, VA, USA
| | - Nadia Stefanova
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Iva Stankovic
- Neurology Clinic, University Clinical Center of Serbia, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Werner Poewe
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Seppi
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gregor K Wenning
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Krismer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
8
|
Kim BS, Song JA, Jang KH, Jang T, Jung B, Yoo SE, Lee JM, Kim E. Pharmacological Intervention Targeting FAF1 Restores Autophagic Flux for α-Synuclein Degradation in the Brain of a Parkinson's Disease Mouse Model. ACS Chem Neurosci 2022; 13:806-817. [PMID: 35230076 DOI: 10.1021/acschemneuro.1c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
α-Synuclein accumulation is implicated in the pathogenesis of neurodegenerative diseases, including Parkinson's disease (PD). Previously, we reported that Fas-associated factor 1 (FAF1), which plays a role in PD pathogenesis, potentiates α-synuclein accumulation through autophagy impairment in dopaminergic neurons. In this study, we show that KM-819, a FAF1-targeting compound, which has completed phase I clinical trials, interferes with α-synuclein accumulation in the mouse brain, as well as in human neuronal cells (SH-SY5Ys). KM-819 suppressed the accumulation of monomeric, oligomeric, and aggregated forms of α-synuclein in neuronal cells. Furthermore, KM-819 restored the turnover rate of α-synuclein in FAF1-overexpressing SH-SY5Y cells, implicating KM-819-mediated reconstitution of the α-synuclein degradative pathway. In addition, KM-819 reconstituted autophagic flux in FAF1-transfected SH-SY5Y cells, also suppressing α-synuclein-induced mitochondrial dysfunction. Moreover, oral administration of KM-819 also interfered with α-synuclein accumulation in the midbrain of mice overexpressing FAF1 via an adeno-associated virus system. Consistently, KM-819 reduced α-synuclein accumulation in both the hippocampus and the midbrain of human A53T α-synuclein transgenic mice. Collectively, these data imply that KM-819 may have therapeutic potential for patients with PD.
Collapse
Affiliation(s)
- Bok-Seok Kim
- Department of Biological Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Jin-A Song
- Department of Biological Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Ki-Hong Jang
- Department of Biological Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Taeik Jang
- Department of Biological Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Bumjun Jung
- Department of Biological Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | | | | | - Eunhee Kim
- Department of Biological Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| |
Collapse
|