1
|
Li J, Fan S, Li H, Hu Z, Hu Q. Evaluation of efficacy, safety and underlying mechanism on Traditional Chinese medicine as synergistic agents for cancer immunotherapy: A preclinical systematic review and meta-analysis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119035. [PMID: 39510427 DOI: 10.1016/j.jep.2024.119035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Based on the documentation in Shennong's Herbal Classics, numerous Traditional Chinese medicine (TCM) are noted to possess anti-tumor properties, and TCM has been used in China for thousands of years. Particularly, current research have demonstrated that TCM combined with immunotherapy exhibited enhanced anti-tumor effects. AIM OF THE STUDY This meta-analysis aimed to evaluate the effectiveness, security, and potential mechanisms of TCM coupled with programmed cell death protein-1/programmed death ligand-1 (PD-1/PD-L1) inhibitors in cancer animal models. MATERIALS AND METHODS The pertinent research was performed in English database including PubMed, Web of Science, Embase, and Cochrane Library, as well as Chinese database including China National Knowledge Infrastructure (CNKI) and Wanfang Data Database published until January 2024. The quality of the included studies was evaluated with Systematic Review Center for Laboratory animal Experimentation (SYRCLE) risk assessment tool, and statistical analysis was conducted with Revman 5.4 software. Egger's test and funnel plots were used to assess potential publication bias. RESULTS An aggregate of 30 articles comprising 39 studies fulfilled the conditions for examination. The meta-analysis revealed that TCM + PD-1/PD-L1 inhibitors exhibited significant effects in inhibiting tumor growth (standard mean difference (SMD) = -2.61, 95% confidence interval (CI) = [-3.15, -2.07]), reducing tumor weight [SMD = -2.79 (-3.75, -1.83)], prolonging the survival time, and enhancing immune function in both cellular (CD4+ T cell percentage: 3.00 [1.45, 4.55]; CD8+ T cell percentage: 3.06 [2.16, 3.95]) and humoral immunity (interferon-γ (IFN-γ): 3.43, [2.54, 4.32]; tumor necrosis factor-α (TNF-α): 2.78 [1.46, 4.09]; interleukin (IL)-2: 1.79, [0.62, 2.95]; IL-6: 2.34, [0.07, 4.60]), and the differences between the two groups of the above indicators were statistically significant. No significant difference was found for aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. The mechanisms of TCM impacting PD-1/PD-L1 inhibitors therapy were closely associated with regulating tumor microenvironment, modulating gut microbiota, suppressing expression of PD-1 or PD-L1, and regulating cytokine signaling. CONCLUSION TCM displayed a potential enhanced anti-tumor efficacy of PD-1/PD-L1 inhibitors on six types of tumor including colon, breast, colorectal, melanoma, and bladder cancer in animals. However, due to significant heterogeneity in the included studies, caution should be exercised regarding the results. More high-quality randomized controlled animal experiments are need.
Collapse
Affiliation(s)
- Jing Li
- Pharmaceutical Department, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shipeng Fan
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hongxia Li
- Pharmaceutical Department, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiping Hu
- Department of Integrated Traditional Chinese and Western Medicine, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qixin Hu
- Department of Integrated Traditional Chinese and Western Medicine, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Li S, Chen X, Shi H, Yi M, Xiong B, Li T. Tailoring traditional Chinese medicine in cancer therapy. Mol Cancer 2025; 24:27. [PMID: 39838407 PMCID: PMC11749133 DOI: 10.1186/s12943-024-02213-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/25/2024] [Indexed: 01/23/2025] Open
Abstract
Cancer remains a formidable global health challenge, necessitating innovative therapeutic approaches to enhance treatment efficacy and reduce adverse effects. The traditional Chinese medicine (TCM), as an embodiment of ancient wisdom, has been validated to regulate the holistic human capacity against both internal and external "evils" in accordance with TCM principles. Therefore, it stands to reason to integrate TCM into current cancer therapy paradigms, such as chemotherapy, immunotherapy, and targeted therapy. This strategy conceptually intends to circumvent the inevitable side effects derived from present treatment, alleviate the discomfort, mollify the detrimental mood and synergize tumoricidal effects of distinct approaches. However, it is still vague whether TCM exert favorable function in cancer treatment. Therefore, it is imperative to retrieve and compile the existing literature on TCM in the realm of cancer, followed by a comprehensive recapitulation and synthesis of its core findings. Recently, with the advancement of contemporary biologic and medical theory and technology, it has become both feasible and imperative to elucidate the molecular signaling mechanisms and cellular biology underlying TCM. Specifically, leveraging TCM pharmaceutic components can not only directly impact tumor biology at the molecular level, but regulate the tumor immune environment through distinct pathways. Additionally, the administration of external TCM treatments such as acupuncture and moxibustion also demonstrates beneficial effects in cancer patients. Through comprehensive analysis, we demonstrated that TCM not only potentially increases the efficacy of conventional cancer treatments, but also significantly mitigates their toxic side effects, thereby prolonging patients' prognosis and improving their living quality. Furthermore, we have underscored the challenges and prospects associated with the integration of TCM into contemporary oncological practices, placing particular emphasis on the imperative for rigorous clinical trials and molecular investigations to substantiate the efficacy and safety of these combined therapeutic approaches. This synthesis aims to pave the way for a more integrated approach to cancer treatment rooted in both traditional wisdom and cutting-edge science.
Collapse
Affiliation(s)
- Shuiquan Li
- Department of Rehabilitation and Traditional Chinese Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
| | - Xi Chen
- Department of Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, People's Republic of China
| | - Hui Shi
- Department of Rehabilitation and Traditional Chinese Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
| | - Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| | - Bing Xiong
- Department of Rehabilitation and Traditional Chinese Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China.
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China.
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
3
|
Kumar P, Kumar V, Sharma S, Sharma R, Warghat AR. Fritillaria steroidal alkaloids and their multi-target therapeutic mechanisms: insights from network pharmacology. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03502-z. [PMID: 39382678 DOI: 10.1007/s00210-024-03502-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Medicinal Fritillaria herbs, known for their rich content of steroidal alkaloids, have emerged as promising candidates in the treatment of chronic diseases due to their diverse pharmacological properties. Leveraging advancements in network pharmacology and molecular docking, this study explores the multi-target mechanisms through which these alkaloids exert therapeutic effects. The integration of bioinformatics, systems biology, and pharmacology in drug discovery has provided insights into the molecular interactions and pathways influenced by Fritillaria steroidal alkaloids. This review synthesizes comprehensive literature from 1985 to 2024, revealing the potential of these compounds in addressing respiratory diseases, inflammation, and cancer. The integration of traditional Chinese medicine (TCM) with modern pharmacological techniques underscores the relevance of these compounds in next-generation drug discovery. While initial findings are promising, further empirical validation is necessary to fully harness the therapeutic potential of Fritillaria steroidal alkaloids.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Biotechnology, Dr Y.S, Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India.
| | - Vinay Kumar
- Department of Biotechnology, Dr Y.S, Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Shagun Sharma
- Department of Biotechnology, Dr Y.S, Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Rohit Sharma
- Department of Forest Products, Dr Y.S, Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Ashish R Warghat
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| |
Collapse
|
4
|
Liang Y, Xie Y, Liu X, Yu L, Yan H, Shang Z, Wu Y, Cai X, Shi W, Du J, Yang Z. Integrating Network Pharmacology and Experimental Validation to Decipher the Mechanism of Action of Astragalus- Atractylodes Herb Pair in Treating Hepatocellular Carcinoma. Drug Des Devel Ther 2024; 18:2169-2187. [PMID: 38882048 PMCID: PMC11179675 DOI: 10.2147/dddt.s459593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/24/2024] [Indexed: 06/18/2024] Open
Abstract
Purpose Traditional Chinese medicine (TCM) therapy is an important means to treat hepatocellular carcinoma (HCC), Astragalus (Latin name: Hedysarum Multijugum Maxim; Chinese name: Huangqi, HQ) and Atractylodes (Latin name: Atractylodes Macrocephala Koidz; Chinese name: Baizhu, BZ) (HQBZ), a classic herb pair, is often used in combination to HCC. However, the main components and potential mechanisms of HQBZ therapy in HCC remain unclear. This study aimed to identify the potential active ingredients and molecular mechanisms of action of HQBZ in HCC treatment. Methods The HQBZ-Compound-Target-HCC network and HQBZ-HCC transcriptional regulatory network were constructed to screen the core active compound components and targets of HQBZ therapy for HCC. Molecular docking techniques are used to verify the stability of binding core active compound components to targets. GO and KEGG enrichment analysis were used to explore the signaling pathway of HQBZ in HCC treatment, the mechanism of HQBZ treatment of HCC was verified based on in vivo H22 tumor bearing mice and in vitro cell experiments. Results Network pharmacology and molecular docking studies showed that HQBZ treatment of HCC was related to the targeted regulation of IL-6 and STAT3 by the active compound biatractylolide, KEGG pathway enrichment analysis suggest that HQBZ may play a role in the treatment of HCC through IL-6/STAT3 signaling pathway. In vitro experiment results proved that HQBZ could regulate IL-6/STAT3 signaling pathway transduction on CD8+T cells, inhibit CD8+T cell exhaustion and restore the function of exhausted CD8+T cells. In vivo experiment results proved that HQBZ can regulate IL-6/STAT3 signaling pathway transduction in H22 liver cancer model mouse tumor tissue, increased the proportion of tumor infiltrating CD8+T cells. Conclusion This study found that HQBZ may play a therapeutic role in HCC by targeting IL-6 and STAT3 through biatractylolide, its mechanism of action is related to regulating IL-6/STAT3 signaling pathway, reversing T cell failure and increasing tumor infiltration CD8+T cells.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Liver Neoplasms/drug therapy
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Animals
- Humans
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/chemistry
- Network Pharmacology
- Mice
- STAT3 Transcription Factor/metabolism
- STAT3 Transcription Factor/antagonists & inhibitors
- Atractylodes/chemistry
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/isolation & purification
- Molecular Docking Simulation
- Astragalus Plant/chemistry
- Cell Proliferation/drug effects
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/metabolism
- Interleukin-6/metabolism
- Interleukin-6/antagonists & inhibitors
- Medicine, Chinese Traditional
- Drug Screening Assays, Antitumor
Collapse
Affiliation(s)
- Yuling Liang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People's Republic of China
| | - Yuqing Xie
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People's Republic of China
| | - Xiaoli Liu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People's Republic of China
| | - Lihua Yu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People's Republic of China
| | - Huiwen Yan
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People's Republic of China
| | - Zimeng Shang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People's Republic of China
| | - Yuan Wu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People's Republic of China
| | - Xue Cai
- Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Wanxin Shi
- Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Juan Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People's Republic of China
| | - Zhiyun Yang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People's Republic of China
| |
Collapse
|
5
|
Ye X, Yang C, Xu H, He Q, Sheng L, Lin J, Wang X. Exploring the therapeutic mechanisms of Coptidis Rhizoma in gastric precancerous lesions: a network pharmacology approach. Discov Oncol 2024; 15:211. [PMID: 38837097 PMCID: PMC11153449 DOI: 10.1007/s12672-024-01070-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Gastric precancerous lesions are a critical stage in the development of gastric cancer or gastric adenocarcinoma, and their outcome plays an important role in the malignant progression of gastric cancer. Coptidis Rhizoma has a good effect on Gastric precancerous lesions. However, the specific mechanisms of its action remain incompletely elucidated. METHODS Network pharmacology and molecular docking techniques were used to explore the active ingredients and molecular mechanism of Coptidis Rhizoma in treating gastric precancerous lesions. The active compounds of Coptidis Rhizoma and their potential gastric precancerous lesions related targets were obtained from TCMSP, GeneCards, and OMIM databases. An interaction network based on protein-protein interactions (PPIs) was constructed to visualize the interactions between hub genes. Analysis of GO enrichment and KEGG pathway were conducted using the DAVID database. An investigation of interactions between active compounds and potential targets was carried out by molecular docking. Finally, animal experiments were conducted to verify the effect and mechanism of Coptidis Rhizoma in treating precancerous lesions of gastric cancer. RESULTS A total of 11 active compounds and 95 anti-gastric precancerous lesions targets of Coptidis Rhizoma were screened for analysis. GO enrichment analysis showed that the mechanism of Coptidis Rhizoma acting on gastric precancerous lesions involves gene expression regulation and apoptosis regulation. KEGG pathway enrichment analysis showed that Coptidis Rhizoma against gastric precancerous lesions involving the AKT /HIF-1α/VEGF signalling pathway. Molecular docking simulations indicated potential interactions between these compounds and core targets involved in anti-gastric precancerous lesions activity. In addition, it was confirmed in vivo that Berberine and Coptidis Rhizoma may reverse atrophy and potential intestinal metaplasia by inhibiting the expression of p-AKT, HIFA, and VEGF. CONCLUSION Bioactive compounds in Coptidis Rhizoma have the potential to prevent atrophy and intestinal metaplasia. These compounds function by regulating the proteins implicated in AKT /HIF-1α/VEGF signalling pathways that are crucial in gastric epithelial cell differentiation, proliferation and maturation.
Collapse
Affiliation(s)
- Xuxing Ye
- Department of Traditional Chinese Medicine, Jinhua Municipal Central Hospital, 351 Mingyue Street, Wucheng District, Jinhua, 321000, Zhejiang, China
| | - Chao Yang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310000, China
| | - Hanzhi Xu
- Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Qin He
- Department of Traditional Chinese Medicine, Jinhua Municipal Central Hospital, 351 Mingyue Street, Wucheng District, Jinhua, 321000, Zhejiang, China
| | - Lin Sheng
- Department of Pulmonary and Critical Care Medicine, Jinhua Municipal Central Hospital, Jinhua, 321000, Zhejiang, China
| | - Junmei Lin
- Department of Traditional Chinese Medicine, Jinhua Municipal Central Hospital, 351 Mingyue Street, Wucheng District, Jinhua, 321000, Zhejiang, China.
| | - Xiaobo Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310000, China.
| |
Collapse
|
6
|
Fu J, Xie X, Yao H, Xiao H, Li Z, Wang Z, Ju R, Zhao Y, Liu Z, Zhang N. The Effectiveness of Traditional Chinese Medicine in Treating Malignancies via Regulatory Cell Death Pathways and the Tumor Immune Microenvironment: A Review of Recent Advances. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:137-160. [PMID: 38328830 DOI: 10.1142/s0192415x2450006x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Traditional Chinese Medicine (TCM) has achieved high clinical efficacy in treating malignancies in recent years and is thus gradually becoming an important therapy for patients with advanced tumor for its benefits in reducing side effects and improving patients' immune status. However, it has not been internationally recognized for cancer treatment because TCM's anti-tumor mechanism is not fully elucidated, limiting its clinical application and international promotion. This review traced the mechanism of the TCM-mediated tumor cell death pathway and its effect on remodeling the tumor immune microenvironment, its direct impact on the microenvironment, its anti-tumor effect in combination with immunotherapy, and the current status of clinical application of TCM on tumor treatment. TCM can induce tumor cell death in many regulatory cell death (RCD) pathways, including apoptosis, autophagy, pyroptosis, necroptosis, and ferroptosis. In addition, TCM-induced cell death could increase the immune cells' infiltration with an anti-tumor effect in the tumor tissue and elevate the proportion of these cells in the spleen or peripheral blood, enhancing the anti-tumor capacity of the tumor-bearing host. Moreover, TCM can directly affect immune function by increasing the population or activating the sub-type immune cells with an anti-tumor role. It was concluded that TCM could induce a pan-tumor death modality, remodeling the local TIME differently. It can also improve the systemic immune status of tumor-bearing hosts. This review aims to establish a theoretical basis for the clinical application of TCM in tumor treatment and to provide a reference for TCM's potential in combination with immunotherapy in cancer treatment.
Collapse
Affiliation(s)
- Jingya Fu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710049, P. R. China
- Shaanxi University of Chinese Medicine Xian yang 712046, P. R. China
- The First Affiliated Hospital of Nanyang Medical College Nanyang 473000, P. R. China
| | - Xiaoxia Xie
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710049, P. R. China
- Shaanxi University of Chinese Medicine Xian yang 712046, P. R. China
| | - Huimin Yao
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710049, P. R. China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061, P. R. China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061, P. R. China
| | - Haijuan Xiao
- Shaanxi University of Chinese Medicine Xian yang 712046, P. R. China
| | - Zhuoqun Li
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061, P. R. China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061, P. R. China
| | - Zhenzhi Wang
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710049, P. R. China
- Shaanxi University of Chinese Medicine Xian yang 712046, P. R. China
| | - Ran Ju
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710049, P. R. China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061, P. R. China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061, P. R. China
| | - Yan Zhao
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710049, P. R. China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061, P. R. China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061, P. R. China
| | - Zhijun Liu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710049, P. R. China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061, P. R. China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061, P. R. China
| | - Nana Zhang
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710049, P. R. China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061, P. R. China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061, P. R. China
| |
Collapse
|
7
|
Sa P, Mohapatra P, Swain SS, Khuntia A, Sahoo SK. Phytochemical-Based Nanomedicine for Targeting Tumor Microenvironment and Inhibiting Cancer Chemoresistance: Recent Advances and Pharmacological Insights. Mol Pharm 2023; 20:5254-5277. [PMID: 37596986 DOI: 10.1021/acs.molpharmaceut.3c00286] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
Cancer remains the leading cause of death and rapidly evolving disease worldwide. The understanding of disease pathophysiology has improved through advanced research investigation, and several therapeutic strategies are being used for better cancer treatment. However, the increase in cancer relapse and metastatic-related deaths indicate that available therapies and clinically approved chemotherapy drugs are not sufficient to combat cancer. Further, the constant crosstalk between tumor cells and the tumor microenvironment (TME) is crucial for the development, progression, metastasis, and therapeutic response to tumors. In this regard, phytochemicals with multimodal targeting abilities can be used as an alternative to current cancer therapy by inhibiting cancer survival pathways or modulating TME. However, due to their poor pharmacokinetics and low bioavailability, the success of phytochemicals in clinical trials is limited. Therefore, developing phytochemical-based nanomedicine or phytonanomedicine can improve the pharmacokinetic profile of these phytochemicals. Herein, the molecular characteristics and pharmacological insights of the proposed phytonanomedicine in cancer therapy targeting tumor tissue and altering the characteristics of cancer stem cells, chemoresistance, TME, and cancer immunity are well discussed. Further, we have highlighted the clinical perspective and challenges of phytonanomedicine in filling the gap in potential cancer therapeutics using various nanoplatforms. Overall, we have discussed how clinical success and pharmacological insights could make it more beneficial to boost the concept of nanomedicine in the academic and pharmaceutical fields to counter cancer metastases and drug resistance.
Collapse
Affiliation(s)
- Pratikshya Sa
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, NCR Delhi, India
| | - Priyanka Mohapatra
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, NCR Delhi, India
| | | | - Auromira Khuntia
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, NCR Delhi, India
| | | |
Collapse
|
8
|
Gao D, Fang L, Liu C, Yang M, Yu X, Wang L, Zhang W, Sun C, Zhuang J. Microenvironmental regulation in tumor progression: Interactions between cancer-associated fibroblasts and immune cells. Biomed Pharmacother 2023; 167:115622. [PMID: 37783155 DOI: 10.1016/j.biopha.2023.115622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023] Open
Abstract
The tumor microenvironment (TME), the "soil" on which tumor cells grow, has an important role in regulating the proliferation and metastasis of tumor cells as well as their response to treatment. Cancer-associated fibroblasts (CAFs), as the most abundant stromal cells of the TME, can not only directly alter the immunosuppressive effect of the TME through their own metabolism, but also influence the aggregation and function of immune cells by secreting a large number of cytokines and chemokines, reducing the body's immune surveillance of tumor cells and making them more prone to immune escape. Our study provides a comprehensive review of fibroblast chemotaxis, malignant transformation, metabolic characteristics, and interactions with immune cells. In addition, the current small molecule drugs targeting CAFs have been summarized, including both natural small molecules and targeted drugs for current clinical therapeutic applications. A complete review of the role of fibroblasts in TME from an immune perspective is presented, which has important implications in improving the efficiency of immunotherapy by targeting fibroblasts.
Collapse
Affiliation(s)
- Dandan Gao
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China
| | - Liguang Fang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China
| | - Mengrui Yang
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China
| | - Xiaoyun Yu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China
| | - Longyun Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China
| | - Wenfeng Zhang
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China; Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| |
Collapse
|
9
|
Yan J, Zhu J, Li X, Yang R, Xiao W, Huang C, Zheng C. Blocking LTB 4 signaling-mediated TAMs recruitment by Rhizoma Coptidis sensitizes lung cancer to immunotherapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154968. [PMID: 37531900 DOI: 10.1016/j.phymed.2023.154968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/31/2023] [Accepted: 07/15/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Immune checkpoint blockade (ICB) induces durable immune responses across a spectrum of advanced cancers and revolutionizes the oncology field. However, only a subset of patients achieves long-lasting clinical benefits. Tumor-associated macrophages (TAMs) usually secrete immunosuppressive cytokines and contribute to the failure of ICB therapy. Therefore, it is crucial to mechanically manipulate the abundance and function of TAMs in the tumor microenvironment (TME), which can offer a promising molecular basis to improve the clinical response efficacy of ICB in cancer patients. PURPOSE This study aims to investigate TAMs in the immunosuppressive microenvironment to identify new therapeutic targets, improve the ability to predict and guide responses to clinical immunotherapy, and develop new strategies for immunotherapy of lung tumors. METHODS Lewis lung carcinoma (LLC) xenograft-bearing mouse models were established to analyze the antitumor activity of Rhizoma Coptidis (RC) in vivo. A systems pharmacology strategy was used to predict the correlation between RC and M2 macrophages. The effect of RC on the abundance of M2 macrophages was analyzed by flow cytometry of murine samples. Western blot was performed to analyze the expression of Leukotriene A4 hydrolase (LTA4H) and LTB4 receptor 1 (BLT1) in harvested lung cancer tissues. The impact of blocking leukotriene B4 (LTB4) signaling by RC on the recruitment of M2 macrophages was assessed in vitro and in vivo. Transwell migration assays were conducted to clarify the inhibition of macrophage migration by blocking LTB4. Lta4h-/- mice were used to investigate the sensitivity of immunotherapy to lung cancer by blocking the LTB4 signaling. RESULTS Here, we report that RC, an herbal medicine from the family Ranunculaceae, suppresses the recruitment and immunosuppressive function of TAMs, which in turn sensitizes lung cancer to ICB therapy. Firstly, a systems pharmacology strategy was proposed to identify combinatorial drugs for ICB therapy with a systems biology perspective of drug-target-pathway-TME phenotype. We predicted and verified that RC significantly inhibits tumor growth and the infiltration of M2-TAMs into TME of LLC tumor-bearing mice. Then, RC inhibits the recruitment of macrophages to the tumor TME via blocking LTB4 signaling, and suppresses the expression of immunosuppressive factors (IL-10, TGF-β and VEGF). As a result, RC enables CD8+ T cells to retain their proliferative and infiltrative abilities within the TME. Ultimately, these events promote cytotoxic T-cell-mediated clearance of tumor cells, which is further enhanced by the addition of anti-PD-L1 therapy. Furthermore, we employed LTA4H deficient mice (Lta4h-/- mice) to evaluate the antitumor efficiency, the results showed that the efficacy of immunotherapy was enhanced due to the synergistic effect of LTB4 signaling blockage and ICB inhibition, leading to remarkable inhibition of tumor growth in a mouse model of lung adenocarcinoma. CONCLUSIONS Taken together, these findings suggest that RC enhances antitumor immunity, providing a rationale for combining RC with immunotherapies as a potential anti-cancer treatment strategy.
Collapse
Affiliation(s)
- Jiangna Yan
- College of Medicine, Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Jinglin Zhu
- College of Medicine, Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Xiaolan Li
- Department of Pathology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi 710038, PR China
| | - Ruijie Yang
- School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical Co. Ltd., Lianyungang, Jiangsu 222001, PR China
| | - Chao Huang
- School of Basic Medical Sciences, Institute of Molecular and Translational Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China.
| | - Chunli Zheng
- College of Medicine, Yan'an University, Yan'an, Shaanxi 716000, PR China.
| |
Collapse
|
10
|
Li X, Tang Y, Liang P, Sun M, Li T, Shen Z, Sha S. Luteolin inhibits A549 cells proliferation and migration by down-regulating androgen receptors. Eur J Med Res 2023; 28:353. [PMID: 37716981 PMCID: PMC10504720 DOI: 10.1186/s40001-023-01302-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/18/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Yi Fei Qing Hua Granules (YQG) is a traditional Chinese herbal medicine with the effects of inhibiting the proliferation of lung cancer cells. Luteolin is one of the active compounds of YQG. Luteolin is a common flavonoid extracted from natural herbs and it can promote cancer cells apoptosis has been reported. However, the underlying molecular mechanism and effects of luteolin on human lung cancer needs to be validated. METHODS Molecular docking, network pharmacology methods and quantitative structure-activity relationship (QSAR) model were used to identify the active components of YQG and their possible mechanisms of action. Western blot analysis was used to measure AR expression in A549 cells. Cell migration assays were used to detect A549 cells proliferation transfected by AR plasmid and AR mutation plasmid, respectively. RESULTS TCMSP search results revealed that there are 182 active compounds in YQG, which correspond to 232 target genes. Sixty-one genes were overlapping genes in the 2 datasets of TCMSP and GeneCards. Through bioinformatics tagging of these overlapping genes, a total of 1,951 GO functional tagging analysis and 133 KEGG pathways were obtained. Through molecular docking technology and QSAR model verification, the multi-target active compound luteolin was screened out as one of the active components of YQG for in vitro verification. Androgen receptor (AR) was the hub protein with the highest docking score of luteolin. Western blot showed that luteolin could inhibit AR protein expression in lung cancer cell line A549. After the phosphorylation site of AR protein 877 was inactivated, the ability of luteolin to inhibit the proliferation of lung cancer cells was weakened. Luteolin significantly inhibited the growth of A549 xenogeneic tumors at day 25 and 28 and inhibited the expression of AR. CONCLUSION In this study, we have explored luteolin as one of the active components of YQG, and may inhibit the proliferation and migration of A549 cells by decreasing the expression of AR and the regulation of phosphorylation at AR-binding sites.
Collapse
Affiliation(s)
- Xu Li
- Tongji University School of Medicine, Shanghai, 200092, China
- General practice, Tongji University School of Medicine Affiliated Anting Community Health Center of Jiading District, Shanghai, 201805, China
| | - Yeling Tang
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China
| | - Pengchen Liang
- School of Microelectronics, Shanghai University, Shanghai, 201800, China
| | - Miaomiao Sun
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China
| | - Tian Li
- Graduate School, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhiping Shen
- General practice, Tongji University School of Medicine Affiliated Anting Community Health Center of Jiading District, Shanghai, 201805, China.
| | - Shuang Sha
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
11
|
Su L, Zhang F, Liu MX, Li H, Li Q, Zhu YZ, Hou YF, Chen X, Wang XY, Qian CM, Yao C, Wang LX, Jiao XN, Zhu XD, Xu ZH, Zou CP. The Tian-Men-Dong decoction suppresses the tumour-infiltrating G-MDSCs via IL-1β-mediated signalling in lung cancer. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116491. [PMID: 37072091 DOI: 10.1016/j.jep.2023.116491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/17/2023] [Accepted: 04/11/2023] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional Chinese medicine (TCM) Tian-Men-Dong decoction (TD) has been able to effectively treat lung cancer in China for thousands of years. TD improves the quality of life in lung cancer patients by promoting nourishment of yin and reducing dryness, clearing the lung and removing toxins. Pharmacological studies show that TD contains active antitumour ingredients, but its underlying mechanism remains unknown. AIM OF THE STUDY This study aims at exploring potential mechanisms of TD in the treatment of lung cancer by regulating granulocytic-myeloid-derived suppressor cells (G-MDSCs). MATERIALS AND METHODS An orthotopic lung cancer mouse model was generated by intrapulmonary injection with LLC-luciferase cells in immunocompetent C57BL/6 mice or immunodeficient nude mice. TD/saline was orally administered once to the model mice daily for 4 weeks. Live imaging was conducted to monitor tumour growth. Immune profiles were detected by flow cytometry. H&E and ELISA were applied to test the cytotoxicity of the TD treatment. RT-qPCR and western blotting were performed to detect apoptosis-related proteins in G-MDSCs. A neutralizing antibody (anti-Ly6G) was utilized to exhaust the G-MDSCs via intraperitoneal injection. G-MDSCs were adoptively transferred from wild-type tumour-bearing mice. Immunofluorescence, TUNEL and Annexin V/PI staining were conducted to analyse apoptosis-related markers. A coculture assay of purified MDSCs and T cells labelled with CFSE was performed to test the immunosuppressive activity of MDSCs. The presence of TD/IL-1β/TD + IL-1β in purified G-MDSCs cocultured with the LLC system was used for ex vivo experiments to detect IL-1β-mediated apoptosis of G-MDSCs. RESULTS TD prolonged the survival of immune competent C57BL/6 mice in an orthotopic lung cancer model, but did not have the same effect in immunodeficient nude mice, indicating that its antitumour properties of TD are exerted by regulating immunity. TD induced G-MDSC apoptosis via the IL-1β-mediated NF-κB signalling cascade leading to effectively weaken the immunosuppressive activity of G-MDSCs and promote CD8+ T-cell infiltration, which was supported by both the depletion and adoptive transfer of G-MDSCs assays. In addition, TD also showed minimal cytotoxicity both in vivo and in vitro. CONCLUSION This study reveals for the first time that TD, a classic TCM prescription, is able to regulate G-MDSC activity and trigger its apoptosis via the IL-1β-mediated NF-κB signalling pathway, reshaping the tumour microenvironment and demonstrating antitumour effects. These findings provide a scientific foundation the clinical treatment of lung cancer with TD.
Collapse
Affiliation(s)
- Lin Su
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Fei Zhang
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, 200092, China
| | - Ming-Xi Liu
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hong Li
- Department of Pulmonary Diseases, Shenzhen Hospital, Shanghai University of Traditional Chinese Medicine, Shenzhen, 518001, China
| | - Qiang Li
- Institute of Interdisciplinary Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 518109, China
| | - Yang-Zhuangzhuang Zhu
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yi-Fei Hou
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao Chen
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao-Yu Wang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chun-Mei Qian
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Chao Yao
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li-Xin Wang
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao-Ning Jiao
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xian-Dan Zhu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zi-Hang Xu
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Chun-Pu Zou
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
12
|
Yu YX, Wang S, Liu ZN, Zhang X, Hu ZX, Dong HJ, Lu XY, Zheng JB, Cui HJ. Traditional Chinese medicine in the era of immune checkpoint inhibitor: theory, development, and future directions. Chin Med 2023; 18:59. [PMID: 37210537 DOI: 10.1186/s13020-023-00751-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/13/2023] [Indexed: 05/22/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer management and have been widely applied; however, they still have some limitations in terms of efficacy and toxicity. There are multiple treatment regimens in Traditional Chinese Medicine (TCM) that play active roles in combination with Western medicine in the field of oncology treatment. TCM with ICIs works by regulating the tumor microenvironment and modulating gut microbiota. Through multiple targets and multiple means, TCM enhances the efficacy of ICIs, reverses resistance, and effectively prevents and treats ICI-related adverse events based on basic and clinical studies. However, there have been few conclusions on this topic. This review summarizes the development of TCM in cancer treatment, the mechanisms underlying the combination of TCM and ICIs, existing studies, ongoing trials, and prospects for future development.
Collapse
Affiliation(s)
- Yi-Xuan Yu
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
- Oncology Department of Integrative Medicine, China-Japan Friendship Hospital, No.2 Yinghua East Road, Chaoyang District, Beijing, 100029, China
| | - Shuo Wang
- Oncology Department of Integrative Medicine, China-Japan Friendship Hospital, No.2 Yinghua East Road, Chaoyang District, Beijing, 100029, China
| | - Zhe-Ning Liu
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
- Oncology Department of Integrative Medicine, China-Japan Friendship Hospital, No.2 Yinghua East Road, Chaoyang District, Beijing, 100029, China
| | - Xu Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
- Oncology Department of Integrative Medicine, China-Japan Friendship Hospital, No.2 Yinghua East Road, Chaoyang District, Beijing, 100029, China
| | - Zi-Xin Hu
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
- Oncology Department of Integrative Medicine, China-Japan Friendship Hospital, No.2 Yinghua East Road, Chaoyang District, Beijing, 100029, China
| | - Hui-Jing Dong
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
- Oncology Department of Integrative Medicine, China-Japan Friendship Hospital, No.2 Yinghua East Road, Chaoyang District, Beijing, 100029, China
| | - Xing-Yu Lu
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
- Oncology Department of Integrative Medicine, China-Japan Friendship Hospital, No.2 Yinghua East Road, Chaoyang District, Beijing, 100029, China
| | - Jia-Bin Zheng
- Oncology Department of Integrative Medicine, China-Japan Friendship Hospital, No.2 Yinghua East Road, Chaoyang District, Beijing, 100029, China.
| | - Hui-Juan Cui
- Oncology Department of Integrative Medicine, China-Japan Friendship Hospital, No.2 Yinghua East Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
13
|
pPe Op inhibits HGC-27 cell proliferation, migration and invasion by upregulating miR-30b-5p and down-regulating the Rac1/Cdc42 pathway. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1897-1908. [PMID: 36789688 PMCID: PMC10157518 DOI: 10.3724/abbs.2022193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is the fifth most frequently occurring and the fourth most lethal malignant cancer worldwide. A bioactive protein (pPe Op) from Omphalia lapidescens exhibits significant inhibitory effects on gastric cancer cells. miRNA deep sequencing analysis shows that miR-30b-5p is significantly upregulated in HGC-27 cells treated with pPe Op. Verification results show that the expression level of miR-30b-5p is significantly increased in HGC-27 cells after pPe Op treatment. Additionally, miR-30b-5p is significantly downregulated in clinical gastric cancer tissues compared to that in adjacent normal tissues. Following pPe Op treatment and/or transfection with miR-30b-5p mimic, the proliferation, migration, and invasion of HGC-27 cells are significantly impaired. Immunofluorescence microscopy shows that pPe Op and/or miR-30b-5p destroy(s) microfilaments and microstructures and inhibit(s) the formation of pseudopodia. Bioinformatics analysis, dual-luciferase reporter assay, and western blot analysis confirm that miR-30b-5p downregulates Rac1/Cdc42 expression and activation by targeting RAB22A. Available data indicate that miR-30b-5p plays an anti-gastric cancer role in mediating pPe Op. pPe Op upregulates miR-30b-5p expression, which in turn inhibits RAB22A expression, resulting in a reduction in the expression and activation of Rac1 and Cdc42 and their downstream targets, thus destroying the cytoskeletal structure and inhibiting the proliferation, migration, and invasion of cancer cells.
Collapse
|
14
|
Wu Y, Li Y, Guo W, Liu J, Lao W, Hu P, Lin Y, Chen H. Laminaria japonica Peptides Suppress Liver Cancer by Inducing Apoptosis: Possible Signaling Pathways and Mechanism. Mar Drugs 2022; 20:704. [PMID: 36355026 PMCID: PMC9698768 DOI: 10.3390/md20110704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 01/10/2024] Open
Abstract
The anticancer properties of Laminaria japonica peptides (LJPs) have never been studied. Here, we extracted LJPs from fresh seaweed and explored their anti-liver cancer activity (in vivo and in vitro). LJPs were isolated/purified by HPLC-ESI-MS. HepG2 cell apoptosis and cell cycle were evaluated. MTT assays were used to examine the cytotoxicity of LJPs. Caspase activation of caspases 3 and 9, cleaved caspases 3 and 9, and cleaved PARP was examined by Western blotting. The PI3K/AKT pathway and the phosphorylation states of MAPKs (p38 and JNK) were examined. We found that the LJP-1 peptide had the most antiproliferative activity in H22 cells in vitro. LJP-1 blocked H22 cells in the G0/G1 phase, accompanied by inhibition of cyclin expression. LJP-1 induced apoptosis through caspase activation and regulation of the ASK1/MAPK pathway. Concurrent in vivo studies demonstrated that LJP-1 significantly inhibited tumor growth and induced tumor cell apoptosis/necrosis. In conclusion, LJPs, particularly LJP-1, exert strong inhibitory effects on liver cancer growth in vivo and in vitro. LJP-1 induces HCC cell apoptosis through the caspase-dependent pathway and G0/G1 arrest. LJP-1 induces caspase-dependent apoptosis, in part by inhibiting PI3K, MAPK signaling pathways, and cell cycle proteins. LJP-1 has the potential to be a novel candidate for human liver cancer therapeutics.
Collapse
Affiliation(s)
- Yingzi Wu
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Yuanhui Li
- National Marketing Center, Sinopharm Group Pharmaceutical Co., Ltd., Guangzhou 510010, China
| | - Wenhai Guo
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Jie Liu
- State Key Laboratory of Respiratory Disease for Allergy and Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen 518060, China
| | - Weiguo Lao
- Department of Biochemistry, Douglass Hanly Moir Pathology, Macquarie Park, NSW 2113, Australia
| | - Penghui Hu
- Department of Oncology, Jiangmen Central Hospital, Jiangmen 529030, China
| | - Yiguang Lin
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- School of Life Sciences, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Hongjie Chen
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| |
Collapse
|
15
|
Yu L, Jin Y, Song M, Zhao Y, Zhang H. When Natural Compounds Meet Nanotechnology: Nature-Inspired Nanomedicines for Cancer Immunotherapy. Pharmaceutics 2022; 14:pharmaceutics14081589. [PMID: 36015215 PMCID: PMC9412684 DOI: 10.3390/pharmaceutics14081589] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 02/01/2023] Open
Abstract
Recent significant strides of natural compounds in immunomodulation have highlighted their great potential against cancer. Despite many attempts being made for cancer immunotherapy, the biomedical application of natural compounds encounters a bottleneck because of their unclear mechanisms, low solubility and bioavailability, and limited efficacy. Herein, we summarize the immune regulatory mechanisms of different natural compounds at each step of the cancer-immunity cycle and highlight their anti-tumor potential and current limitations. We then propose and present various drug delivery strategies based on nanotechnology, including traditional nanoparticles (NPs)-based delivery strategies (lipid-based NPs, micelles, and polysaccharide/peptide/protein-based NPs) and novel delivery strategies (cell-derived NPs and carrier-free NPs), thus providing solutions to break through existing bottlenecks. Furthermore, representative applications of nature-inspired nanomedicines are also emphasized in detail with the advantages and disadvantages discussed. Finally, the challenges and prospects of natural compounds for cancer immunotherapy are provided, hopefully, to facilitate their far-reaching development toward clinical translation.
Collapse
Affiliation(s)
- Linna Yu
- People’s Hospital of Qianxinan Buyi and Miao Minority Autonomous Prefecture, Xingyi 562400, China;
| | - Yi Jin
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, Department of Pharmaceutics, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China; (Y.J.); (M.S.)
| | - Mingjie Song
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, Department of Pharmaceutics, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China; (Y.J.); (M.S.)
| | - Yu Zhao
- People’s Hospital of Qianxinan Buyi and Miao Minority Autonomous Prefecture, Xingyi 562400, China;
- Correspondence: (Y.Z.); (H.Z.)
| | - Huaqing Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, Department of Pharmaceutics, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China; (Y.J.); (M.S.)
- Correspondence: (Y.Z.); (H.Z.)
| |
Collapse
|
16
|
Ri MH, Ma J, Jin X. Development of natural products for anti-PD-1/PD-L1 immunotherapy against cancer. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114370. [PMID: 34214644 DOI: 10.1016/j.jep.2021.114370] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/13/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) immune checkpoint is one of the most promising therapeutic targets for cancer immunotherapy, but several challenges remain in current anti-PD-1/PD-L1 therapy. Natural products, mainly derived from traditional medicine, could improve and expand anti-PD-1/PD-L1 therapy because of their advantages such as large diversity and multi-target effects. AIM OF THE STUDY This review summarize natural products, raw extracts, and traditional medicines with pharmacological effects associated with the PD-1/PD-L1 axis, particularly PD-L1. MATERIALS AND METHODS Electronic literature databases, including Web of Science, PubMed, and ScienceDirect, and online drugs and chemicals databases, including DrugBank, ZINC, PubChem, STITCH, and CTD, were searched without date limitation by February 2021. 'Natural product or herb or herbal plant or traditional medicine' and 'PD-L1' and 'Cancer immunotherapy' were used as the search keywords. Among 112 articles identified in database searching, 54 articles are full text articles, reporting in silico, in vitro, in vivo and clinical trials. 68 articles included are review articles and grey literature such as thesis and congress abstracts. RESULTS Several natural products and traditional medicines have exhibited diverse and multi-functional effects including direct blockade of PD-1/PD-L1 interactions, modulation of PD-L1 expression, and cooperation with PD-1/PD-L1 inhibitors. CONCLUSION Natural products and traditional medicines can facilitate the development of more effective and acceptable diverse strategies for anti-PD-1/PD-L1 therapy, but further exploration of natural products and pharmaceutical techniques is required.
Collapse
Affiliation(s)
- Myong Hak Ri
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China; Faculty of Life Science, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
17
|
Zhang Z, Zhao S, Yang H, Chen Y, Feng H, An M, Chen B. Prognostic and Immunological Role of Gasdermin E in Pan-Cancer Analysis. Front Oncol 2021; 11:706266. [PMID: 34381728 PMCID: PMC8350383 DOI: 10.3389/fonc.2021.706266] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/06/2021] [Indexed: 12/26/2022] Open
Abstract
Despite accumulating cell- or animal-based experiments providing the relationship between Gasdermin E (GSDME) and human diseases, especially in malignant cancers, no pan-cancer analysis about the function of GSMDE in cancer management can be available up to date. Our research, for the first time, explored the potential carcinogenic role of GSDME across 33 tumors from the public platform of TCGA (The cancer genome atlas) database. GSDME is highly expressed in most malignant cancers, and obvious relationship exists between GSDME level and survival prognosis of cancer patients. The expression of GSDME was statically associated with the cancer-associated fibroblast infiltration in diverse cancer types, such as BLCA, CHOL, GBM, KIRC, LIHC, MESO, STAD, and UCEC. Furthermore, pyroptosis, sensory perception of sound, and defense response to bacterium were involved in the functional mechanisms of GSDME expression from GO analysis. Last but not the least, in vitro experiments were also performed to identify GSDME-induced pyroptosis. Our first pan-cancer analysis of GSDME not only broadens the understanding of the carcinogenic roles of GSDME but also provides a promising therapeutic strategy for benefiting an increasing number of cancerous patients based on GSDME-induced pyroptosis.
Collapse
Affiliation(s)
| | - Shuangshuang Zhao
- Department of Medical Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | | | | | | | | | - Baoding Chen
- Department of Medical Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
18
|
莫 婵, 谢 淑, 高 磊, 吕 志. [ Baoganning formula alleviates liver fibrosis in mice by inhibiting hepatic IDO1 expression and promoting phenotypic maturation of dendritic cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1002-1011. [PMID: 34308849 PMCID: PMC8329669 DOI: 10.12122/j.issn.1673-4254.2021.07.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the protective effect of Bao Gan Ning (BGN), a traditional Chinese medicinal formula, against CCl4-induced liver fibrosis in mice and explore the mechanism. METHODS C57BL/6 mice were randomly divided into control group, liver fibrosis model group, positive control group and the low-, middle-, and high-dose BGN groups (n=10). In all but the control group, the mice were subjected to daily intraperitoneal injection of 25% CCl4 (in olive oil) to induce liver fibrosis and intragastric gavage of corresponding drugs. After 8 weeks, serum levels of ALT and AST were detected. Pathological examination of the liver was performed using HE and Sirius Red staining and α-SMA immunohistochemistry. The expression level of indoleamine 2, 3-dioxygenase 1 (IDO1) and phenotypic changes of hepatic DCs in the liver were measured. Another 18 mice were randomly divided into AAV9-NC, AAV9-IDO1 and high-dose BGN + AAV-IDO1 groups (n=6) for corresponding treatment, and 4 weeks later the deposit of hepatic IDO1 and phenotypic changes of the hepatic DCs were analyzed. RESULTS Compared with those in the model group, serum AST and ALT levels decreased significantly in BGN group (P < 0.01). Obvious liver fibrosis was observed in the model group, while the mice treated with BGN showed obviously reduced cell necrosis and collagen proliferation in the liver with significantly lowered the expression levels of hepatic α-SMA and IDO1 (P < 0.05). The percentages of CD11C + DCs, CD11C +CD80 + DCs, CD11C +CD86 + DCs, CD11C +CD40 + DCs, CD11C +MHCII + DCs, CD3 + T cells, and CD3 +CD4 + T cells all increased significantly in BGN group as compared with the model group (P < 0.05). In mice with adenovirus-mediated IDO1 overexpression in the liver, BGN treatment significantly lowered the expression level of IDO1 (P=0.000) and increased the percentages of hepatic CD11C +CD40 + DCs, CD11C +MHCII + DCs and CD3 +CD4 + T cells (P < 0.05). CONCLUSION BGN can effectively inhibit liver fibrosis in mice possibly by lowering the expression level of IDO1 in the liver, thus improving the function of hepatic DCs and subsequently promoting proliferation of T cells.
Collapse
Affiliation(s)
- 婵 莫
- />南方医科大学中医药学院,广东 广州 510515School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - 淑雯 谢
- />南方医科大学中医药学院,广东 广州 510515School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - 磊 高
- />南方医科大学中医药学院,广东 广州 510515School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - 志平 吕
- />南方医科大学中医药学院,广东 广州 510515School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
19
|
Jia M, Jia X, Zhang D, Liu W, Yi S, Li Z, Cong B, Ma C, Li S, Zhang J. CD2 + T-helper 17-like cells differentiated from a CD133 + subpopulation of non-small cell lung carcinoma cells promote the growth of lung carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:687. [PMID: 33987385 PMCID: PMC8106049 DOI: 10.21037/atm-21-980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Cancer stem cells (CSCs) give rise to a diverse variety of differentiated cells, which comprise the bulk of the tumor microenvironment (TME). However, the exact multi-directional differentiation potential of CSCs has not been fully clarified. This study was designed to explore whether CSCs differentiate into cellular components of the TME to promote the growth of lung carcinoma. Methods The present of CD133+, CD2+, and CD133+CD2+ cells in both clinical lung adenocarcinoma tissue and non-small cell lung carcinoma (NSCLC) cell lines were monitored using polymerase chain reaction (PCR) Array, flow cytometry (FCM), quantitative real-time PCR (qRT-PCR) and immunohistofluorescence (IF). Stem-like properties of CD133+ cells and CD2+ cells were detected by sphere formation assay, IF, and western blot. Colony formation and xenograft tumors experiments were performed to assess the malignant behaviors of CD2+ cells. The differentiation of CD133+ cells to CD2+ Th17-like cells was observed by FCM. The interleukin (IL)-2/phosphorylated signal transducer and activator of transcription protein 5 (pSTAT5)/retinoic acid receptor-related orphan receptor gamma t (RORγt) signaling pathway was evaluated by western blot and FCM. Results We found that CD133+ cells within both clinical lung adenocarcinoma tissue and NSCLC cell lines included a subset of CD2-expressing cells, which were correlated with the grade of malignancy (r=0.7835, P<0.01) and exhibited stem-like properties. Then, we determined the tumorigenic effects of CD2 on the growth of transplanted Lewis lung carcinoma cells (LLC1) in C57/BL6 mice. The results indicated that CD2+ cells were effective in promoting tumor growth in vivo (P<0.01). Furthermore, we obtained direct evidence of an ability of CD133+ cells to transform to T-helper 17-like cells via an intermediate CD133+CD2+ progenitor cell that is able to secrete IL-17A and IL-23. Furthermore, we found that IL-2 can inhibit the production of T-helper 17-like cells (P<0.001) by modulating the activation of STAT5 signaling pathways to downregulate the expression of RORγt (P<0.001). Conclusions Our data demonstrates that Th17-like cells generated from CSCs support cancer progression. These findings enrich the definition of multidirectional differentiation potential of CSCs and improve the understanding of the role of CSCs in cancer progression, which aids the improvement and creation of therapies.
Collapse
Affiliation(s)
- Miaomiao Jia
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China.,Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Xianxian Jia
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China.,Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Dong Zhang
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Wenxuan Liu
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Shanyong Yi
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Zhenhua Li
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bin Cong
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China.,Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China.,College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Chunling Ma
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China.,College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Shujin Li
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China.,College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Jun Zhang
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|