1
|
Sagini MN, Zepp M, Eyol E, Ali DM, Gromova S, Dahlmann M, Behrens D, Groeschel C, Tischmeier L, Hoffmann J, Berger MR, Forssmann WG. EPI-X4, a CXCR4 antagonist inhibits tumor growth in pancreatic cancer and lymphoma models. Peptides 2024; 175:171111. [PMID: 38036098 DOI: 10.1016/j.peptides.2023.171111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023]
Abstract
Endogenous peptide inhibitor for CXCR4 (EPI-X4) is a CXCR4 antagonist with potential for cancer therapy. It is a processed fragment of serum albumin from the hemofiltrate of dialysis patients. This study reports the efficacy of fifteen EPI-X4 derivatives in pancreatic cancer and lymphoma models. In vitro, the peptides were investigated for antiproliferation (cytotoxicity) by MTT assay. The mRNA expression for CXCR4 and CXCL12 was determined by RT-PCR, chip array and RNA sequencing. Chip array analysis yielded 634 genes associated with CXCR4/CXCL12 signaling. About 21% of these genes correlated with metastasis in the context of cell motility, proliferation, and survival. Expression levels of these genes were altered in pancreatic cancer (36%), lymphoma models (53%) and in patients' data (58%). EPI-X4 derivatives failed to inhibit cell proliferation due to low expression of CXCR4 in vitro, but inhibited tumor growth in the bioassays with significant efficacy. In the pancreatic cancer model, EPI-X4a, f and k inhibited mean tumor growth by > 50% and even caused complete remissions. In the lymphoma model, EPI-X4b, n and p inhibited mean tumor growth by > 70% and caused stable disease. Given the non-toxic and non-immunogenic properties of EPI-X4, these findings underscore its status as a promising therapy of pancreatic cancer and lymphoma and warrant further studies. SIMPLE SUMMARY: This study examined the value of chemokine receptor CXCR4 as an antineoplastic target for the endogenous peptide inhibitor of CXCR4 (EPI-X4), a 12-meric peptide derived from serum albumin. EPI-X4 inhibits CXCR4 interaction with its natural ligand, CXCL12 (SDF1). Therefore, malignancies (including pancreatic cancer and lymphoma) that depend on the CXCR4/CXCL12 pathway for progression can be targeted with EPI-X4. Of 634 genes that were linked to the CXCR4/CXCL12 pathway, 21% were associated with metastasis. In cultured human Suit2-007 pancreatic cancer cells, CXCR4 showed low to undetectable expression, which was why EPI-X4 did not inhibit pancreatic cancer cell proliferation. These findings were different in vivo, where CXCR4 was highly expressed and EPI-X4 inhibited tumor growth in rodents harboring pancreatic cancer or lymphoma. In the pancreatic cancer model, EPI-X4 derivatives a, f and k caused complete remissions, while in lymphomas EPI-X4 derivatives b, n and p caused stable disease.
Collapse
Affiliation(s)
- Micah N Sagini
- Toxicology and Chemotherapy Unit, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Michael Zepp
- Toxicology and Chemotherapy Unit, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Ergül Eyol
- Toxicology and Chemotherapy Unit, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Doaa M Ali
- Toxicology and Chemotherapy Unit, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Svetlana Gromova
- EPO, Experimental Pharmacology & Oncology Berlin-Buch GmbH, Germany
| | - Mathias Dahlmann
- EPO, Experimental Pharmacology & Oncology Berlin-Buch GmbH, Germany
| | - Diana Behrens
- EPO, Experimental Pharmacology & Oncology Berlin-Buch GmbH, Germany
| | - Christian Groeschel
- NeoPep Pharma GmbH & Co. KG., Hannover, Germany and Hannover Medical School, Department of Internal Medicine, Germany
| | - Linus Tischmeier
- NeoPep Pharma GmbH & Co. KG., Hannover, Germany and Hannover Medical School, Department of Internal Medicine, Germany
| | - Jens Hoffmann
- EPO, Experimental Pharmacology & Oncology Berlin-Buch GmbH, Germany
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Centre (DKFZ), Heidelberg, Germany.
| | - Wolf-Georg Forssmann
- NeoPep Pharma GmbH & Co. KG., Hannover, Germany and Hannover Medical School, Department of Internal Medicine, Germany.
| |
Collapse
|
2
|
Gupta S, Banavath HN, Tejavath KK. Pharmacoinformatic screening of phytoconstituent and evaluation of its anti-PDAC effect using in vitro studies. J Biomol Struct Dyn 2023; 41:10627-10641. [PMID: 36510680 DOI: 10.1080/07391102.2022.2155701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022]
Abstract
With no prominent treatment for pancreatic ductal adenocarcinoma (PDAC) in conventional chemotherapy, recent studies have focused on uniting conventional and traditional medicines including plant phytoconstituents. Herein, we used pharmacoinformatic studies to identify potent phytoconstituent as ligand having inhibition activities against canonical anticancer targets, and evaluated its effect on PDAC cell lines. SwissTargetPrediction and SuperPred tools were utilized to segregate protein targets of ligand in humans, following which FunRich was applied to garner its targets in PDAC. STRING analysis predicted protein-protein interactions and dynamic simulation studies confirmed stability of ligand-protein complex. For in vitro cytotoxic potential, ligand treatment at different concentrations was given to PDAC cell lines both alone and combined with gemcitabine, followed by evaluation of effects on migration. Differential gene expression was checked using PCR for evaluating mechanism of cytotoxicity. Results showed pentagalloylglucose (PGG) with highest docking and MMGBSA scores for Cyclooxygenase 2 (Cox2) inhibition site. SwissTargetPrediction and SuperPred analysis detected 40 targets of PGG in PDAC. Simulation data showed stability of protein-ligand complex. In in vitro experiments Mia-PaCa-2 was more sensitive to PGG than Panc-1. PGG successfully inhibited migration both alone and in combination with gemcitabine. Additionally, PGG treatment induced apoptosis in both the cell lines; but showed antagonism when combined with gemcitabine. In conclusion, our report demonstrates PGG has good binding with Cox2 and showed anti-PDAC activity by inhibiting migration and inducing apoptosis, thus it can be used as a therapy option. But further studies are required to confirm its behaviour as a combination therapy drug.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shruti Gupta
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Hemanth Naick Banavath
- Department of Sports Bio-Sciences, School of Sports Science MYAS-CURAJ, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Kiran Kumar Tejavath
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
3
|
Jia W, Yuan J, Li S, Cheng B. The role of dysregulated mRNA translation machinery in cancer pathogenesis and therapeutic value of ribosome-inactivating proteins. Biochim Biophys Acta Rev Cancer 2023; 1878:189018. [PMID: 37944831 DOI: 10.1016/j.bbcan.2023.189018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/17/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Dysregulated protein synthesis is a hallmark of tumors. mRNA translation reprogramming contributes to tumorigenesis, which is fueled by abnormalities in ribosome formation, tRNA abundance and modification, and translation factors. Not only malignant cells but also stromal cells within tumor microenvironment can undergo transformation toward tumorigenic phenotypes during translational reprogramming. Ribosome-inactivating proteins (RIPs) have garnered interests for their ability to selectively inhibit protein synthesis and suppress tumor growth. This review summarizes the role of dysregulated translation machinery in tumor development and explores the potential of RIPs in cancer treatment.
Collapse
Affiliation(s)
- Wentao Jia
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China
| | - Jiaying Yuan
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Shu Li
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| |
Collapse
|
4
|
Sagini MN, Klika KD, Owen RW, Berger MR. Khasianine Affects the Expression of Sugar-Sensitive Proteins in Pancreatic Cancer Cells, Which Are Altered in Data from the Rat Model and Patients. ACS Pharmacol Transl Sci 2023; 6:727-737. [PMID: 37200805 PMCID: PMC10186360 DOI: 10.1021/acsptsci.3c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Indexed: 05/20/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a deadly malignancy with no effective treatment, particularly in the advanced stage. This study explored the antiproliferative activity of khasianine against pancreatic cancer cell lines of human (Suit2-007) and rat (ASML) origin. Khasianine was purified from Solanum incanum fruits by silica gel column chromatography and analyzed by LC-MS and NMR spectroscopy. Its effect in pancreatic cancer cells was evaluated by cell proliferation assay, chip array and mass spectrometry. Proteins showing sensitivity to sugars, i.e. sugar-sensitive lactosyl-Sepharose binding proteins (LSBPs), were isolated from Suit2-007 cells by competitive affinity chromatography. The eluted fractions included galactose-, glucose-, rhamnose- and lactose-sensitive LSBPs. The resulting data were analyzed by Chipster, Ingenuity Pathway Analysis (IPA) and GraphPad Prism. Khasianine inhibited proliferation of Suit2-007 and ASML cells with IC50 values of 50 and 54 μg/mL, respectively. By comparative analysis, khasianine downregulated lactose-sensitive LSBPs the most (126%) and glucose-sensitive LSBPs the least (85%). Rhamnose-sensitive LSBPs overlapped significantly with lactose-sensitive LSBPs and were the most upregulated in data from patients (23%) and a pancreatic cancer rat model (11.5%). From IPA, the Ras homolog family member A (RhoA) emerged as one of the most activated signaling pathways involving rhamnose-sensitive LSBPs. Khasianine altered the mRNA expression of sugar-sensitive LSBPs, some of which were modulated in data from patients and the rat model. The antiproliferative effect of khasianine in pancreatic cancer cells and the downregulation of rhamnose-sensitive proteins underscore the potential of khasianine in treating pancreatic cancer.
Collapse
Affiliation(s)
- Micah N. Sagini
- Toxicology
and Chemotherapy Unit, German Cancer Research
Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Karel D. Klika
- Molecular
Structure Analysis, German Cancer Research
Center (DKFZ), Im Neuenheimer
Feld 280, 69120 Heidelberg, Germany
| | - Robert W. Owen
- Biochemistry
and Biomarkers Unit, German Cancer Research
Center (DKFZ), Im Neuenheimer
Feld 580, 69120 Heidelberg, Germany
| | - Martin R. Berger
- Toxicology
and Chemotherapy Unit, German Cancer Research
Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| |
Collapse
|
5
|
Pervaiz A, Naseem N, Saleem T, Raza SM, Shaukat I, Kanwal K, Sajjad O, Iqbal S, Shams F, Ijaz B, Berger MR. Anticancer genes (NOXA, PAR-4, TRAIL) are de-regulated in breast cancer patients and can be targeted by using a ribosomal inactivating plant protein (riproximin). Mol Biol Rep 2023; 50:5209-5221. [PMID: 37127809 DOI: 10.1007/s11033-023-08477-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Anticancer genes are an endogenous defense against transformed cells as they impose antineoplastic effects upon ectopic expression. Profiling the expression of these genes is fundamental for exploring their prognostic and therapeutic relevance in cancers. Natural compounds can upregulate anticancer genes in malignant cells and thus be useful for therapeutic purposes. In this study, we identified the expression levels of anticancer genes in breast cancer clinical isolates. In addition, the purified and sequenced plant protein (riproximin) was evaluated for its potential to induce anticancer genes in two breast cancer cell lines. METHODOLOGY Expression profiles of three anticancer genes (NOXA, PAR-4, TRAIL) were identified by immunohistochemistry in 45 breast cancer clinical isolates. Breast cancer cells were exposed to riproximin and expression of the anticancer genes was determined by microarray, real-time PCR and western blot methodologies. Lastly, a bioinformatic approach was adopted to highlight the molecular/functional significance of the anticancer genes. RESULTS NOXA expression was evenly de-regulated among the clinical isolates, while PAR-4 was significantly down-regulated in majority of the breast cancer tissues. In contrast, TRAIL expression was increased in most of the clinical samples. Expression levels of the anticancer genes followed a distinct trend in accordance with the disease severity. Riproximin showed a substantial potential of inducing expression of the anticancer genes in breast cancer cells at transcriptomic and protein levels. The bioinformatic approach revealed involvement of anticancer genes in multiple cellular functions and signaling cascades. CONCLUSION Anticancer genes were de-regulated and showed discrete expression patterns in breast cancer patient samples. Riproximin effectively induced the expression of selected anticancer genes in breast cancer cells.
Collapse
Affiliation(s)
- Asim Pervaiz
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan.
- Toxicology and Chemotherapy Unit, German Cancer Research Centre (DKFZ), Heidelberg, Germany.
| | - Nadia Naseem
- Morbid Anatomy and Histopathology Department, University of Health Sciences, Lahore, Pakistan
| | - Talha Saleem
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
- Department of Allied Health Sciences, Superior University, Lahore, Pakistan
| | - Syed Mohsin Raza
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
| | - Iqra Shaukat
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
| | - Kinzah Kanwal
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
| | - Osheen Sajjad
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
| | - Sana Iqbal
- Human Genetics and Molecular Biology Department, University of Health Sciences, Lahore, Pakistan
| | - Faiza Shams
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Bushra Ijaz
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Immundiagnostik Comp, Bensheim, Germany
| |
Collapse
|
6
|
Pervaiz A, Saleem T, Kanwal K, Raza SM, Iqbal S, Zepp M, Georges RB, Berger MR. Expression profiling of anticancer genes in colorectal cancer patients and their in vitro induction by riproximin, a ribosomal inactivating plant protein. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04410-6. [PMID: 36251065 DOI: 10.1007/s00432-022-04410-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/06/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Ectopic expression of anticancer genes (ACGs) imposes antineoplastic effects on transformed cells. Clinically, reduced expression of these genes has been linked with poor prognosis, metastasis and chemo/radiotherapy resistance in cancers. Identifying expression pattern of ACGs is crucial to establish their prognostic and therapeutic relevance in colorectal cancer (CRC). In addition to the clinical perspective, naturally occurring compounds can be explored in parallel for inducing ACGs to achieve cancer cell-specific death. METHODOLOGY Expression profiles of three ACGs (NOXA, PAR-4, TRAIL) were identified via real-time PCR in CRC clinical isolates. Time lapse-based expression modifications in ACGs were studied in a CRC liver metastasis animal model using microarray methodology. Effects of a purified plant protein (riproximin) on selected ACGs were identified in three primary and metastatic CRC cell lines by real-time PCR. Lastly, importance of the ACGs in a cellular environment was highlighted via bioinformatic analysis. RESULTS ACGs (except NOXA) were persistently downregulated in clinical isolates when comparing the overall mean expression values with normal mucosa levels. In vivo studies showed a prominent inhibition of NOXA and PAR-4 genes in implanted CRC cells during rat liver colonization. TRAIL showed deviation from this theme while showing marked induction during the early period of liver colonization (days 3 and 6 after CRC cell implantation). Riproximin exhibited substantial potential of inducing ACGs at transcriptome levels in selected CRC cell lines. Bioinformatic analysis showed that vital molecular/functional aspects of a cell are associated with the presence of ACGs. CONCLUSION ACGs are downregulated in primary and metastatic phase of CRC. Riproximin effectively induces ACGs in CRC cells and can be exploited for clinical investigations over time.
Collapse
Affiliation(s)
- Asim Pervaiz
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan.
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Talha Saleem
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
- Department of Allied Health Sciences, Superior University, Lahore, Pakistan
| | - Kinzah Kanwal
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
| | - Syed Mohsin Raza
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
| | - Sana Iqbal
- Human Genetics and Molecular Biology Department, University of Health Sciences, Lahore, Pakistan
| | - Michael Zepp
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Immundiagnostik, Bensheim, Germany
| | - Rania B Georges
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Coordination Centre for Clinical Trials, University Hospital, Heidelberg, Germany
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Immundiagnostik, Bensheim, Germany
| |
Collapse
|