1
|
Roman-Ramos H, Ho PL. Current Technologies in Snake Venom Analysis and Applications. Toxins (Basel) 2024; 16:458. [PMID: 39591213 PMCID: PMC11598588 DOI: 10.3390/toxins16110458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
This comprehensive review explores the cutting-edge advancements in snake venom research, focusing on the integration of proteomics, genomics, transcriptomics, and bioinformatics. Highlighting the transformative impact of these technologies, the review delves into the genetic and ecological factors driving venom evolution, the complex molecular composition of venoms, and the regulatory mechanisms underlying toxin production. The application of synthetic biology and multi-omics approaches, collectively known as venomics, has revolutionized the field, providing deeper insights into venom function and its therapeutic potential. Despite significant progress, challenges such as the functional characterization of toxins and the development of cost-effective antivenoms remain. This review also discusses the future directions of venom research, emphasizing the need for interdisciplinary collaborations and new technologies (mRNAs, cryo-electron microscopy for structural determinations of toxin complexes, synthetic biology, and other technologies) to fully harness the biomedical potential of venoms and toxins from snakes and other animals.
Collapse
Affiliation(s)
- Henrique Roman-Ramos
- Laboratório de Biotecnologia, Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo 01504-001, SP, Brazil;
| | - Paulo Lee Ho
- Centro Bioindustrial, Instituto Butantan, São Paulo 05503-900, SP, Brazil
| |
Collapse
|
2
|
Guo R, Guo G, Wang A, Xu G, Lai R, Jin H. Spider-Venom Peptides: Structure, Bioactivity, Strategy, and Research Applications. Molecules 2023; 29:35. [PMID: 38202621 PMCID: PMC10779620 DOI: 10.3390/molecules29010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
Spiders (Araneae), having thrived for over 300 million years, exhibit remarkable diversity, with 47,000 described species and an estimated 150,000 species in existence. Evolving with intricate venom, spiders are nature's skilled predators. While only a small fraction of spiders pose a threat to humans, their venoms contain complex compounds, holding promise as drug leads. Spider venoms primarily serve to immobilize prey, achieved through neurotoxins targeting ion channels. Peptides constitute a major part of these venoms, displaying diverse pharmacological activities, and making them appealing for drug development. Moreover, spider-venom peptides have emerged as valuable tools for exploring human disease mechanisms. This review focuses on the roles of spider-venom peptides in spider survival strategies and their dual significance as pharmaceutical research tools. By integrating recent discoveries, it provides a comprehensive overview of these peptides, their targets, bioactivities, and their relevance in spider survival and medical research.
Collapse
Affiliation(s)
- Ruiyin Guo
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (R.G.)
| | - Gang Guo
- The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming 650118, China;
| | - Aili Wang
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (R.G.)
| | - Gaochi Xu
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (R.G.)
| | - Ren Lai
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (R.G.)
- Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming-Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, China
| | - Hui Jin
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (R.G.)
| |
Collapse
|
3
|
Vásquez-Escobar J, Benjumea-Gutiérrez DM, Lopera C, Clement HC, Bolaños DI, Higuita-Castro JL, Corzo GA, Corrales-Garcia LL. Heterologous Expression of an Insecticidal Peptide Obtained from the Transcriptome of the Colombian Spider Phoneutria depilate. Toxins (Basel) 2023; 15:436. [PMID: 37505705 PMCID: PMC10467102 DOI: 10.3390/toxins15070436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Spider venoms are composed, among other substances, of peptide toxins whose selectivity for certain physiological targets has made them powerful tools for applications such as bioinsecticides, analgesics, antiarrhythmics, antibacterials, antifungals and antimalarials, among others. Bioinsecticides are an environmentally friendly alternative to conventional agrochemicals. In this paper, the primary structure of an insecticidal peptide was obtained from the venom gland transcriptome of the ctenid spider Phoneutria depilata (Transcript ID PhdNtxNav24). The peptide contains 53 amino acids, including 10 Cys residues that form 5 disulfide bonds. Using the amino acid sequence of such peptide, a synthetic gene was constructed de novo by overlapping PCRs and cloned into an expression vector. A recombinant peptide, named delta-ctenitoxin (rCtx-4), was obtained. It was expressed, folded, purified and validated using mass spectrometry (7994.61 Da). The insecticidal activity of rCtx-4 was demonstrated through intrathoracic injection in crickets (LD50 1.2 μg/g insect) and it was not toxic to mice. rCtx-4 is a potential bioinsecticide that could have a broad spectrum of applications in agriculture.
Collapse
Affiliation(s)
- Julieta Vásquez-Escobar
- Grupo de Toxinología y Alternativas Farmacéuticas y Alimentarias, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellin 1226, Colombia; (D.M.B.-G.); (C.L.)
| | - Dora María Benjumea-Gutiérrez
- Grupo de Toxinología y Alternativas Farmacéuticas y Alimentarias, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellin 1226, Colombia; (D.M.B.-G.); (C.L.)
| | - Carolina Lopera
- Grupo de Toxinología y Alternativas Farmacéuticas y Alimentarias, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellin 1226, Colombia; (D.M.B.-G.); (C.L.)
| | - Herlinda C. Clement
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, A.P. 510-3, Cuernavaca 62250, Mexico; (H.C.C.); (D.I.B.); (G.A.C.)
| | - Damaris I. Bolaños
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, A.P. 510-3, Cuernavaca 62250, Mexico; (H.C.C.); (D.I.B.); (G.A.C.)
| | - Jorge Luis Higuita-Castro
- PECET—Programa para el Estudio y Control de Enfermedades Tropicales, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Gerardo A. Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, A.P. 510-3, Cuernavaca 62250, Mexico; (H.C.C.); (D.I.B.); (G.A.C.)
| | - Ligia Luz Corrales-Garcia
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, A.P. 510-3, Cuernavaca 62250, Mexico; (H.C.C.); (D.I.B.); (G.A.C.)
- PECET—Programa para el Estudio y Control de Enfermedades Tropicales, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
- Departamento de Alimentos, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín 1226, Colombia
| |
Collapse
|
4
|
Ahmed J, Walker AA, Perdomo HD, Guo S, Nixon SA, Vetter I, Okoh HI, Shehu DM, Shuaibu MN, Ndams IS, King GF, Herzig V. Two Novel Mosquitocidal Peptides Isolated from the Venom of the Bahia Scarlet Tarantula ( Lasiodora klugi). Toxins (Basel) 2023; 15:418. [PMID: 37505687 PMCID: PMC10467143 DOI: 10.3390/toxins15070418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
Effective control of diseases transmitted by Aedes aegypti is primarily achieved through vector control by chemical insecticides. However, the emergence of insecticide resistance in A. aegypti undermines current control efforts. Arachnid venoms are rich in toxins with activity against dipteran insects and we therefore employed a panel of 41 spider and 9 scorpion venoms to screen for mosquitocidal toxins. Using an assay-guided fractionation approach, we isolated two peptides from the venom of the tarantula Lasiodora klugi with activity against adult A. aegypti. The isolated peptides were named U-TRTX-Lk1a and U-TRTX-Lk2a and comprised 41 and 49 residues with monoisotopic masses of 4687.02 Da and 5718.88 Da, respectively. U-TRTX-Lk1a exhibited an LD50 of 38.3 pmol/g when injected into A. aegypti and its modeled structure conformed to the inhibitor cystine knot motif. U-TRTX-Lk2a has an LD50 of 45.4 pmol/g against adult A. aegypti and its predicted structure conforms to the disulfide-directed β-hairpin motif. These spider-venom peptides represent potential leads for the development of novel control agents for A. aegypti.
Collapse
Affiliation(s)
- Jamila Ahmed
- Department of Zoology, Ahmadu Bello University Zaria, Kaduna 810107, Nigeria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Andrew A. Walker
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Queensland, Brisbane, QLD 4072, Australia
| | - Hugo D. Perdomo
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Shaodong Guo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Queensland, Brisbane, QLD 4072, Australia
| | - Samantha A. Nixon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Queensland, Brisbane, QLD 4072, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Hilary I. Okoh
- Department of Animal and Environmental Biology, Federal University Oye-Ekiti, Oye 371104, Nigeria
| | - Dalhatu M. Shehu
- Department of Zoology, Ahmadu Bello University Zaria, Kaduna 810107, Nigeria
| | - Mohammed N. Shuaibu
- Department of Biochemistry, Ahmadu Bello University Zaria, Kaduna 810107, Nigeria
- Centre for Biotechnology Research and Training, Ahmadu Bello University Zaria, Kaduna 810107, Nigeria
| | - Iliya S. Ndams
- Department of Zoology, Ahmadu Bello University Zaria, Kaduna 810107, Nigeria
| | - Glenn F. King
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Queensland, Brisbane, QLD 4072, Australia
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
- School of Science, Technology, and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| |
Collapse
|
5
|
Ascoët S, Touchard A, Téné N, Lefranc B, Leprince J, Paquet F, Jouvensal L, Barassé V, Treilhou M, Billet A, Bonnafé E. The mechanism underlying toxicity of a venom peptide against insects reveals how ants are master at disrupting membranes. iScience 2023; 26:106157. [PMID: 36879819 PMCID: PMC9985030 DOI: 10.1016/j.isci.2023.106157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/17/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Hymenopterans represent one of the most abundant groups of venomous organisms but remain little explored due to the difficult access to their venom. The development of proteo-transcriptomic allowed us to explore diversity of their toxins offering interesting perspectives to identify new biological active peptides. This study focuses on U9 function, a linear, amphiphilic and polycationic peptide isolated from ant Tetramorium bicarinatum venom. It shares physicochemical properties with M-Tb1a, exhibiting cytotoxic effects through membrane permeabilization. In the present study, we conducted a comparative functional investigation of U9 and M-Tb1a and explored the mechanisms underlying their cytotoxicity against insect cells. After showing that both peptides induced the formation of pores in cell membrane, we demonstrated that U9 induced mitochondrial damage and, at high concentrations, localized into cells and induced caspase activation. This functional investigation highlighted an original mechanism of U9 questioning on potential valorization and endogen activity in T. bicarinatum venom.
Collapse
Affiliation(s)
- Steven Ascoët
- BTSB-UR 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81000 Albi, France
| | - Axel Touchard
- CNRS, UMR Ecologie des Forêts de Guyane, AgroParisTech, CIRAD, INRA, Université de Guyane, Université des Antilles, Campus Agronomique, BP316 97310 Kourou, France
| | - Nathan Téné
- BTSB-UR 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81000 Albi, France
| | - Benjamin Lefranc
- Inserm U1239, NorDiC, Laboratoire de Différenciation et Communication Neuroendocrine, Endocrine et Germinale, Université de Rouen-Normandie, 76000 Rouen, France
- Inserm US51, HeRacLeS, Université de Rouen-Normandie, 76000 Rouen, France
| | - Jérôme Leprince
- Inserm U1239, NorDiC, Laboratoire de Différenciation et Communication Neuroendocrine, Endocrine et Germinale, Université de Rouen-Normandie, 76000 Rouen, France
- Inserm US51, HeRacLeS, Université de Rouen-Normandie, 76000 Rouen, France
| | - Françoise Paquet
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron CS-80054, 45071 Orléans, France
| | - Laurence Jouvensal
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron CS-80054, 45071 Orléans, France
| | - Valentine Barassé
- BTSB-UR 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81000 Albi, France
| | - Michel Treilhou
- BTSB-UR 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81000 Albi, France
| | - Arnaud Billet
- BTSB-UR 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81000 Albi, France
| | - Elsa Bonnafé
- BTSB-UR 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81000 Albi, France
| |
Collapse
|
6
|
Yarmohammadi F, Hayes AW, Karimi G. Sorting nexins as a promising therapeutic target for cardiovascular disorders: An updated overview. Exp Cell Res 2022; 419:113304. [PMID: 35931142 DOI: 10.1016/j.yexcr.2022.113304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022]
Abstract
Sorting nexins (SNXs) are involved in sorting the protein cargo within the endolysosomal system. Recently, several studies have shown the role of SNXs in cardiovascular pathology. SNXs exert both physiologic and pathologic functions in the cardiovascular system by regulating protein sorting and trafficking, maintaining protein homeostasis, and participating in multiple signaling pathways. SNX deficiency results in blood pressure response to dopamine 5 receptor [D5R] stimulation. SNX knockout protected against atherosclerosis lesions by suppressing foam cell formation. Moreover, SNXs can act as endogenous anti-arrhythmic agents via maintenance of calcium homeostasis. Overexpression SNXs also can reduce cardiac fibrosis in atrial fibrillation. The SNX-STAT3 interaction in cardiac cells promoted heart failure. SNXs may have the potential to act as a pharmacological target against specific cardiovascular diseases.
Collapse
Affiliation(s)
- Fatemeh Yarmohammadi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL,, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Antimicrobial and Immunomodulatory Effects of Selected Chemokine and Antimicrobial Peptide on Cytokine Profile during Salmonella Typhimurium Infection in Mouse. Antibiotics (Basel) 2022; 11:antibiotics11050607. [PMID: 35625251 PMCID: PMC9137564 DOI: 10.3390/antibiotics11050607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/05/2023] Open
Abstract
The antimicrobial and immunomodulatory capacities of the peptide Css54 and the chemokine MCP-1 were tested. The first, a peptide isolated from the venom of the scorpion Centruroides suffusus suffusus was synthesized chemically. In contrast, the second is a monocyte chemoattractant expressed as a recombinant protein in our lab. It was observed in vitro that Css54 inhibited the growth of Salmonella enterica serovar Typhimurium (6.2 µg/mL). At high concentrations, it was toxic to macrophages (25 µg/mL), activated macrophage phagocytosis (1.5 µg/mL), and bound Salmonella LPS (3 µg/mL). On the other hand, the recombinant MCP-1 neither inhibited the growth of Salmonella Typhimurium nor was it toxic to macrophages (up to 25 µg/mL), nor activated macrophage phagocytosis or bound Salmonella LPS (up to 3 µg/mL). Although it was observed in vivo in mice Balb/C that both Css54 and MCP-1 did not resolve the intraperitoneal infection by S. Typhimurium, Css54 decreased the expression of IL-6 and increased IL-10, IL-12p70, and TNF-α levels; meanwhile, MCP-1 decreased the expression of IFN-γ and increased IL-12p70 and TNF-α. It was also observed that the combination of both molecules Css54 and MCP-1 increased the expression of IL-10 and TNF-α.
Collapse
|
8
|
Drug-Targeted Genomes: Mutability of Ion Channels and GPCRs. Biomedicines 2022; 10:biomedicines10030594. [PMID: 35327396 PMCID: PMC8945769 DOI: 10.3390/biomedicines10030594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
Mutations of ion channels and G-protein-coupled receptors (GPCRs) are not uncommon and can lead to cardiovascular diseases. Given previously reported multiple factors associated with high mutation rates, we sorted the relative mutability of multiple human genes by (i) proximity to telomeres and/or (ii) high adenine and thymine (A+T) content. We extracted genomic information using the genome data viewer and examined the mutability of 118 ion channel and 143 GPCR genes based on their association with factors (i) and (ii). We then assessed these two factors with 31 genes encoding ion channels or GPCRs that are targeted by the United States Food and Drug Administration (FDA)-approved drugs. Out of the 118 ion channel genes studied, 80 met either factor (i) or (ii), resulting in a 68% match. In contrast, a 78% match was found for the 143 GPCR genes. We also found that the GPCR genes (n = 20) targeted by FDA-approved drugs have a relatively lower mutability than those genes encoding ion channels (n = 11), where targeted genes encoding GPCRs were shorter in length. The result of this study suggests that the use of matching rate analysis on factor-druggable genome is feasible to systematically compare the relative mutability of GPCRs and ion channels. The analysis on chromosomes by two factors identified a unique characteristic of GPCRs, which have a significant relationship between their nucleotide sizes and proximity to telomeres, unlike most genetic loci susceptible to human diseases.
Collapse
|
9
|
Bermúdez-Guzmán MJ, Jiménez-Vargas JM, Possani LD, Zamudio F, Orozco-Gutiérrez G, Oceguera-Contreras E, Enríquez-Vara JN, Vazquez-Vuelvas OF, García-Villalvazo PE, Valdez-Velázquez LL. Biochemical characterization and insecticidal activity of isolated peptides from the venom of the scorpion Centruroides tecomanus. Toxicon 2022; 206:90-102. [PMID: 34973996 DOI: 10.1016/j.toxicon.2021.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022]
Abstract
The venom of scorpions is a mixture of components that constitute a source of bioactive molecules. The venom of the scorpion Centruroides tecomanus contains peptides toxic to insects, however, to date no toxin responsible for this activity has yet been isolated and fully characterized. This communication describes two new peptides Ct-IT1 and Ct-IT2 purified from this scorpion. Both peptides contain 63 amino acids with molecular weight 6857.85 for Ct-IT1 and 6987.77 Da for Ct-IT2. The soluble venom was separated using chromatographic techniques of molecular size exclusion, cationic exchange, and reverse phase chromatography, allowing the identification of at least 99 components of which in 53 the insecticidal activity was evaluated. The LD50 determined for Ct-IT1 is 3.81 μg/100 mg of cricket weight, but low amounts of peptides (0.8 μg of peptide) already cause paralysis in crickets. The relative abundance of these two peptides in the venom is 2.1% for Ct-IT1 and 1% for Ct-IT2. The molecular masses and N-terminal sequences of both insecticidal toxins were determined by mass spectrometry and Edman degradation. The primary structure of both toxins was compared with other known peptides isolated from other scorpion venoms. The analysis of the sequence alignments revealed the position of a highly conserved amino acid residue, Gly39, exclusively present in anti-insect selective depressant β-toxins (DBTXs), which in Ct-IT1 and Ct-IT2 is at position Gly40. Similarly, a three-dimensional structure of this toxins was obtained by homology modeling and compared to the structure of known insect toxins of scorpions. An important similarity of the cavity formed by the trapping apparatus region of the depressant toxin LqhIT2, isolated from the scorpion Leiurus quinquestriatus hebraeus, was found in the toxins described here. These results indicate that Ct-IT1 and Ct-IT2 toxins have a high potential to be evaluated on pests that affect economically important crops to eventually consider them as a potential biological control method.
Collapse
Affiliation(s)
- M J Bermúdez-Guzmán
- Facultad de Ciencias Químicas, Universidad de Colima, Km. 9 Carretera Colima-Coquimatlán, C.P. 28400, Coquimatlán, Colima, México; Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Km. 35 Carretera Colima-Manzanillo, C.P. 28100, Tecomán, Colima, México
| | - J M Jiménez-Vargas
- CONACYT-Facultad de Ciencias Químicas, Universidad de Colima, Km. 9 Carretera-Coquimatlán, C.P. 28400, Coquimatlán, Colima, México
| | - L D Possani
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad, 2001, Colonia Chamilpa, C.P. 510-3, Cuernavaca, Morelos, México
| | - F Zamudio
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad, 2001, Colonia Chamilpa, C.P. 510-3, Cuernavaca, Morelos, México
| | - G Orozco-Gutiérrez
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Km. 35 Carretera Colima-Manzanillo, C.P. 28100, Tecomán, Colima, México
| | - E Oceguera-Contreras
- Centro Universitario de los Valles, Universidad de Guadalajara, Km. 45.5 Carretera Guadalajara-Ameca, Ameca, Jalisco, México
| | - J N Enríquez-Vara
- CONACYT-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, Col. El Bajío C.P. 45019, Zapopan, Jalisco, México
| | - O F Vazquez-Vuelvas
- Facultad de Ciencias Químicas, Universidad de Colima, Km. 9 Carretera Colima-Coquimatlán, C.P. 28400, Coquimatlán, Colima, México
| | - P E García-Villalvazo
- Facultad de Ciencias Químicas, Universidad de Colima, Km. 9 Carretera Colima-Coquimatlán, C.P. 28400, Coquimatlán, Colima, México
| | - L L Valdez-Velázquez
- Facultad de Ciencias Químicas, Universidad de Colima, Km. 9 Carretera Colima-Coquimatlán, C.P. 28400, Coquimatlán, Colima, México.
| |
Collapse
|
10
|
De Déa Nogueira TN, Rocha E Silva TAA. First case report of Ctenus medius envenomation: Clinical features of a patient bitten three times by the same spider. Toxicon 2022; 205:53-56. [PMID: 34838809 DOI: 10.1016/j.toxicon.2021.11.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/03/2021] [Accepted: 11/21/2021] [Indexed: 11/28/2022]
Abstract
A 22 years old undergraduate student was injured three times by a C. medius spider while wearing pants. Right foot and internal lower leg were bitten in three sites, leading to local pain and oedema, besides a total leg paresthesia as immediate symptoms. A series of photographs of the sites were taken since day 0 until resolution in day 10. Two hours after the accident, the victim received intravenous promethazine. Despite cessation of pain and paresthesia after 24 hours, an intense erythema and itching emerged reaching the maximum in day 4, when the victim returned to hospital and received topic dexamethasone and oral dexchlorpheniramine. The regression was complete in day 10. This accident opened room for discussion of empiric drug choice for immediate and subsequent symptoms of unknown envenomations, as good as a reference for further accidents with this common spider. Biological aspects such as venom composition and spider control of delivered venom amount are also discussed.
Collapse
Affiliation(s)
- Tatiana Netto De Déa Nogueira
- Francisco Maeda, Rua Cel, Flauzino Barbosa Sandoval, 1259, Cidade Universitária, CEP, 14500-000, Ituverava, SP, Brazil
| | - Thomaz A A Rocha E Silva
- School of Medicine Faculdade Israelita de Ciências da Saúde Albert Einstein, Avenida Professor Francisco Morato, 4293, Vila Sônia, CEP, 05521-200, São Paulo, SP, Brazil.
| |
Collapse
|
11
|
Borrego J, Feher A, Jost N, Panyi G, Varga Z, Papp F. Peptide Inhibitors of Kv1.5: An Option for the Treatment of Atrial Fibrillation. Pharmaceuticals (Basel) 2021; 14:1303. [PMID: 34959701 PMCID: PMC8704205 DOI: 10.3390/ph14121303] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
The human voltage gated potassium channel Kv1.5 that conducts the IKur current is a key determinant of the atrial action potential. Its mutations have been linked to hereditary forms of atrial fibrillation (AF), and the channel is an attractive target for the management of AF. The development of IKur blockers to treat AF resulted in small molecule Kv1.5 inhibitors. The selectivity of the blocker for the target channel plays an important role in the potential therapeutic application of the drug candidate: the higher the selectivity, the lower the risk of side effects. In this respect, small molecule inhibitors of Kv1.5 are compromised due to their limited selectivity. A wide range of peptide toxins from venomous animals are targeting ion channels, including mammalian channels. These peptides usually have a much larger interacting surface with the ion channel compared to small molecule inhibitors and thus, generally confer higher selectivity to the peptide blockers. We found two peptides in the literature, which inhibited IKur: Ts6 and Osu1. Their affinity and selectivity for Kv1.5 can be improved by rational drug design in which their amino acid sequences could be modified in a targeted way guided by in silico docking experiments.
Collapse
Affiliation(s)
- Jesús Borrego
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| | - Adam Feher
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| | - Norbert Jost
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary;
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, 6725 Szeged, Hungary
- ELKH-SZTE Research Group for Cardiovascular Pharmacology, Eötvös Loránd Research Network, 6725 Szeged, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| | - Ferenc Papp
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| |
Collapse
|