1
|
Shakibfar S, Nyberg F, Li H, Zhao J, Nordeng HME, Sandve GKF, Pavlovic M, Hajiebrahimi M, Andersen M, Sessa M. Artificial intelligence-driven prediction of COVID-19-related hospitalization and death: a systematic review. Front Public Health 2023; 11:1183725. [PMID: 37408750 PMCID: PMC10319067 DOI: 10.3389/fpubh.2023.1183725] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/31/2023] [Indexed: 07/07/2023] Open
Abstract
Aim To perform a systematic review on the use of Artificial Intelligence (AI) techniques for predicting COVID-19 hospitalization and mortality using primary and secondary data sources. Study eligibility criteria Cohort, clinical trials, meta-analyses, and observational studies investigating COVID-19 hospitalization or mortality using artificial intelligence techniques were eligible. Articles without a full text available in the English language were excluded. Data sources Articles recorded in Ovid MEDLINE from 01/01/2019 to 22/08/2022 were screened. Data extraction We extracted information on data sources, AI models, and epidemiological aspects of retrieved studies. Bias assessment A bias assessment of AI models was done using PROBAST. Participants Patients tested positive for COVID-19. Results We included 39 studies related to AI-based prediction of hospitalization and death related to COVID-19. The articles were published in the period 2019-2022, and mostly used Random Forest as the model with the best performance. AI models were trained using cohorts of individuals sampled from populations of European and non-European countries, mostly with cohort sample size <5,000. Data collection generally included information on demographics, clinical records, laboratory results, and pharmacological treatments (i.e., high-dimensional datasets). In most studies, the models were internally validated with cross-validation, but the majority of studies lacked external validation and calibration. Covariates were not prioritized using ensemble approaches in most of the studies, however, models still showed moderately good performances with Area under the Receiver operating characteristic Curve (AUC) values >0.7. According to the assessment with PROBAST, all models had a high risk of bias and/or concern regarding applicability. Conclusions A broad range of AI techniques have been used to predict COVID-19 hospitalization and mortality. The studies reported good prediction performance of AI models, however, high risk of bias and/or concern regarding applicability were detected.
Collapse
Affiliation(s)
- Saeed Shakibfar
- Pharmacovigilance Research Center, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Fredrik Nyberg
- School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Huiqi Li
- School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jing Zhao
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- UiORealArt Convergence Environment, University of Oslo, Oslo, Norway
| | - Hedvig Marie Egeland Nordeng
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- UiORealArt Convergence Environment, University of Oslo, Oslo, Norway
| | - Geir Kjetil Ferkingstad Sandve
- UiORealArt Convergence Environment, University of Oslo, Oslo, Norway
- Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Milena Pavlovic
- UiORealArt Convergence Environment, University of Oslo, Oslo, Norway
- Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | | | - Morten Andersen
- Pharmacovigilance Research Center, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Maurizio Sessa
- Pharmacovigilance Research Center, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Wang W, Battini V, Carnovale C, Noordam R, van Dijk KW, Kragholm KH, van Heemst D, Soeorg H, Sessa M. A novel approach for pharmacological substantiation of safety signals using plasma concentrations of medication and administrative/healthcare databases: a case study using Danish registries for an FDA warning on lamotrigine. Pharmacol Res 2023:106811. [PMID: 37268178 DOI: 10.1016/j.phrs.2023.106811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/04/2023]
Abstract
PHARMACOM-EPI is a novel framework to predict plasma concentrations of drugs at the time of occurrence of clinical outcomes. In early 2021, the U.S. Food and Drug Administration (FDA) issued a warning on the antiseizure drug lamotrigine claiming that it has the potential to increase the risk of arrhythmias and related sudden cardiac death due to a pharmacological sodium channel-blocking effect. We hypothesized that the risk of arrhythmias and related death is due to toxicity. We used the PHARMACOM-EPI framework to investigate the relationship between lamotrigine's plasma concentrations and the risk of death in older patients using real-world data. Danish nationwide administrative and healthcare registers were used as data sources and individuals aged 65 years or older during the period 1996 - 2018 were included in the study. According to the PHARMACOM-EPI framework, plasma concentrations of lamotrigine were predicted at the time of death and patients were categorized into non-toxic and toxic groups based on the therapeutic range of lamotrigine (3-15mg/L). Over 1 year of treatment, the incidence rate ratio (IRR) of all-cause mortality was calculated between the propensities score matched toxic and non-toxic groups. In total, 7286 individuals were diagnosed with epilepsy and were exposed to lamotrigine, 432 of which had at least one plasma concentration measurement The pharmacometric model by Chavez et al. was used to predict lamotrigine's plasma concentrations considering the lowest absolute percentage error among identified models (14.25%, 95% CI: 11.68-16.23). The majority of lamotrigine associated deaths were cardiovascular-related and occurred among individuals with plasma concentrations in the toxic range. The IRR of mortality between the toxic group and non-toxic group was 3.37 [95% CI: 1.44-8.32] and the cumulative incidence of all-cause mortality exponentially increased in the toxic range. Application of our novel framework PHARMACOM-EPI provided strong evidence to support our hypothesis that the increased risk of all-cause and cardiovascular death was associated with a toxic plasma concentration level of lamotrigine among older lamotrigine users.
Collapse
Affiliation(s)
- Wenyi Wang
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands; Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Vera Battini
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Italy; Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | - Carla Carnovale
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Italy
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics; Leiden University Medical Center, Leiden, Netherlands
| | - Ko Willems van Dijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands; Department of Internal Medicine, Division Endocrinology, Leiden University Medical Center, Leiden, Netherlands; Leiden Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | | | - Diana van Heemst
- Department of Internal Medicine, Section of Gerontology and Geriatrics; Leiden University Medical Center, Leiden, Netherlands
| | - Hiie Soeorg
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Estonia.
| | - Maurizio Sessa
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark.
| |
Collapse
|
3
|
Bukhtiyarova O, Abderrazak A, Chiu Y, Sparano S, Simard M, Sirois C. Major areas of interest of artificial intelligence research applied to health care administrative data: a scoping review. Front Pharmacol 2022; 13:944516. [PMID: 35924057 PMCID: PMC9340156 DOI: 10.3389/fphar.2022.944516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022] Open
Abstract
Introduction: The ongoing collection of large medical data has created conditions for application of artificial intelligence (AI) in research. This scoping review aimed to identify major areas of interest of AI applied to health care administrative data. Methods: The search was performed in seven databases: Medline, Embase, CINAHL, Web of science, IEEE, ICM digital library, and Compendex. We included articles published between January 2001 and March 2021, that described research with AI applied to medical diagnostics, pharmacotherapy, and health outcomes data. We screened the full text content and used natural language processing to automatically extract health areas of interest, principal AI methods, and names of medications. Results: Out of 14,864 articles, 343 were included. We determined ten areas of interest, the most common being health diagnostic or treatment outcome prediction (32%); representation of medical data, clinical pathways, and data temporality (i.e., transformation of raw medical data into compact and analysis-friendly format) (22%); and adverse drug effects, drug-drug interactions, and medication cascades (15%). Less attention has been devoted to areas such as health effects of polypharmacy (1%); and reinforcement learning (1%). The most common AI methods were decision trees, cluster analysis, random forests, and support vector machines. Most frequently mentioned medications included insulin, metformin, vitamins, acetaminophen, and heparin. Conclusions: The scoping review revealed the potential of AI application to health-related studies. However, several areas of interest in pharmacoepidemiology are sparsely reported, and the lack of details in studies related to pharmacotherapy suggests that AI could be used more optimally in pharmacoepidemiologic research.
Collapse
Affiliation(s)
| | | | - Yohann Chiu
- Faculty of Pharmacy, Université Laval, Québec, QC, Canada
- Quebec National Institute of Public Health, Québec, QC, Canada
| | | | - Marc Simard
- Quebec National Institute of Public Health, Québec, QC, Canada
- Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Caroline Sirois
- Faculty of Pharmacy, Université Laval, Québec, QC, Canada
- Quebec National Institute of Public Health, Québec, QC, Canada
- *Correspondence: Caroline Sirois,
| |
Collapse
|
4
|
Soeorg H, Sverrisdóttir E, Andersen M, Lund TM, Sessa M. The PHARMACOM-EPI Framework for Integrating Pharmacometric Modelling Into Pharmacoepidemiological Research Using Real-World Data: Application to Assess Death Associated With Valproate. Clin Pharmacol Ther 2021; 111:840-856. [PMID: 34860420 DOI: 10.1002/cpt.2502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/17/2021] [Indexed: 01/14/2023]
Abstract
In pharmacoepidemiology, it is usually expected that the observed association should be directly or indirectly related to the pharmacological effects of the drug/s under investigation. Pharmacological effects are, in turn, strongly connected to the pharmacokinetic and pharmacodynamic properties of a drug, which can be characterized and investigated using pharmacometric models. Recently, the use of pharmacometrics has been proposed to provide pharmacological substantiation of pharmacoepidemiological findings derived from real-world data. However, validated frameworks suggesting how to combine these two disciplines for the aforementioned purpose are missing. Therefore, we propose PHARMACOM-EPI, a framework that provides a structured approach on how to identify, characterize, and apply pharmacometric models with practical details on how to choose software, format dataset, handle missing covariates/dosing data, how to perform the external evaluation of pharmacometric models in real-world data, and how to provide pharmacological substantiation of pharmacoepidemiological findings. PHARMACOM-EPI was tested in a proof-of-concept study to pharmacologically substantiate death associated with valproate use in the Danish population aged ≥ 65 years. Pharmacological substantiation of death during a follow-up period of 1 year showed that in all individuals who died (n = 169) individual predictions were within the subtherapeutic range compared with 52.8% of those who did not die (n = 1,084). Of individuals who died, 66.3% (n = 112) had a cause of death possibly related to valproate and 33.7% (n = 57) with well-defined cause of death unlikely related to valproate. This proof-of-concept study showed that PHARMACOM-EPI was able to provide pharmacological substantiation for death associated with valproate use in the study population.
Collapse
Affiliation(s)
- Hiie Soeorg
- Department of Drug Design and Pharmacology, Pharmacovigilance Research Center, University of Copenhagen, Copenhagen, Denmark.,Department of Drug Design and Pharmacology, Pharmacometrics Research Group, University of Copenhagen, Copenhagen, Denmark
| | - Eva Sverrisdóttir
- Department of Drug Design and Pharmacology, Pharmacometrics Research Group, University of Copenhagen, Copenhagen, Denmark
| | - Morten Andersen
- Department of Drug Design and Pharmacology, Pharmacovigilance Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Trine Meldgaard Lund
- Department of Drug Design and Pharmacology, Pharmacometrics Research Group, University of Copenhagen, Copenhagen, Denmark
| | - Maurizio Sessa
- Department of Drug Design and Pharmacology, Pharmacovigilance Research Center, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|