1
|
Abdalla M, Khalid A, Hedayati J, Ghayur MN. Cholinesterase Inhibitory Activity of Paeoniflorin: Molecular Dynamics Simulation, and In Vitro Mechanistic Investigation. Biochem Res Int 2024; 2024:9192496. [PMID: 39735856 PMCID: PMC11671635 DOI: 10.1155/bri/9192496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 11/20/2024] [Accepted: 12/07/2024] [Indexed: 12/31/2024] Open
Abstract
Alzheimer's disease (AD), a neurological disorder, is one of the major reasons for memory loss in the world. AD is characterized by a sequela of cognitive and functional decline caused by brain cell degeneration. Paeoniflorin is a monoterpenoid glycoside found in plants of the Paeoniaceae family, which are known for their medicinal properties including dementia. In this project, we report actions of paeoniflorin on the two related cholinesterases (ChE): acetylChE (AChE) and butyrylChE (BuChE). Paeoniflorin, in a dose-dependent (maximum inhibition at 1 mg/mL) manner, inhibited both AChE (0.06-1 mg/mL) and BuChE (0.007-1 mg/mL) enzymes with maximum inhibition of AChE enzyme at 90.3 ± 1.4%, while 99.4 ± 0.3% for BuChE enzyme. The EC50 value for the inhibitory effect of the compound against AChE was 0.52 mg/mL (0.18-1.52), while against BuChE was 0.13 mg/mL (0.08-0.21). The observed ani-ChE action was like an effect also mediated by the known ChE blocker physostigmine. Molecular interactions between paeoniflorin and both ChE enzymes were additionally sought via molecular docking and molecular dynamics simulations for 100 ns, that showed paeoniflorin interacted with the active-site gorge of AChE and BuChE via hydrogen bonds and water bridging with the many amino acids of the AChE and BuChE enzymes. This study presents the ChE inhibitory potential of paeoniflorin against both AChE and BuChE enzymes. With this kind of inhibitory activity, the chemical can potentially increase ACh levels and may have use in the treatment of dementia of AD.
Collapse
Affiliation(s)
- Mohnad Abdalla
- Pediatric Research Institute, Children's Hospital, Shandong University, Jinan 250022, China
| | - Asaad Khalid
- Substance Abuse & Toxicology Research Center, Jazan University, Jazan 45142, Saudi Arabia
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, Khartoum 11111, Sudan
| | - Jasmine Hedayati
- Kentucky College of Osteopathic Medicine, University of Pikeville, Pikeville 41501, Kentucky, USA
| | - Muhammad Nabeel Ghayur
- Kentucky College of Osteopathic Medicine, University of Pikeville, Pikeville 41501, Kentucky, USA
| |
Collapse
|
2
|
Liu K, An J, Zhang J, Zhao J, Sun P, He Z. Network pharmacology combined with experimental validation show that apigenin as the active ingredient of Campsis grandiflora flower against Parkinson's disease by inhibiting the PI3K/AKT/NF-κB pathway. PLoS One 2024; 19:e0311824. [PMID: 39383141 PMCID: PMC11463827 DOI: 10.1371/journal.pone.0311824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/25/2024] [Indexed: 10/11/2024] Open
Abstract
The exploration of novel natural products for Parkinson's disease (PD) is a focus of current research, as there are no definitive drugs to cure or stop the disease. Campsis grandiflora (Thunb.) K. Schum (Lingxiaohua) is a traditional Chinese medicine (TCM), and the exact active constituents and putative mechanisms for treating PD are unknown. Through data mining and network pharmacology, apigenin (APi) was identified as the main active ingredient of Lingxiaohua, and key targets (TNF, AKT1, INS, TP53, CASP3, JUN, BCL2, MMP9, FOS, and HIF1A) of Lingxiaohua for the treatment of PD were discovered. The primary routes implicated were identified as PI3K/AKT, Apoptosis, TNF, and NF-κB pathways. Subsequently, therapeutic potential of APi in PD and its underlying mechanism were experimentally evaluated. APi suppressed the release of mediators of inflammation and initiation of NF-κB pathways in MES23.5 cells induced by MPP+. APi suppressed caspase-3 activity and apoptosis and elevated p-AKT levels in MES23.5 cells. Pretreatment with LY294002, a PI3K inhibitor, resulted in APi treatment blocking the activation of NF-κB pathway and expression of inflammatory factors in MES23.5 cells by activating the PI3K/AKT pathway. In conclusion, APi protects dopaminergic neurons by controlling the PI3K/AKT/NF-κB pathway, giving novel insights into the pharmacological mechanism of Lingxiaohua in treating PD.
Collapse
Affiliation(s)
- Kai Liu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurosurgery, People’s Hospital of Rizhao, Jining Medical College, Rizhao, Shandong, China
| | - Jing An
- Department of Pathology, People’s Hospital of Rizhao, Jining Medical College, Rizhao, Shandong, China
| | - Jing Zhang
- Department of Pharmacy, Jining Medical College, Rizhao, Shandong, China
| | - Jihu Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Peng Sun
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhaohui He
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Shen Q, Ge L, Lu W, Wu H, Zhang L, Xu J, Tang O, Muhammad I, Zheng J, Wu Y, Wang SW, Zeng XX, Xue J, Cheng K. Transplanting network pharmacology technology into food science research: A comprehensive review on uncovering food-sourced functional factors and their health benefits. Compr Rev Food Sci Food Saf 2024; 23:e13429. [PMID: 39217524 DOI: 10.1111/1541-4337.13429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
Network pharmacology is an emerging interdisciplinary research method. The application of network pharmacology to reveal the nutritional effects and mechanisms of active ingredients in food is of great significance in promoting the development of functional food, facilitating personalized nutrition, and exploring the mechanisms of food health effects. This article systematically reviews the application of network pharmacology in the field of food science using a literature review method. The application progress of network pharmacology in food science is discussed, and the mechanisms of functional factors in food on the basis of network pharmacology are explored. Additionally, the limitations and challenges of network pharmacology are discussed, and future directions and application prospects are proposed. Network pharmacology serves as an important tool to reveal the mechanisms of action and health benefits of functional factors in food. It helps to conduct in-depth research on the biological activities of individual ingredients, composite foods, and compounds in food, and assessment of the potential health effects of food components. Moreover, it can help to control and enhance their functionality through relevant information during the production and processing of samples to guarantee food safety. The application of network pharmacology in exploring the mechanisms of functional factors in food is further analyzed and summarized. Combining machine learning, artificial intelligence, clinical experiments, and in vitro validation, the achievement transformation of functional factor in food driven by network pharmacology is of great significance for the future development of network pharmacology research.
Collapse
Affiliation(s)
- Qing Shen
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Lijun Ge
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Weibo Lu
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Huixiang Wu
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Li Zhang
- Quzhou Hospital of Traditional Chinese Medicine, Quzhou, Zhejiang, China
| | - Jun Xu
- Ningbo Hospital of Traditional Chinese Medicine, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, Zhejiang, China
| | - Oushan Tang
- Shaoxing Second Hospital, Shaoxing, Zhejiang, China
| | - Imran Muhammad
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Jing Zheng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Yeshun Wu
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Si-Wei Wang
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Xi-Xi Zeng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Jing Xue
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Keyun Cheng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| |
Collapse
|
4
|
Yi H, Zhang M, Miao J, Mu L, Hu C. Potential mechanisms of Shenmai injection against POCD based on network pharmacology and molecular docking. Int J Neurosci 2024; 134:931-942. [PMID: 36604848 DOI: 10.1080/00207454.2023.2165922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/12/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
BACKGROUND As the population ages, the number of patients with postoperative cognitive dysfunction increases. This study aims to investigate the mechanisms of Shenmai injection as a therapeutic strategy for postoperative cognitive dysfunction using a network pharmacology approach. METHODS Shenmai injection and its targets were retrieved from the Traditional Chinese Medicine Systems Pharmacology database. Postoperative cognitive dysfunction-associated protein targets were identified using the GeneCards and DisGeNET databases. Subsequently, a protein-protein interaction network was constructed using the String database. For treating postoperative cognitive dysfunction, the core targets of Shenmai injection were identified through topological analysis, followed by the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses performed for annotation. Molecular docking was performed on the screened core targets and components. RESULTS One hundred and eighty-two related targets of Shenmai injection in treating postoperative cognitive dysfunction were identified. Eleven active ingredients in Shenmai injection were detected to have a close connection with postoperative cognitive dysfunction-related targets. Additionally, Gene Ontology analysis revealed 10 biological processes, 10 cellular components and 10 molecular functions. The Kyoto Encyclopedia of Genes and Genomes analysis identified 20 signaling pathways. The docking results indicated five active ingredients from Shenmai injection can fit in the binding pockets of all three candidate targets. CONCLUSIONS Thus, the present work systematically explored the anti-postoperative cognitive dysfunction mechanism of potential targets and signaling pathways of Shenmai injection. These results provide an important reference for subsequent basic research on postoperative cognitive dysfunction.
Collapse
Affiliation(s)
- Honggang Yi
- Department of Urology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China
| | - Mengdie Zhang
- Department of Neurolog, Zhuji People's Hospital, Shaoxing, Zhejiang, China
| | - Jiang Miao
- Department of Pharmacy, Zhejiang Chinese Medical University Affiliated Wenzhou Hospital of Traditional Chinese Medicine, Wenzhou, Zhejiang, China
| | - Lvfan Mu
- Department of Pharmacy, Zhejiang Chinese Medical University Affiliated Wenzhou Hospital of Traditional Chinese Medicine, Wenzhou, Zhejiang, China
| | - Congli Hu
- Department of Pharmacy, Zhejiang Chinese Medical University Affiliated Wenzhou Hospital of Traditional Chinese Medicine, Wenzhou, Zhejiang, China
| |
Collapse
|
5
|
Saima, Latha S, Sharma R, Kumar A. Role of Network Pharmacology in Prediction of Mechanism of Neuroprotective Compounds. Methods Mol Biol 2024; 2761:159-179. [PMID: 38427237 DOI: 10.1007/978-1-0716-3662-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Network pharmacology is an emerging pioneering approach in the drug discovery process, which is used to predict the therapeutic mechanism of compounds using various bioinformatic tools and databases. Emerging studies have indicated the use of network pharmacological approaches in various research fields, particularly in the identification of possible mechanisms of herbal compounds/ayurvedic formulations in the management of various diseases. These techniques could also play an important role in the prediction of the possible mechanisms of neuroprotective compounds. The first part of the chapter includes an introduction on neuroprotective compounds based on literature. Further, network pharmacological approaches are briefly discussed. The use of network pharmacology in the prediction of the neuroprotective mechanism of compounds is discussed in detail with suitable examples. Finally, the chapter concludes with the current challenges and future prospectives.
Collapse
Affiliation(s)
- Saima
- Department of Pharmacology, Delhi Pharmaceutical Science and Research University (DPSRU), New Delhi, India
| | - S Latha
- Department of Pharmacology, Delhi Pharmaceutical Science and Research University (DPSRU), New Delhi, India
| | - Ruchika Sharma
- Centre for Precision Medicine and Pharmacy, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Anoop Kumar
- Department of Pharmacology, Delhi Pharmaceutical Science and Research University (DPSRU), New Delhi, India
| |
Collapse
|
6
|
Lakshmi YS, Prasanth DSNBK, Kumar KTS, Ahmad SF, Ramanjaneyulu S, Rahul N, Pasala PK. Unravelling the Molecular Mechanisms of a Quercetin Nanocrystal for Treating Potential Parkinson's Disease in a Rotenone Model: Supporting Evidence of Network Pharmacology and In Silico Data Analysis. Biomedicines 2023; 11:2756. [PMID: 37893129 PMCID: PMC10604936 DOI: 10.3390/biomedicines11102756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
The prevalence of Parkinson's disease places a significant burden on society; therefore, there is an urgent need to develop more effective drugs. However, the development of these drugs is both expensive and risky. Quercetin (QUE) has potent pharmacological effects on neurodegenerative diseases, but its low solubility in water and poor bioavailability limit its use in pharmaceutical applications. In this study, Quercetin nanocrystals (QNC) were synthesized and compared to standard QUE. A network-pharmacology-based methodology was applied, including target prediction, network construction, a gene ontology (GO) analysis, a KEGG pathway enrichment analysis, and molecular docking. This study aimed to identify the targets of QUE relevant to the treatment of Parkinson's disease and investigate the associated pharmacological mechanisms. Most of the predicted targets are involved in dopamine uptake during synaptic transmission. QUE regulates the key targets DRD2 and DRD4, which significantly affect dopaminergic synapses. The molecular docking results showed that QUE had a better binding affinity than the standard drug l-Dopa. From these experiments, it can be concluded that QNC effectively reduced the adverse effects caused by rotenone-induced oxidative stress in biochemical, neurochemical, and histopathological alterations. Therefore, QNC can potentially treat Parkinson's disease, and its effectiveness should be assessed in future clinical trials.
Collapse
Affiliation(s)
- Yeruva Sai Lakshmi
- Department of Pharmacology, Santhiram College of Pharmacy, JNTUA, Nandyal 518112, Andhra Pradesh, India;
| | - D. S. N. B. K. Prasanth
- Department of Pharmacognosy, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada 520010, Andhra Pradesh, India;
| | | | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | | | | | - Praveen Kumar Pasala
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, JNTUA, Anantapuramu 515721, Andhra Pradesh, India
| |
Collapse
|
7
|
Pan B, Niu B, He Y, Zhou C, Xia C. Integrative multilevel exploration of the mechanism by which Er-Zhi-Wan alleviates the Parkinson's disease (PD)-like phenotype in the MPTP-induced PD mouse model. Biomed Pharmacother 2023; 165:115021. [PMID: 37348406 DOI: 10.1016/j.biopha.2023.115021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023] Open
Abstract
The neuroprotective effects of Er-Zhi-Wan (EZW), a well-known traditional Chinese formulation, in MPTP-induced Parkinson's disease (PD) models are poorly understood and require evaluation. A model of PD induced by MPTP was used to evaluate the neuroprotective effects of EZW in mice. The underlying pharmacological mechanisms of EZW for the prevention and treatment of PD were then explored using a combination of multilevel databases, network pharmacology, biological experiments, and LCMS/MS. In vivo data showed that pretreatment with EZW can be neuroprotective against MPTP-induced motor dysfunction and can effectively rescue dopaminergic neurons from MPTP-induced degeneration in mice. Furthermore, data from combined multilevel databases and network pharmacology analysis strategies suggested that the neuroprotective activity of EZW in the treatment of PD is mediated by a complicated multicomponent, multitarget network. Genes such as Grm2, Grm5, Drd2, and Grik2 were identified as important therapeutic targets. Subsequent experimental validation showed that EZW can broadly regulate the mRNA levels of these receptor genes as well as BDNF, and consequently increase the phosphorylation levels of CREB to stimulate CREB signaling. These targets and signaling systems may be responsible for the reversal of neuronal death by EZW after MPTP exposure. The LC-MS/MS results also identified a wide range of chemical components of EZW, including at least 53 precise compounds, further demonstrating the complexity of the network in which EZW exerts its neuroprotective activity. Our work provides evidence for the mechanism of EZW in MPTP-PD models and supports the neuroprotective function of EZW in neurodegenerative diseases.
Collapse
Affiliation(s)
- Botao Pan
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, China
| | - Bo Niu
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, China
| | - Yanjun He
- Emergency Department, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, China
| | - Cankun Zhou
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, China
| | - Chenglai Xia
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 515150, China.
| |
Collapse
|
8
|
Tao F, Cai Y, Deng C, Chen Z, Shen Y, Sun H. A narrative review on traditional Chinese medicine prescriptions and bioactive components in epilepsy treatment. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:129. [PMID: 36819494 PMCID: PMC9929833 DOI: 10.21037/atm-22-3306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/06/2022] [Indexed: 12/15/2022]
Abstract
Background and Objective In traditional Chinese medicine (TCM), natural drugs and their bioactive components have been widely used to treat epilepsy. Epilepsy is a chronic disease caused by abnormal discharge of brain neurons that leads to brain dysfunction and cognitive impairment. Several factors are involved in the mechanisms of epilepsy, and the current treatments do not seem promising. The potential efficacy of natural drugs with lower toxicity and less side effects have attracted increasing attention. Methods We used the terms, "TCM", "traditional Chinese medicine", "herbal", "epilepsy", "seizure", and the name of each prescription and bioactive components in the review to collect papers about application of TCM in epilepsy treatment from PubMed online database and Chinese database including Chinese National Knowledge Infrastructure (CNKI), Wanfang, and Weipu. Key Content and Findings We summarized some common TCM prescriptions and related active components used for the treatment of epilepsy. Six prescriptions (Chaihu Shugan decoction, Tianma Gouteng decoction, Kangxian capsules, Taohong Siwu decoction, Liujunzi decoction, Compound Danshen dropping pills) and nine main bioactive compounds (Saikosaponin A, Rhynchophylline, Tetramethylpyrazine, Gastrodin, Baicalin and baicalein, α-Asarone, Ginsenoside, Tanshinone, Paeoniflorin) were reviewed to provide a scientific basis for the development of potential antiepileptic drugs (AEDs). Conclusions The pharmacological effects and molecular mechanisms of TCM in the treatment of epilepsy are complex, targeting several pathological aspects of epilepsy. However, the limitations of TCM, such as the lack of standardized treatments, have prevented its clinical application in epilepsy treatment. Thus, additional clinical trials are required to further evaluate the effectiveness and safety of TCM prescriptions and their bioactive components in the future.
Collapse
Affiliation(s)
- Feng Tao
- Nantong University Informatization Center, Nantong University, Nantong, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yong Cai
- Department of Neurology, People’s Hospital of Binhai County, Yancheng, China
| | - Chunyan Deng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zehao Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
9
|
Liu H, Tang J, Chen T, Zhu P, Sun D, Wang W. Assessment of heavy metals contamination and human health risk assessment of the commonly consumed medicinal herbs in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:7345-7357. [PMID: 36040690 DOI: 10.1007/s11356-022-22647-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
This study investigates heavy metal contamination of commonly consumed medicinal herbs and human health risks to the Chinese population arising from the consumption of herbs that contain potentially harmful elements. Food safety standards for Chinese residents are becoming stricter, and much work in this field needs to be performed. This study examines Co, Ba, Fe, Cr, Mn, Ni, Zn, As, Cd, Pb, Cu, Be, Sb, and Bi concentrations in four regularly consumed Chinese herb species: Radix Paeoniae Alba (RPA), Radix Angelicae Dahuricae (RAD), Rhizoma Atractylodis Macrocephalae (RAM), and Radix Puerariae (RP). A pollution status examination and evaluation of heavy metals in RPA, RAD, RAM, and RP were performed. The human health risk assessment associated with the intake of potentially harmful elements in herbs was calculated in terms of the estimated daily intake (EDI), the target hazard quotient (THQ), the estimated hazard index (HI), and the lifetime cancer risk (CR). The mean single-factor pollution index (PI) showed that in the RPA, RAD, RAM, and RP samples, approximately 10.0%, 10.0%, 30.0%, and 10.0%, respectively, were polluted by Cd. The present study indicated that the pattern of consumption of the studied herbs in China does not seem to suggest an excessive health hazard associated with any of the toxic elements studied.
Collapse
Affiliation(s)
- Haiping Liu
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Jianfeng Tang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Tongjun Chen
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Pingping Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Dongdong Sun
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Weiyun Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
10
|
Phytochemistry, Pharmacology and Molecular Mechanisms of Herbal Bioactive Compounds for Sickness Behaviour. Metabolites 2022; 12:metabo12121215. [PMID: 36557252 PMCID: PMC9782141 DOI: 10.3390/metabo12121215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/07/2022] Open
Abstract
The host's response to acute infections or tissue injury is a sophisticated and coordinated adaptive modification called sickness behaviour. Many herbs have been studied for their ability to protect animals against experimentally induced sickness behaviour. However, there is a lack of knowledge and experimental evidence on the use of herbal bioactive compounds (HBACs) in the management of sick behaviour. The goal of this review is to provide a concise summary of the protective benefits and putative mechanisms of action of phytochemicals on the reduction of lipopolysaccharide (LPS)-induced sickness behaviour. Relevant studies were gathered from the search engines Scopus, ScienceDirect, PubMed, Google Scholar, and other scientific databases (between 2000 and to date). The keywords used for the search included "Lipopolysaccharide" OR "LPS" OR "Sickness behaviour" OR "Sickness" AND "Bioactive compounds" OR "Herbal medicine" OR "Herbal drug" OR "Natural products" OR "Isolated compounds". A total of 41 published articles that represented data on the effect of HBACs in LPS-induced sickness behaviour were reviewed and summarised systemically. There were 33 studies that were conducted in mice and 8 studies in rats. A total of 34 HBACs have had their effects against LPS-induced changes in behaviour and biochemistry investigated. In this review, we examined 34 herbal bioactive components that have been tested in animal models to see if they can fight LPS-induced sickness behaviour. Future research should concentrate on the efficacy, safety, and dosage needed to protect against illness behaviour in humans, because there is a critical shortage of data in this area.
Collapse
|
11
|
Lee S, Ryu SM, Kim DH, Lee YE, Lee SJ, Kang S, Kim JS, Lee SI. Neuroprotective effect of Geijigadaehwang-tang against trimethyltin-induced hippocampal neurodegeneration: An in vitro and in vivo study. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115451. [PMID: 35724744 DOI: 10.1016/j.jep.2022.115451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/28/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Patients with dementia are diagnosed with deficiency patterns and interior patterns in traditional Chinese medicine due to decreased physical strength, mental atrophy including cognitive function, and decreased motor function in the gastrointestinal tract. Since "greater yin symptom" in Shanghanlun has been interpreted as interior, deficiency, and cold pattern in traditional Chinese medicine, it is necessary to determine whether Geijigadaehwang-tang (GDT) has therapeutic effects on neurodegenerative diseases and the underlying mechanism if it has such effects. AIMS OF THE STUDY Trimethyltin (TMT), a neurotoxic organotin compound, has been used to induce several neurodegenerative diseases, including epilepsy and Alzheimer's disease. This study aimed to evaluate the therapeutic efficacy of GDT for TMT-induced hippocampal neurodegeneration and seizures and to determine the mechanisms involved at the molecular level. MATERIALS AND METHODS The main components of GDT were analyzed using ultra-performance liquid chromatography. TMT was used to induce neurotoxicity in microglial BV-2 cells and C57BL6 mice. GDT was administered at various doses to determine its neuroprotective and seizure inhibition effects. The inhibitory effects of GDT on TMT-induced apoptosis, inflammatory pathways, and oxidative stress pathways were determined in the mouse hippocampal tissues. RESULTS GDT contained emodin, chrysophanol, albiflorin, paeoniflorin, 6-gingerol, and liquiritin apioside. In microglial BV-2 cells treated with TMT, GDT showed dose-dependent neuroprotective effects. Oral administration of GDT five times for 2.5 days before and after TMT injection inhibited seizures at doses of 180 and 540 mg/kg and inhibited neuronal death in the hippocampus. In hippocampal tissues extracted from mice, GDT inhibited the protein expression of ionized calcium binding adaptor molecule 1, glial fibrillary acidic protein, nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein 3, and phosphorylated nuclear factor (NF)-κB/total-NFκB ratio. Additionally, GDT inhibited the messenger RNA levels of tumor necrosis factor-α, inducible nitric oxide synthase, apoptosis-associated speck-like protein containing a caspase recruitment domain, caspase-1, interleukin-1β, nuclear factor erythroid-2-related factor 2, and heme oxygenase-1. CONCLUSION This study's results imply that GDT might have neuroprotective potential in neurodegenerative diseases through neuronal death inhibition and anti-inflammatory and antioxidant mechanisms.
Collapse
Affiliation(s)
- Sueun Lee
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111, Geonjae-ro, Naju-si, Jeollanam-do, 58245, Republic of Korea.
| | - Seung Mok Ryu
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111, Geonjae-ro, Naju-si, Jeollanam-do, 58245, Republic of Korea.
| | - Do-Hyun Kim
- Department of Oriental Medicine, College of Oriental Medicine, Dongshin University, 120-9, Dongsindae-gil, Naju-si, Jeollanam-do, 58245, Republic of Korea.
| | - Ye Eun Lee
- Department of Oriental Medicine, College of Oriental Medicine, Dongshin University, 120-9, Dongsindae-gil, Naju-si, Jeollanam-do, 58245, Republic of Korea.
| | - Sung-Jun Lee
- Jung-In Korean Medical Clinic, 5-10, Apgujeong-ro 46-gil, Gangnam-gu, Seoul, 06018, Republic of Korea.
| | - Sohi Kang
- Departments of Veterinary Anatomy and BK21 Plus Project Team, College of Veterinary Medicine, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea.
| | - Joong Sun Kim
- Departments of Veterinary Anatomy and BK21 Plus Project Team, College of Veterinary Medicine, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea.
| | - Soong-In Lee
- Department of Oriental Medicine, College of Oriental Medicine, Dongshin University, 120-9, Dongsindae-gil, Naju-si, Jeollanam-do, 58245, Republic of Korea.
| |
Collapse
|
12
|
Tian YQ, Zhang SP, Zhang KL, Cao D, Zheng YJ, Liu P, Zhou HH, Wu YN, Xu QX, Liu XP, Tang XD, Zheng YQ, Wang FY. Paeoniflorin Ameliorates Colonic Fibrosis in Rats with Postinfectious Irritable Bowel Syndrome by Inhibiting the Leptin/LepRb Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6010858. [PMID: 36225193 PMCID: PMC9550452 DOI: 10.1155/2022/6010858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022]
Abstract
Postinfectious irritable bowel syndrome (PI-IBS) is a highly prevalent gastrointestinal disorder associated with immune dysregulation and depression- and anxiety-like behaviors. Through traditional medicine, the active ingredient of Paeoniae Radix called paeoniflorin (PF) was previously found to prevent the symptoms of PI-IBS. However, there is limited information on the effects of PF on intestinal function and depression- and anxiety-like symptoms in PI-IBS animal models. Here, we aimed to determine the effects of PF treatment on the symptoms of PI-IBS in a rat model. The PI-IBS rat model was established via early postnatal sibling deprivation (EPSD), trinitrobenzenesulfonic acid (TNBS), and chronic unpredictable mild stress (CUMS) stimulation and then treated with different dosages of PF (10, 20, and 40 mg/kg) and leptin (1 and 10 mg/kg). The fecal water content and body weight were measured to evaluate the intestinal function, while the two-bottle test for sucrose intake, open field test (OFT), and elevated plus maze test (EMT) were performed to assess behavioral changes. The serum leptin levels were also measured using an enzyme-linked immunosorbent assay. Furthermore, the expressions of leptin and its receptor, LepRb, were detected in colonic mucosal tissues through an immunohistochemical assay. The activation of the PI3K/AKT signaling pathway and the expression of brain-derived neurotrophic factor (BDNF) were also detected via western blotting. After the experimental period, the PI-IBS rats presented decreased body weight and increased fecal water content, which coincided with elevated leptin levels and heightened depression- and anxiety-like behaviors (e.g., low sucrose intake, less frequency in the center areas during OFT, and fewer activities in the open arms during EMT). However, the PF treatment ameliorated these observed symptoms. Furthermore, PF not only inhibited leptin/LepRb expression but also reduced the PI3K/AKT phosphorylation and BDNF expression in PI-IBS rats. Notably, cotreatment with leptin (10 mg/kg) reduced the effects of PF (20 mg/kg) on colonic fibrosis, leptin/LepRb expression, and PI3K/AKT activation. Therefore, our findings suggest that leptin is targeted by PF via the leptin/LepRb pathway, consequently ameliorating the symptoms of PI-IBS. Our study also contributes novel insights for elucidating the pharmacological action of PF on gastrointestinal disorders and may be used for the clinical treatment of PI-IBS in the future.
Collapse
Affiliation(s)
- Ya-Qing Tian
- Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Teaching and Research Section of Traditional Chinese Medicine, School of Pharmacy, Wannan Medical College, Wuhu 241000, Anhui, China
| | - Sheng-Peng Zhang
- Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Teaching and Research Section of Traditional Chinese Medicine, School of Pharmacy, Wannan Medical College, Wuhu 241000, Anhui, China
| | - Kun-Li Zhang
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Di Cao
- Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Teaching and Research Section of Traditional Chinese Medicine, School of Pharmacy, Wannan Medical College, Wuhu 241000, Anhui, China
| | - Yi-Jun Zheng
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Liu
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui-Hui Zhou
- Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Teaching and Research Section of Traditional Chinese Medicine, School of Pharmacy, Wannan Medical College, Wuhu 241000, Anhui, China
| | - Ya-Ning Wu
- Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Teaching and Research Section of Traditional Chinese Medicine, School of Pharmacy, Wannan Medical College, Wuhu 241000, Anhui, China
| | - Qi-Xiang Xu
- Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Teaching and Research Section of Traditional Chinese Medicine, School of Pharmacy, Wannan Medical College, Wuhu 241000, Anhui, China
| | - Xiao-Ping Liu
- Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Teaching and Research Section of Traditional Chinese Medicine, School of Pharmacy, Wannan Medical College, Wuhu 241000, Anhui, China
| | - Xu-Dong Tang
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong-Qiu Zheng
- Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Teaching and Research Section of Traditional Chinese Medicine, School of Pharmacy, Wannan Medical College, Wuhu 241000, Anhui, China
| | - Feng-Yun Wang
- China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Paeonia lactiflora Pallas extract alleviates antibiotics and DNCB-induced atopic dermatitis symptoms by suppressing inflammation and changing the gut microbiota composition in mice. Biomed Pharmacother 2022; 154:113574. [DOI: 10.1016/j.biopha.2022.113574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
|
14
|
Chen P, Zhang J, Wang C, Chai YH, Wu AG, Huang NY, Wang L. The pathogenesis and treatment mechanism of Parkinson's disease from the perspective of traditional Chinese medicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154044. [PMID: 35338993 DOI: 10.1016/j.phymed.2022.154044] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/26/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disease with no treatment currently available to modify its progression. Traditional Chinese medicine (TCM) has gained attention for its unique theoretical basis and clinical effects. Many studies have reported on the clinical effects and pharmacological mechanisms of Chinese herbs in PD. However, few studies have focused on the treatment mechanisms of anti-PD TCM drugs from the perspective of TCM itself. PURPOSE To elaborate the treatment mechanisms of anti-PD TCM drugs in the perspective of TCM. METHODS We performed a literature survey using traditional books of Chinese medicine and online scientific databases including PubMed, Web of Science, Google Scholar, China National Knowledge Infrastructure (CNKI), and others up to July 2021. RESULTS TCM theory states that PD is caused by a dysfunction of the zang-fu organs (liver, spleen, kidney, and lung) and subsequent pathogenic factors (wind, fire, phlegm, and blood stasis). Based on the pathogenesis, removing pathogenic factors and restoring visceral function are two primary treatment principles for PD in TCM. The former includes dispelling wind, clearing heat, resolving phlegm, and promoting blood circulation, while the latter involves nourishing the liver and kidney and strengthening the spleen. The anti-PD mechanisms of the active ingredients of TCM compounds and herbs at different levels include anti-apoptosis, anti-inflammation, and anti-oxidative stress, as well as the restoration of mitochondrial function and the regulation of autophagy and neurotransmitters. CONCLUSION Chinese herbs and prescriptions can be used to treat PD by targeting multiple pharmacological mechanisms.
Collapse
Affiliation(s)
- Peng Chen
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China; Accreditation Center of Traditional Chinese Medicine Physician, National Administration of Traditional Chinese Medicine, Beijing, China.
| | - Jie Zhang
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Chen Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Yi-Hui Chai
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - An-Guo Wu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Ning-Yu Huang
- Accreditation Center of Traditional Chinese Medicine Physician, National Administration of Traditional Chinese Medicine, Beijing, China.
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
15
|
He ZQ, Huan PF, Wang L, He JC. Paeoniflorin ameliorates cognitive impairment in Parkinson's disease via JNK/p53 signaling. Metab Brain Dis 2022; 37:1057-1070. [PMID: 35230626 PMCID: PMC9042992 DOI: 10.1007/s11011-022-00937-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/14/2022] [Indexed: 11/04/2022]
Abstract
Paeoniflorin (PF) has numerous benefits, including anti-inflammatory and anti-apoptosis effects. However, it is not clear if it has neuroprotective effects against cognitive impairment (CI) in Parkinson's disease (PD). Through network pharmacology, we identified probable targets as well as signal pathways through which PF might affect CI in PD. Then, we experimentally validated our findings. The core genes of the protein-protein interactions (PPI) network include MAPK8 (JNK), TP53, CASP3 (caspase-3), postsynaptic density protein-95 (PSD-95) and synaptophysin (SYN). Pathway enrichment analysis revealed that genes involved in apoptosis and mitogen-activated protein kinase (MAPK) signaling were significantly enriched. Because JNK is a key mediator of p53-induced apoptosis, we wondered if JNK/p53 pathway influences the effects of PF against apoptosis in mouse model of PD. Molecular docking analysis showed that PF had good affinity for JNK/p53. The results of the experiments indicated that PF ameliorated behavioral impairments and upregulated the expression of the dopamine (DA) neurons, suppressed cell apoptosis in substantia nigra pars compacta (SNpc) of PD. Additionally, PF improved 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neuronal injury by inhibiting apoptosis in hippocampal neurons of the CA1 and CA3, and upregulating PSD-95 as well as SYN protein levels. Similar protective effects were observed upon JNK/p53 pathway inhibition using SP600125. Overall, PF improved CI in PD by inhibiting JNK/p53 pathway.
Collapse
Affiliation(s)
- Zhu-Qing He
- Department of Diagnostics of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Peng-Fei Huan
- Department of Diagnostics of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li Wang
- Department of Diagnostics of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| | - Jian-Cheng He
- Department of Diagnostics of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Shanghai Key Laboratory of Health Identification and Assessment, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
16
|
Sun X, Chen L, Yan H, Cui L, Hussain H, Xie L, Liu J, Jiang Y, Meng Z, Cao G, Park J, Wang D. An efficient high-speed counter-current chromatography method for the preparative separation of potential antioxidant from Paeonia lactiflora Pall. combination of in vitro evaluation and molecular docking. J Sep Sci 2022; 45:1856-1865. [PMID: 35338696 DOI: 10.1002/jssc.202200082] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 11/10/2022]
Abstract
Paeonia lactiflora Pall., one of the most famous classical herbal medicine, has been used to treat diseases for over 1200 years. In this research, the functional ingredients were purified by online-switch two-dimensional high-speed counter-current chromatography combined with inner-recycling and continuous injection mode. The antioxidant activity was evaluated by investigating the 2,2'-azobis (2-amidinopropane) dihydrochloride-induced oxidant damage in vitro and confirmed through molecular docking. n-Butanol/ethyl acetate/water (2:3:5, v/v) solvent system was used for the first dimensional separation and optimized the sample loading. Two pure compounds and a polyphenol-enriched fraction were separated. The polyphenol-enriched fraction was separated with a solvent system n-hexane/ethyl acetate/methanol/water (2:8:4:6, v/v) with continuous injection mode. Five compounds were successfully separated, including gallic acid (1), methyl gallate (2), albiflorin (3), paeoniflorin (4), and ethyl gallate (5). Their structures were identified by mass spectrometry and nuclear magnetic resonance. The results from antioxidant effect showed that albiflorin had stronger antioxidant activity. Molecular docking results indicated that the affinity energy of the identified compounds ranged from -3.79 to -8.22 kcal/mol and albiflorin showed the lowest affinity energy. Overall, all those findings suggested that the strong antioxidant capacity of albiflorin can be potentially used for treatment of diseases that caused by oxidation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xuan Sun
- Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze, 274000, China.,College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315000, China.,School of Pharmaceutical Sciences and Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Long Chen
- Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze, 274000, China.,College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315000, China
| | - Huijiao Yan
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315000, China
| | - Li Cui
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315000, China
| | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), D-06120, Germany
| | - Lei Xie
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315000, China
| | - Jie Liu
- Engineering Research Center for Medicines of Orthopedic Pain of Shandong Province, Shandong C.P. Freda Pharmaceutical Co., Ltd., Jinan, 250104, China
| | - Yujuan Jiang
- Engineering Research Center for Medicines of Orthopedic Pain of Shandong Province, Shandong C.P. Freda Pharmaceutical Co., Ltd., Jinan, 250104, China
| | - Zhaoqing Meng
- Shandong Hongjitang Pharmaceutical Group Co., Ltd., Jinan, 250103, China
| | - Guiyun Cao
- Shandong Hongjitang Pharmaceutical Group Co., Ltd., Jinan, 250103, China
| | - Jeonghill Park
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Daijie Wang
- Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze, 274000, China.,School of Pharmaceutical Sciences and Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| |
Collapse
|
17
|
Muhammad F, Liu Y, Zhou Y, Yang H, Li H. Antioxidative role of Traditional Chinese Medicine in Parkinson's disease. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114821. [PMID: 34838943 DOI: 10.1016/j.jep.2021.114821] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/24/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Neuroprotective Traditional Chinese Medicine (TCM) has been practiced in alternative medicine from early days. TCM-derived neuroprotective compounds, such as Chrysin, Cannabidiol, Toonasinoids, and β-asaron, exert significant effectiveness's towards Parkinson's disease (PD). Further, these neuroprotective TCM showed antioxidative, anti-inflammatory, anti-tumor, anti-septic, analgesic properties. Recent research showed that the reduction in the reactive oxygen species (ROS) decreased the α-synuclein (α-syn) toxicity and enhanced the dopaminergic neuron regenerations, the main hallmarks of PD. Therefore, the neuroprotective effects of novel TCM due to its antiradical activities needed deep investigations. AIMS OF THE STUDY This review aims to enlighten the neuroprotective TCM and its components with their antioxidative properties to the scientific community for future research. METHOD The relevant information on the neuroprotective TCM was gathered from scientific databases (PubMed, Web of Science, Google Scholar, ScienceDirect, SciFinder, Wiley Online Library, ACS Publications, and CNKI). Information was also gained from MS and Ph.D. thesis, books, and online databases. The literature cited in this review dates from 2001 to June 2, 0201. RESULTS Novel therapies for PD are accessible, mostly rely on Rivastigmine and Donepezil, offers to slow down the progression of disease at an early stage but embraces lots of disadvantages. Researchers are trying to find a potential drug against PD, which is proficient at preventing or curing the disease progress, but still needed to be further identified. Oxidative insult and mitochondrial dysfunction are thought to be the main culprit of neurodegenerations. Reactive oxygen species (ROS) are the only causative agent in all interactions, leading to PD, from mitochondrial dysfunctions, α-syn aggregative toxicity, and DA neurons degenerations. It is evident from the redox balance, which seems an imperative therapeutic approach against PD and was necessary for the significant neuronal activities. CONCLUSION Our study is explaining the newly discovered TCM and their neuroprotective and antioxidative properties. But also bring up the possible treatment approaches against PD for future researchers.
Collapse
Affiliation(s)
- Fahim Muhammad
- College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yan Liu
- School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou, 730020, China
| | - Yongtao Zhou
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Clinical Center for Parkinson's Disease, Capital Medical University, Beijing, China
| | - Hui Yang
- Instiute of Biology Gansu Academy of Sciences, China.
| | - Hongyu Li
- College of Life Sciences, Lanzhou University, Lanzhou, China; School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou, 730020, China.
| |
Collapse
|
18
|
Zheng X, Yin M, Chu S, Yang M, Yang Z, Zhu Y, Huang L, Peng H. Comparative Elucidation of Age, Diameter, and "Pockmarks" in Roots of Paeonia lactiflora Pall. (Shaoyao) by Qualitative and Quantitative Methods. FRONTIERS IN PLANT SCIENCE 2022; 12:802196. [PMID: 35154191 PMCID: PMC8826210 DOI: 10.3389/fpls.2021.802196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Paeonia lactiflora Pall. is a world-famous ornamental plant, whose roots have been used as an important traditional Chinese medicine, Shaoyao, to treat diseases for more than 1,000 years. Because of the excellent curative effect of Shaoyao, its quality has attracted wide attention, however, there is a lack of comprehensive research on the different influencing factors of quality of Shaoyao. In this study, ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) and high-performance liquid chromatography with diode-array detection (HPLC-DAD) were utilized to systematically analyze the Shaoyao of different ages, diameters and roots with "pockmarks." 60 metabolites were detected and identified from Shaoyao using the UPLC-Q/TOF-MS, of which 20 potential quality markers of dissected roots with and without "pockmarks" were selected for the first time using the orthogonal partial least squares discriminant analysis (OPLS-DA) and the variable importance for projection (VIP) plot. Then, a selective and accurate HPLC-DAD quantitative assay has been developed for the simultaneous determination of 11 bioactive components in Shaoyao. The results showed that the total content of five monoterpene glycosides including oxypaeoniflorin, albiflorin, paeoniflorin, lactiflorin, and benzoylpaeoniflorin and six phenols including gallic acid, catechin, methyl gallate, ethyl gallate, apiopaeonoside and benzoic acid in the 3-year-old Shaoyao was higher than that of 4-year-old and 5-year-old Shaoyao. In Shaoyao of the same age, the total content of five monoterpene glycosides and six phenols decreased with an increase in diameter. In addition, regardless of whether it is a whole or a divided root, the contents of five monoterpene glycosides and six phenols in Shaoyao with "pockmarks" were higher than those of Shaoyao without "pockmarks." In summary, this work has explored several factors that might affect the quality of Shaoyao, and provide a guide for more comprehensive quality evaluation in its further production, processing, and rational utilization.
Collapse
Affiliation(s)
- Xiaowen Zheng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Minzhen Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shanshan Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
| | - Mei Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zhengyang Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | | | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huasheng Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
- Research Unit of DAO-DI Herbs, Chinese Academy of Medical Sciences, 2019RU57, Beijing, China
| |
Collapse
|
19
|
Chen C, Wang B, Li J, Xiong F, Zhou G. Multivariate Statistical Analysis of Metabolites in Anisodus tanguticus (Maxim.) Pascher to Determine Geographical Origins and Network Pharmacology. FRONTIERS IN PLANT SCIENCE 2022; 13:927336. [PMID: 35845631 PMCID: PMC9277180 DOI: 10.3389/fpls.2022.927336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/09/2022] [Indexed: 05/17/2023]
Abstract
Anisodus tanguticus (Maxim.) Pascher, has been used for the treatment of septic shock, analgesia, motion sickness, and anesthesia in traditional Tibetan medicine for 2,000 years. However, the chemical metabolites and geographical traceability and their network pharmacology are still unknown. A total of 71 samples of A. tanguticus were analyzed by Ultra-Performance Liquid Chromatography Q-Exactive Mass Spectrometer in combination with chemometrics developed for the discrimination of A. tanguticus from different geographical origins. Then, network pharmacology analysis was used to integrate the information of the differential metabolite network to explore the mechanism of pharmacological activity. In this study, 29 metabolites were identified, including tropane alkaloids, hydroxycinnamic acid amides and coumarins. Principal component analysis (PCA) explained 49.5% of the total variance, and orthogonal partial least-squares discriminant analysis (OPLS-DA) showed good discrimination (R2Y = 0.921 and Q2 = 0.839) for A. tanguticus samples. Nine differential metabolites accountable for such variations were identified through variable importance in the projection (VIP). Through network pharmacology, 19 components and 20 pathways were constructed and predicted for the pharmacological activity of A. tanguticus. These results confirmed that this method is accurate and effective for the geographic classification of A. tanguticus, and the integrated strategy of metabolomics and network pharmacology can explain well the "multicomponent--multitarget" mechanism of A. tanguticus.
Collapse
Affiliation(s)
- Chen Chen
- Chinese Academy of Sciences Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Wang
- Chinese Academy of Sciences Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingjing Li
- College of Life Science, Qinghai Normal University, Xining, China
| | - Feng Xiong
- Chinese Academy of Sciences Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
| | - Guoying Zhou
- Chinese Academy of Sciences Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
- *Correspondence: Guoying Zhou
| |
Collapse
|
20
|
Wyse RK, Stott SRW, Mursaleen L, Matthews H, Dawson VL, Dawson TM. Waiting for PARIS-A Biological Target in Search of a Drug. JOURNAL OF PARKINSONS DISEASE 2021; 12:95-103. [PMID: 34744054 PMCID: PMC8842778 DOI: 10.3233/jpd-212945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A recent breakthrough paper published in Science Translational Medicine has provided compelling evidence that inhibition of Parkin Interacting Substrate (PARIS) may offer clinical researchers an important new therapeutic approach since it shows considerable promise as an important biological target potentially capable of pharmaceutical intervention to slow long term neurodegeneration in patients with Parkinson’s disease (PD). We present several PD-relevant perspectives on this paper that were not discussed in that otherwise entirely scientific narrative. We also outline the some of the work leading up to it, including the massive drug screen that proved necessary to discover a clinically suitable inhibitor of PARIS (Farnesol), as well as relevant PD research within the wider drug class, issues surrounding its future formulation, and next steps in translating this new knowledge into the clinic to evaluate possible long-term PD patient benefits.
Collapse
Affiliation(s)
| | | | | | | | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
21
|
Wei X, Zhao Z, Zhong R, Tan X. A comprehensive review of herbacetin: From chemistry to pharmacological activities. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114356. [PMID: 34166735 DOI: 10.1016/j.jep.2021.114356] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/09/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herbacetin is an active constituent of traditional Chinese medicines such as Ephedra sinica Stapf (MaHuang) and Sedum roseum (L.). Scop. (Hong JingTian). MaHuang was used to treat cough, asthma, fever, and edema for more than 5000 years, while Hong JingTian was used to treat depression, fatigue, cancers, and cardiovascular disease. Recent studies indicate that herbacetin and its glycosides play a critical role in the pharmacological activities of these herbs. However, currently, no comprehensive review on herbacetin has been published yet. AIM OF THE STUDY This review aimed to summarize information on the chemistry, natural sources, and pharmacokinetic features of herbacetin, with an emphasis on its pharmacological activities and possible mechanisms of action. MATERIALS AND METHODS A literature search was performed on the Web of Science, PubMed, and China Knowledge Resource Integrated databases (CNKI) using the search term "herbacetin" ("all fields") from 1935 to 2020. Information was also obtained from classic books of Chinese herbal medicine, Chinese pharmacopeia, and the database "The Plant List" (www.theplantlist.org). Studies have been analyzed and summarized in this review if they dealt with chemistry, taxonomy, pharmacokinetic, and pharmacological activity. RESULTS Herbacetin is distributed in various plants and can be extracted or synthesized. It showed diverse pharmacological activities including antioxidant, antiviral, anti-inflammatory, anticancer, antidiabetic, and anticholinesterase. It is thought to have great potential in cancer treatment, especially colon and skin cancers. However, the bioavailability of herbacetin is low and the toxicity of herbacetin has not been studied. Thus, more studies are required to solve these problems. CONCLUSIONS Herbacetin shows promising pharmacological activities against multiple diseases. Future research should focus on improving bioavailability, further studying its pharmacological mechanism, evaluating its toxicity and optimal dose, and performing the clinical assessment. We hope that the present review will serve as a guideline for future research on herbacetin.
Collapse
Affiliation(s)
- Xiaohan Wei
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangzhou Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation, Technology, Guangzhou, 510515, China
| | - Zhejun Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Rongheng Zhong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiaomei Tan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangzhou Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation, Technology, Guangzhou, 510515, China.
| |
Collapse
|
22
|
Oxypaeoniflorin Prevents Acute Lung Injury Induced by Lipopolysaccharide through the PTEN/AKT Pathway in a Sirt1-Dependent Manner. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6878026. [PMID: 34394832 PMCID: PMC8357472 DOI: 10.1155/2021/6878026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/23/2021] [Accepted: 07/09/2021] [Indexed: 12/30/2022]
Abstract
Acute lung injury (ALI) is featured by pulmonary edema, alveolar barrier injury, inflammatory response, and oxidative stress. The activation of Sirt1 could relieve lipopolysaccharide- (LPS-) induced murine ALI by maintaining pulmonary epithelial barrier function. Oxypaeoniflorin (Oxy) serves as a major component of Paeonia lactiflora Pall., exerting cardioprotection by activating Sirt1. However, the role of Oxy in ALI induced by LPS remains unclear. The aim of the present study is to illustrate the modulatory effects and molecular mechanisms by which Oxy operates in ALI induced by LPS. The intraperitoneal injection of LPS was performed to establish the murine ALI model while LPS-treated alveolar epithelial cells were used to mimic the in vitro ALI model. Levels of lung injury, oxidative stress, and inflammatory response were detected to observe the potential effects of Oxy on ALI. Oxy treatment mitigated lung edema, inflammatory response, and oxidative stress in mouse response to LPS, apart from improving 7-day survival. Meanwhile, Oxy also increased the expression and activity of Sirt1. Intriguingly, Sirt1 deficiency or inhibition counteracted the protective effects of Oxy treatment in LPS-treated mice or LPS-treated alveolar epithelial cells by regulating the PTEN/AKT signaling pathway. These results demonstrated that Oxy could combat ALI in vivo and in vitro through inhibiting inflammatory response and oxidative stress in a Sirt1-dependent manner. Oxy owns the potential to be a promising candidate against ALI.
Collapse
|
23
|
Koszła O, Stępnicki P, Zięba A, Grudzińska A, Matosiuk D, Kaczor AA. Current Approaches and Tools Used in Drug Development against Parkinson's Disease. Biomolecules 2021; 11:897. [PMID: 34208760 PMCID: PMC8235487 DOI: 10.3390/biom11060897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/12/2021] [Accepted: 06/13/2021] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disorder characterized by the death of nerve cells in the substantia nigra of the brain. The treatment options for this disease are very limited as currently the treatment is mainly symptomatic, and the available drugs are not able to completely stop the progression of the disease but only to slow it down. There is still a need to search for new compounds with the most optimal pharmacological profile that would stop the rapidly progressing disease. An increasing understanding of Parkinson's pathogenesis and the discovery of new molecular targets pave the way to develop new therapeutic agents. The use and selection of appropriate cell and animal models that better reflect pathogenic changes in the brain is a key aspect of the research. In addition, computer-assisted drug design methods are a promising approach to developing effective compounds with potential therapeutic effects. In light of the above, in this review, we present current approaches for developing new drugs for Parkinson's disease.
Collapse
Affiliation(s)
- Oliwia Koszła
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (O.K.); (P.S.); (A.Z.); (A.G.); (D.M.)
| | - Piotr Stępnicki
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (O.K.); (P.S.); (A.Z.); (A.G.); (D.M.)
| | - Agata Zięba
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (O.K.); (P.S.); (A.Z.); (A.G.); (D.M.)
| | - Angelika Grudzińska
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (O.K.); (P.S.); (A.Z.); (A.G.); (D.M.)
| | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (O.K.); (P.S.); (A.Z.); (A.G.); (D.M.)
| | - Agnieszka A. Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (O.K.); (P.S.); (A.Z.); (A.G.); (D.M.)
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
24
|
Li Q, Hu S, Huang L, Zhang J, Cao G. Evaluating the Therapeutic Mechanisms of Selected Active Compounds in Cornus Officinalis and Paeonia Lactiflora in Rheumatoid Arthritis via Network Pharmacology Analysis. Front Pharmacol 2021; 12:648037. [PMID: 33967784 PMCID: PMC8097135 DOI: 10.3389/fphar.2021.648037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/18/2021] [Indexed: 11/18/2022] Open
Abstract
Cornus officinalis Sieb et. Zucc and Paeonia lactiflora Pall. have exhibited favorable therapeutic effects against rheumatoid arthritis (RA), but the specific mechanisms of their active compounds remain unclear. The aim of this study was to comprehensively analyze the therapeutic mechanisms of selected active compounds in Cornus officinalis (loganin, ursolic acid, and morroniside) and Paeonia lactiflora (paeoniflorin and albiflorin) via network pharmacology. The pharmacological properties of the five active compounds were evaluated and their potential target genes were identified by database screening. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional analysis were performed to determine the enriched molecular pathways associated with the active compounds. Using network pharmacology tools, eight genes (IL1β, VEGFA, STAT3, TP53, IL6, TNF, FOS, and LGALS3) were identified as common targets between RA and the five active compounds. Molecular docking simulation revealed the compound-target relationship between the five active compounds and three selected targets from the eight common ones (LGALS3, STAT3, and VEGFA). The compound-target relationships were subsequently validated via preliminary in vivo experiments in a rat model of collagen-induced arthritis. Rats subjected to collagen-induced arthritis showed increased protein expression of LGALS3, STAT3, and VEGFA in synovial tissues. However, treatment using Cornus officinalis or/and Paeonia lactiflora, as well as their most drug-like active compounds (ursolic acid or/and paeoniflorin, respectively, identified based on pharmacological properties), attenuated the expression of these three targets, as previously predicted. Collectively, network pharmacology allowed the pharmacological and molecular roles of Cornus officinalis and Paeonia lactiflora to be systematically revealed, further establishing them as important candidate drugs in the treatment and management of RA.
Collapse
Affiliation(s)
- Qinglin Li
- Scientific Research Department, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shaoqi Hu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lichuang Huang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jida Zhang
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gang Cao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|