1
|
Supawat A, Palachai N, Jittiwat J. Effect of galangin on oxidative stress, antioxidant defenses and mitochondrial dynamics in a rat model of focal cerebral ischemia. Biomed Rep 2025; 22:10. [PMID: 39583769 PMCID: PMC11582524 DOI: 10.3892/br.2024.1888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024] Open
Abstract
Focal ischemia occurs when a cerebral artery becomes obstructed by an embolus or thrombus, leading to a rapid reduction in cerebral blood flow and significantly increasing the risk of mortality and disability. This condition is of particular concern in developing countries, where its prevalence is on the rise. Galangin, a flavonoid found in Alpinia officinarum, shows strong antioxidant, anti-inflammatory and anti-apoptotic properties. Its wide-ranging bioactivity in both in vitro and animal studies points to promising therapeutic applications. Given the role of oxidative stress in the pathophysiology of focal ischemia, the present study explored the effects of galangin on oxidative stress markers and antioxidant defenses in an animal model of the disease. A total of 60 healthy male Wistar rats were randomly assigned to six groups: Control, right middle cerebral artery occlusion (Rt.MCAO) + vehicle, Rt.MCAO + piracetam, and Rt.MCAO + galangin at doses of 25, 50 and 100 mg/kg body weight. The results indicated that 7 days of galangin treatment reduces infarct volume, malondialdehyde levels, and the density ratio of mitogen-activated protein kinase, while enhancing catalase, glutathione peroxidase and superoxide dismutase activities, and improving the density ratio of mitofusin 2 protein in the cortex and hippocampus. In conclusion, galangin showed significant in vivo potential in mitigating the pathological changes caused by cerebral ischemia, likely due to its antioxidant properties and modulation of mitochondrial dynamics. Additional research is now needed to explore the biochemical and neurological impacts of galangin in focal cerebral ischemia and to fully elucidate its mechanism of action.
Collapse
Affiliation(s)
- Araya Supawat
- Faculty of Medicine, Mahasarakham University, Mahasarakham 44000, Thailand
| | - Nut Palachai
- Faculty of Medicine, Mahasarakham University, Mahasarakham 44000, Thailand
| | - Jinatta Jittiwat
- Faculty of Medicine, Mahasarakham University, Mahasarakham 44000, Thailand
| |
Collapse
|
2
|
Bader Eddin L, Nagoor Meeran MF, Kumar Jha N, Goyal SN, Ojha S. Isoproterenol mechanisms in inducing myocardial fibrosis and its application as an experimental model for the evaluation of therapeutic potential of phytochemicals and pharmaceuticals. Animal Model Exp Med 2024. [PMID: 39690876 DOI: 10.1002/ame2.12496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/14/2024] [Indexed: 12/19/2024] Open
Abstract
Cardiac injury initiates repair mechanisms and results in cardiac remodeling and fibrosis, which appears to be a leading cause of cardiovascular diseases. Cardiac fibrosis is characterized by the accumulation of extracellular matrix proteins, mainly collagen in the cardiac interstitium. Many experimental studies have demonstrated that fibrotic injury in the heart is reversible; therefore, it is vital to understand different molecular mechanisms that are involved in the initiation, progression, and resolution of cardiac fibrosis to enable the development of antifibrotic agents. Of the many experimental models, one of the recent models that has gained renewed interest is isoproterenol (ISP)-induced cardiac fibrosis. ISP is a synthetic catecholamine, sympathomimetic, and nonselective β-adrenergic receptor agonist. The overstimulated and sustained activation of β-adrenergic receptors has been reported to induce biochemical and physiological alterations and ultimately result in cardiac remodeling. ISP has been used for decades to induce acute myocardial infarction. However, the use of low doses and chronic administration of ISP have been shown to induce cardiac fibrosis; this practice has increased in recent years. Intraperitoneal or subcutaneous ISP has been widely used in preclinical studies to induce cardiac remodeling manifested by fibrosis and hypertrophy. The induced oxidative stress with subsequent perturbations in cellular signaling cascades through triggering the release of free radicals is considered the initiating mechanism of myocardial fibrosis. ISP is consistently used to induce fibrosis in laboratory animals and in cardiomyocytes isolated from animals. In recent years, numerous phytochemicals and synthetic molecules have been evaluated in ISP-induced cardiac fibrosis. The present review exclusively provides a comprehensive summary of the pathological biochemical, histological, and molecular mechanisms of ISP in inducing cardiac fibrosis and hypertrophy. It also summarizes the application of this experimental model in the therapeutic evaluation of natural as well as synthetic compounds to demonstrate their potential in mitigating myocardial fibrosis and hypertrophy.
Collapse
Affiliation(s)
- Lujain Bader Eddin
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Niraj Kumar Jha
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, India
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Samer N Goyal
- Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule, Maharashtra, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
3
|
Yang Y, Yang W, Hu T, Sun M, Wang J, Shen J, Ding E. Protective Effect of Biochanin A on Gamma Radiation-Induced Oxidative Stress, Antioxidant Status, Apoptotic, and DNA Repairing Molecules in Swiss Albino Mice. Cell Biochem Funct 2024; 42:e70005. [PMID: 39498677 DOI: 10.1002/cbf.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/09/2024] [Accepted: 10/14/2024] [Indexed: 11/07/2024]
Abstract
Radiation therapy is indispensable in medical practice but often causes adverse effects on healthy tissues, necessitating the search for natural radioprotectors. This study investigates the protective effect of Biochanin A (BCA) against gamma radiation-induced oxidative stress and DNA damage in Swiss albino mice. Gamma radiation, a potent ionizing source, generates reactive oxygen species (ROS) that damage cellular biomolecules, including DNA. Antioxidants play a crucial role in neutralizing ROS and preventing oxidative damage. Swiss albino mice were divided into control, BCA control (10 mg/kg body weight), radiation alone (7 Gy), and radiation+ BCA pretreatment groups. BCA, a natural isoflavone with known antioxidant and cytoprotective properties, was administered intraperitoneally before radiation exposure. After irradiation, lipid peroxidation levels, antioxidant enzyme activities/level (superoxide dismutase, catalase, glutathione peroxidase and reduced glutathione), expression levels of DNA repair genes (P53, P21, GADD45α), apoptotic markers (Bax, Bcl-2, Caspase-3, -9 and Cytochrome-C), and inflammatory marker (NF-κB) were analyzed in small intestine tissue. Our findings indicate that gamma radiation significantly elevated lipid peroxidation levels and altered antioxidant enzyme activities, indicating oxidative stress. However, BCA pretreatment mitigated these effects by bolstering antioxidant defences, reducing radiation-induced oxidative damage. Additionally, BCA altered apoptotic markers, NF-κB expression, promoting cell survival mechanisms. At the molecular level, BCA pretreatment upregulated key DNA repair genes (P53, P21, GADD45α), crucial for repairing radiation-induced DNA damage and maintaining genomic stability. These results underscore BCA potential as a radioprotector, suggesting its efficacy in mitigating radiation-induced oxidative stress and preserving cellular integrity. In conclusion, BCA demonstrates promising radioprotective properties by attenuating oxidative stress, enhancing antioxidant defences, modulating apoptotic pathways, and promoting DNA repair mechanisms following gamma radiation exposure. Further research is necessary to elucidate its precise mechanisms of action and explore its potential therapeutic applications in radiation oncology and environmental radioprotection.
Collapse
Affiliation(s)
- Yang Yang
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
- Department of Nuclear Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Yang
- Department of Cardiology, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Tianpeng Hu
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
- Department of Nuclear Medicine, Tianjin First Central Hospital, Tianjin, China
| | - Momo Sun
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
- Department of Nuclear Medicine, Tianjin First Central Hospital, Tianjin, China
| | - Jin Wang
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
- Department of Ultrasound, Tianjin First Central Hospital, Tianjin, China
| | - Jie Shen
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
- Department of Nuclear Medicine, Tianjin First Central Hospital, Tianjin, China
| | - Enci Ding
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
- Department of Nuclear Medicine, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
4
|
Meng YQ, Cui X, Li S, Jin CH. Application of Compounds with Anti-Cardiac Fibrosis Activity: A Review. Chem Biodivers 2024; 21:e202401078. [PMID: 39223082 DOI: 10.1002/cbdv.202401078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Coronary heart disease, hypertension, myocarditis, and valvular disease cause myocardial fibrosis, leading to heart enlargement, heart failure, heart rate failure, arrhythmia, and premature ventricular beat, even defibrillation can increase the risk of sudden death. Although cardiac fibrosis is common and widespread, there are still no effective drugs to provide adequate clinical intervention for cardiac fibrosis. In this review article, we classify the compounds for treating cardiac fibrosis into natural products, synthetic compounds, and patent drugs according to their sources. Additionally, the structures, activities and signaling pathways of these compounds are discussed. This review provides insight and could provide a reference for the design of new anti-cardiac fibrosis compounds and the new use of older drugs.
Collapse
Affiliation(s)
- Yu-Qing Meng
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Xun Cui
- Department of Physiology, School of Medicinal Sciences, Yanbian University, Yanji, Jilin, 133002, China
| | - Siqi Li
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Cheng-Hua Jin
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| |
Collapse
|
5
|
Xue X, Zhou H, Gao J, Li X, Wang J, Bai W, Bai Y, Fan L, Chang H, Shi S. The impact of traditional Chinese medicine and dietary compounds on modulating gut microbiota in hepatic fibrosis: A review. Heliyon 2024; 10:e38339. [PMID: 39391468 PMCID: PMC11466535 DOI: 10.1016/j.heliyon.2024.e38339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
Traditional Chinese medicine (TCM) and dietary compounds have a profound influence on the regulation of gut microbiota (GM) in hepatic fibrosis (HF). Certain substances found in both food and herbs that are edible and medicinal, such as dietary fiber, polyphenols, and polysaccharides, can generate beneficial metabolites like short-chain fatty acids (SCFAs), bile acids (BAs), and tryptophan (Trp). These compounds contribute to regulate the GM, reduce levels of endotoxins in the liver, and alleviate fibrosis and inflammation in the liver. Furthermore, they enhance the composition and functionality of GM, promoting the growth of beneficial bacteria while inhibiting the proliferation of harmful bacteria. These mechanisms mitigate the inflammatory response in the intestines and maintain the integrity of the intestinal barrier. The purpose of this review is to analyze how the GM regulates the pathogenesis of HF, evaluate the regulatory effect of TCM and dietary compounds on the intestinal microflora, with a particular emphasis on modulating flora structure, enhancing gut barrier function, and addressing associated pathogenic factors, thereby provide new insights for the treatment of HF.
Collapse
Affiliation(s)
- Xingting Xue
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Hongbing Zhou
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Jiaxing Gao
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Xinghua Li
- Changzhi People's Hospital, The Affiliated Hospital of Changzhi Medical College, Changzhi, Shanxi Province, China
| | - Jia Wang
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Wanfu Bai
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Yingchun Bai
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Liya Fan
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Hong Chang
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Songli Shi
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
- Institute of Bioactive Substance and Function of Mongolian Medicine and Chinese Materia Medica, Baotou Medical College, Baotou, China
| |
Collapse
|
6
|
Youn I, Han AR, Piao D, Lee H, Kwak H, Lee Y, Nam JW, Seo EK. Phytochemical and pharmacological properties of the genus Alpinia from 2016 to 2023. Nat Prod Rep 2024; 41:1346-1367. [PMID: 38717742 DOI: 10.1039/d4np00004h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Covering 2016 up to the end of 2023Alpinia is the largest genus of flowering plants in the ginger family, Zingiberaceae, and comprises about 500 species. Many Alpinia are commonly cultivated ornamental plants, and some are used as spices or traditional medicine to treat inflammation, hyperlipidemia, and cancers. However, only a few comprehensive reviews have been published on the phytochemistry and pharmacology of this genus, and the latest review was published in 2017. In this review, we provide an extensive coverage of the studies on Alpinia species reported from 2016 through 2023, including newly isolated compounds and potential biological effects. The present review article shows that Alpinia species have a wide spectrum of pharmacological activities, most due to the activities of diarylheptanoids, terpenoids, flavonoids, and phenolics.
Collapse
Affiliation(s)
- Isoo Youn
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Ah-Reum Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup-si, Jeollabuk-do 56212, Republic of Korea
| | - Donglan Piao
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Hwaryeong Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Hyunkyung Kwak
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Yeju Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea
| | - Eun Kyoung Seo
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
7
|
Jalgaonkar SV, Tripathi R, Kurhade KG, Chaudhari P, Mohanty BS, Vaideeswar P. Cardioprotective effect of S-adenosyl L-methionine due to antioxidant and anti-inflammatory properties on isoproterenol-induced chronic heart failure in Wistar rats. Indian J Pharmacol 2024; 56:335-341. [PMID: 39687957 DOI: 10.4103/ijp.ijp_407_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/24/2024] [Indexed: 12/18/2024] Open
Abstract
OBJECTIVES The development and progression of chronic heart failure (CHF), hypertrophy, and remodeling strongly correlate with myocardial inflammation and oxidative stress. S-adenosylmethionine (SAMe), available as a dietary supplement, exerts anti-inflammatory and antioxidant effects. Previous reports show that by regulating angiogenesis and fibrosis, S-adenosyl-L-methionine improves ventricular remodeling. The study objectives were to investigate the cardioprotective effect of SAMe in isoproterenol (ISO)-induced CHF and explore the anti-inflammatory and antioxidant properties of SAMe in this model. METHODOLOGY After animal ethics permission, CHF was induced using ISO of 10 mg/kg for 14 consecutive days in 24 Wistar rats. There were four groups of six rats in each group: Sham Control, Disease Control (DC), ISO + SAMe 100 mg, and ISO + SAMe 200 mg. The variables assessed were heart to body weight ratio (HW/BW mg/g), bio-distribution of Flourine 18-Fluorodeoxyglucose (18F-FDG) in heart tissue, tumor necrosis factor-α (TNF-α) and glutathione (GSH) levels in heart tissue, histopathology, and positron emission tomography imaging. RESULTS SAMe in ISO-induced CHF animals showed a significant decrease in the HW/BW compared to DC group (P < 0.001). 18F-FDG uptake was significantly reduced by SAMe in CHF-induced rats compared to DC rats for both doses (P < 0.001). SAMe showed significantly better values of both TNF-α and GSH than the DC group in both doses (P < 0.001). SAMe in both doses showed multifocal necrosis with scarring and minimal inflammatory cells. CONCLUSION SAMe exerts a cardioprotective effect on ISO-induced CHF in rats because of its antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
| | - Raakhi Tripathi
- Department of Pharmacology, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | | | - Pradeep Chaudhari
- Small Animal Imaging Facility (SAIF), ACTREC, TMC, Navi Mumbai, Maharashtra, India
| | | | - Pradeep Vaideeswar
- Department of Pharmacology, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
8
|
Rihan M, Sharma SS. Compound 3K attenuates isoproterenol-induced cardiac hypertrophy by inhibiting pyruvate kinase M2 (PKM2) pathway. Life Sci 2024; 351:122837. [PMID: 38879156 DOI: 10.1016/j.lfs.2024.122837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
AIM Chronic sympathetic stimulation has been identified as a primary factor in the pathogenesis of cardiac hypertrophy (CH). However, there is no appropriate treatment available for the management of CH. Recently, it has been revealed that pyruvate kinase M2 (PKM2) plays a significant role in cardiac remodeling, fibrosis, and hypertrophy. However, the therapeutic potential of selective PKM2 inhibitor has not yet been explored in cardiac hypertrophy. Thus, in the current study, we have studied the cardioprotective potential of Compound 3K, a selective PKM2 inhibitor in isoproterenol-induced CH model. METHODS To induce cardiac hypertrophy, male Wistar rats were subcutaneously administered isoproterenol (ISO, 5 mg/kg/day) for 14 days. Compound 3K at dosages of 2 and 4 mg/kg orally was administered to ISO-treated rats for 14 days to explore its effects on various parameters like ECG, ventricular functions, hypertrophic markers, histology, inflammation, and protein expression were performed. RESULTS Fourteen days administration of ISO resulted in the induction of CH, which was evidenced by alterations in ECG, ventricular dysfunctions, increase in hypertrophy markers, and fibrosis. The immunoblotting of hypertrophy heart revealed the significant rise in PKM2 and reduction in PKM1 protein expression. Treatment with Compound 3K led to downregulation of PKM2 and upregulation of PKM1 protein expression. Compound 3K showed cardioprotective effects by improving ECG, cardiac functions, hypertrophy markers, inflammation, and fibrosis. Further, it also reduced cardiac expression of PKM2-associated splicing protein, HIF-1α, and caspase-3. CONCLUSION Our findings suggest that Compound 3K has a potential cardioprotective effect via PKM2 inhibition in isoproterenol-induced CH.
Collapse
Affiliation(s)
- Mohd Rihan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar (Mohali) 160062, Punjab, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar (Mohali) 160062, Punjab, India.
| |
Collapse
|
9
|
Khawaja G, El-Orfali Y, Shoujaa A, Abou Najem S. Galangin: A Promising Flavonoid for the Treatment of Rheumatoid Arthritis-Mechanisms, Evidence, and Therapeutic Potential. Pharmaceuticals (Basel) 2024; 17:963. [PMID: 39065811 PMCID: PMC11279697 DOI: 10.3390/ph17070963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Rheumatoid Arthritis (RA) is a chronic autoimmune disease characterized by progressive joint inflammation and damage. Oxidative stress plays a critical role in the onset and progression of RA, significantly contributing to the disease's symptoms. The complex nature of RA and the role of oxidative stress make it particularly challenging to treat effectively. This article presents a comprehensive review of RA's development, progression, and the emergence of novel treatments, introducing Galangin (GAL), a natural flavonoid compound sourced from various plants, as a promising candidate. The bioactive properties of GAL, including its anti-inflammatory, antioxidant, and immunomodulatory effects, are discussed in detail. The review elucidates GAL's mechanisms of action, focusing on its interactions with key targets such as inflammatory cytokines (e.g., TNF-α, IL-6), enzymes (e.g., SOD, MMPs), and signaling pathways (e.g., NF-κB, MAPK), which impact inflammatory responses, immune cell activation, and joint damage. The review also addresses the lack of comprehensive understanding of potential treatment options for RA, particularly in relation to the role of GAL as a therapeutic candidate. It highlights the need for further research and clinical studies to ascertain the effectiveness of GAL in RA treatment and to elucidate its mechanisms of action. Overall, this review provides valuable insights into the potential of GAL as a therapeutic option for RA, shedding light on its multifaceted pharmacological properties and mechanisms of action, while suggesting avenues for future research and clinical applications.
Collapse
Affiliation(s)
- Ghada Khawaja
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut 11-5020, Lebanon
| | - Youmna El-Orfali
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut 11-5020, Lebanon
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon
| | - Aya Shoujaa
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut 11-5020, Lebanon
| | - Sonia Abou Najem
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi P.O. Box 25026, United Arab Emirates;
| |
Collapse
|
10
|
Pisoschi AM, Iordache F, Stanca L, Cimpeanu C, Furnaris F, Geicu OI, Bilteanu L, Serban AI. Comprehensive and critical view on the anti-inflammatory and immunomodulatory role of natural phenolic antioxidants. Eur J Med Chem 2024; 265:116075. [PMID: 38150963 DOI: 10.1016/j.ejmech.2023.116075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
The immune response encompasses innate and adaptive immunity, each with distinct and specific activities. The innate immune system is constituted by phagocytic cells, macrophages, monocytes and neutrophils, the cascade system, and different classes of receptors such as toll-like receptors that are exploited by the innate immune cells. The adaptive immune system is antigen-specific, encompassing memory lymphocytes and the corresponding specific receptors. Inflammation is understood as an activation of different signaling pathways such as toll-like receptors or nuclear factor kappa-light-chain-enhancer of activated B cells, with an increase in nitric oxide, inflammatory cytokines and chemokines. Increased oxidative stress has been identified as main source of chronic inflammation. Phenolic antioxidants modulate the activities of lymphocytes and macrophages by impacting cytokines and nitric oxide release, exerting anti-inflammatory effect. The nuclear-factor kappa-light-chain-enhancer of activated B cells signaling pathway and the mitogen-activated protein kinase pathway are targeted, alongside an increase in nuclear factor erythroid 2-related factor mediated antioxidant response, triggering the activity of antioxidant enzymes. The inhibitive potential on phospholipase A2, cyclooxygenase and lipoxygenase in the arachidonic acid pathway, and the subsequent reduction in prostaglandin and leukotriene generation, reveals the potential of phenolics as inflammation antagonists. The immunomodulative potential encompasses the capacity to interfere with proinflammatory cytokine synthesis and with the expression of the corresponding genes. A diet rich in antioxidants can result in prevention of inflammation-related pathologies. More investigations are necessary to establish the role of these antioxidants in therapy. The appropriate delivery system and the prooxidant effects exhibited at large doses, or in the presence of heavy metal cations should be regarded.
Collapse
Affiliation(s)
- Aurelia Magdalena Pisoschi
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania.
| | - Florin Iordache
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Loredana Stanca
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Carmen Cimpeanu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Land Reclamation and Environmental Engineering, 59 Marasti Blvd, 011464, Bucharest, Romania
| | - Florin Furnaris
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Ovidiu Ionut Geicu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; University of Bucharest, Faculty of Biology, Department Biochemistry and Molecular Biology, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| | - Liviu Bilteanu
- Molecular Nanotechnology Laboratory, National Institute for Research and Development in Microtechnologies, 126A, Erou Iancu Nicolae Street, 077190, Bucharest, Romania
| | - Andreea Iren Serban
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; University of Bucharest, Faculty of Biology, Department Biochemistry and Molecular Biology, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| |
Collapse
|
11
|
Wang D, Chen J, Pu L, Yu L, Xiong F, Sun L, Yu Q, Cao X, Chen Y, Peng F, Peng C. Galangin: A food-derived flavonoid with therapeutic potential against a wide spectrum of diseases. Phytother Res 2023; 37:5700-5723. [PMID: 37748788 DOI: 10.1002/ptr.8013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/08/2023] [Accepted: 08/30/2023] [Indexed: 09/27/2023]
Abstract
Galangin is an important flavonoid with natural activity, that is abundant in galangal and propolis. Currently, various biological activities of galangin have been disclosed, including anti-inflammation, antibacterial effect, anti-oxidative stress and aging, anti-fibrosis, and antihypertensive effect. Based on the above bioactivities, more and more attention has been paid to the role of galangin in neurodegenerative diseases, rheumatoid arthritis, osteoarthritis, osteoporosis, skin diseases, and cancer. In this paper, the natural sources, pharmacokinetics, bioactivities, and therapeutic potential of galangin against various diseases were systematically reviewed by collecting and summarizing relevant literature. In addition, the molecular mechanism and new preparation of galangin in the treatment of related diseases are also discussed, to broaden the application prospect and provide reference for its clinical application. Furthermore, it should be noted that current toxicity and clinical studies of galangin are insufficient, and more evidence is needed to support its possibility as a functional food.
Collapse
Affiliation(s)
- Daibo Wang
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junren Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Pu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lei Yu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Xiong
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luyao Sun
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Yu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Cao
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Zhang F, Yan Y, Zhang LM, Li DX, Li L, Lian WW, Xia CY, He J, Xu JK, Zhang WK. Pharmacological activities and therapeutic potential of galangin, a promising natural flavone, in age-related diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155061. [PMID: 37689035 DOI: 10.1016/j.phymed.2023.155061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND The extension of average life expectancy and the aggravation of population aging have become the inevitable trend of human development. In an aging society, various problems related to medical care for the elderly have become increasingly prominent. However, most of the age-related diseases have the characteristics of multiple diseases at the same time, prone to complications, and atypical clinical manifestations, which bring great difficulties to its treatment. Galangin (3,5,7-trihydroxyflavone) is a natural active compound extracted from the root of Alpinia officinarum Hance (Zingiberaceae). Recently, many studies have shown that galangin has potential advantages in the treatment of neurodegenerative diseases and cardiovascular and cerebrovascular diseases, which are common in the elderly. In addition, it also showed that galangin had prospective activities in the treatment of tumor, diabetes, liver injury, asthma and arthritis. PURPOSE This review aims to systematically summarize and discuss the effects and the underlying mechanism of galangin in the treatment of age-related diseases. METHODS We searched PubMed, SciFinder, Web of Science and CNKI literature database resources, combined with the keywords "galangin", "neurodegenerative disease", "tumor", "diabetes", "pharmacological activity", "drug combination", "pharmacokinetics", "drug delivery system" and "safety", and comprehensively reviewed the pharmacological activities and mechanism of galangin in treating age-related diseases. RESULTS According to the previous studies on galangin, the anti-neurodegenerative activity, cardiovascular and cerebrovascular protective activity, anti-tumor activity, anti-diabetes activity, anti-arthritis activity, hepatoprotective activity and antiasthmatic activity of galangin were discussed, and the related mechanisms were classified and summarized in detail. In addition, the drug combination, pharmacokinetics, drug delivery system and safety of galangin were furtherly discussed. CONCLUSIONS This review will provide reference for galangin in the treatment of age-related diseases. Meanwhile, further experimental research and long-term clinical trials are needed to determine the therapeutic safety and efficacy of galangin.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China; School of Chinese Materia Medica & School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yu Yan
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Lin-Mei Zhang
- School of Chinese Materia Medica & School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Dong-Xu Li
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Li Li
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Wen-Wen Lian
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Cong-Yuan Xia
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jun He
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Jie-Kun Xu
- School of Chinese Materia Medica & School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Wei-Ku Zhang
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China.
| |
Collapse
|
13
|
Hareeri RH, Alam AM, Bagher AM, Alamoudi AJ, Aldurdunji MM, Shaik RA, Eid BG, Ashour OM. Protective Effects of 2-Methoxyestradiol on Acute Isoproterenol-Induced Cardiac Injury in Rats. Saudi Pharm J 2023; 31:101787. [PMID: 37766820 PMCID: PMC10520946 DOI: 10.1016/j.jsps.2023.101787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Myocardial injury (MI) is an important pathological driver of mortality worldwide., and arises as a result of imbalances between myocardial oxygen demand and supply. In MI, oxidative stress often leads to inflammatory changes and apoptosis. Current therapies for MI are known to cause various adverse effects. Consequently, the development of new therapeutic agents with a reduced adverse event profile is necessary. In this regard, 2-methoxyestradiol (2ME), the metabolic end-product of oestradiol, possesses anti-inflammatory and antioxidant properties. The aim of this research is to assess the impact of 2ME on cardiac injury caused by isoproterenol (ISO) in rats. Animals were separated into six groups; controls, and those receiving 2ME (1 mg/kg), ISO (85 mg/kg), ISO + 2ME (0.25 mg/kg), ISO + 2ME (0.5 mg/kg), and ISO + 2ME (1 mg/kg). 2ME significantly attenuated ISO-induced changes in electrocardiographic changes and the cardiac histological pattern. This compound also decreased lactate dehydrogenase activity, creatine kinase myocardial band and troponin levels. The ability of 2ME to act as an antioxidant was shown by a decrease in malondialdehyde concentration, and the restoration of glutathione levels and superoxide dismutase activity. Additionally, 2ME antagonized inflammation and cardiac cell apoptosis, a process determined to be mediated, at least partially, by suppression of Gal-3/TLR4/MyD88/NF-κB signaling pathway. 2ME offers protection against acute ISO-induced MI in rats and offers a novel therapeutic management option.
Collapse
Affiliation(s)
- Rawan H. Hareeri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulrahman M. Alam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amina M. Bagher
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulmohsin J. Alamoudi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed M. Aldurdunji
- Department of Clinical Pharmacy, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rasheed A. Shaik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Basma G. Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama M. Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
14
|
Zong X, Ding Q, Liu X, Liu Q, Song S, Yan X, Zhang Y. Preventive Effect of 6-shogaol on D-galactosamine Induced Hepatotoxicity Through NF-?B/MAPK Signaling Pathway in Rats. Physiol Res 2023; 72:445-454. [PMID: 37795887 PMCID: PMC10634558 DOI: 10.33549/physiolres.935092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/19/2023] [Indexed: 01/05/2024] Open
Abstract
This analysis aims to see whether 6-shogaol could protect rats against D-galactosamine (D-GalN)-induced Hepatotoxicity. The Wistar rats were divided into four groups (n=6). Group 1 received a standard diet, Group 2 received an oral administration of 6-shogaol (20 mg/kg b.wt), Group 3 received an intraperitoneal injection of D-GalN (400 mg/kg b.wt) on 21st day, and Group 4 received an oral administration of 6-shogaol (20mg/kg b.wt) for 21 days and D-GalN (400 mg/kg b.wt) injection only on 21st day. The hepatic marker enzymes activity, lipid peroxidative markers level increased significantly and antioxidant activity/level significantly reduced in D-GalN-induced rats. 6-shogaol Pretreatment effectively improves the above changes in D-GalN-induced rats. Further, inflammatory marker expression and MAPK signaling molecules were downregulated by 6-shogaol. These findings showed that 6-shogaol exerts hepatoprotective effects via the enhanced antioxidant system and attenuated the inflammation and MAPK signaling pathway in D-GalN-induced rats.
Collapse
Affiliation(s)
- X Zong
- Department of Clinical Laboratory, Baoding First Central Hospital, Baoding, Hebei province, China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Yang T, Liu H, Yang C, Mo H, Wang X, Song X, Jiang L, Deng P, Chen R, Wu P, Chen A, Yan J. Galangin Attenuates Myocardial Ischemic Reperfusion-Induced Ferroptosis by Targeting Nrf2/Gpx4 Signaling Pathway. Drug Des Devel Ther 2023; 17:2495-2511. [PMID: 37637264 PMCID: PMC10460190 DOI: 10.2147/dddt.s409232] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023] Open
Abstract
Purpose Myocardial ischemic reperfusion injury (MIRI) is a crucial clinical problem globally. The molecular mechanisms of MIRI need to be fully explored to develop new therapeutic methods. Galangin (Gal), which is a natural flavonoid extracted from Alpinia Officinarum Hance and Propolis, possesses a wide range of pharmacological activities, but its effects on MIRI remain unclear. This study aimed to determine the pharmacological effects of Gal on MIRI. Methods C57BL/6 mice underwent reperfusion for 3 h after 45 min of ischemia, and neonatal rat cardiomyocytes (NRCs) subjected to hypoxia and reoxygenation (HR) were cultured as in vivo and in vitro models. Echocardiography and TTC-Evans Blue staining were performed to evaluate the myocardial injury. Transmission electron microscope and JC-1 staining were used to validate the mitochondrial function. Additionally, Western blot detected ferroptosis markers, including Gpx4, FTH, and xCT. Results Gal treatment alleviated cardiac myofibril damage, reduced infarction size, improved cardiac function, and prevented mitochondrial injury in mice with MIRI. Gal significantly alleviated HR-induced cell death and mitigated mitochondrial membrane potential reduction in NRCs. Furthermore, Gal significantly inhibited ferroptosis by preventing iron overload and lipid peroxidation, as well as regulating Gpx4, FTH, and xCT expression levels. Moreover, Gal up-regulated nuclear transcriptive factor Nrf2 in HR-treated NRCs. Nrf2 inhibition by Brusatol abolished the protective effect of Gal against ferroptosis. Conclusion This study revealed that Gal alleviates myocardial ischemic reperfusion-induced ferroptosis by targeting Nrf2/Gpx4 signaling pathway.
Collapse
Affiliation(s)
- Tao Yang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Department of Cardiovascular Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, People’s Republic of China
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Haiqiong Liu
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Chaobo Yang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Huaqiang Mo
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Xianbao Wang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Xudong Song
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Luping Jiang
- Department of Cardiovascular Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, People’s Republic of China
| | - Ping Deng
- Department of Cardiovascular Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, People’s Republic of China
| | - Ran Chen
- Department of Cardiovascular Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, People’s Republic of China
| | - Pengcui Wu
- Department of Cardiovascular Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, People’s Republic of China
| | - Aihua Chen
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Jing Yan
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
16
|
Zhang J, Hu S, Gao Y, Wei X, Qu Y, Gao R, Lv Y, Wang J, Wang Y, Yang J, Cao J, Zhang F, Ge J. Galangin alleviated myocardial ischemia-reperfusion injury by enhancing autophagic flux and inhibiting inflammation. Eur J Pharmacol 2023; 945:175621. [PMID: 36849103 DOI: 10.1016/j.ejphar.2023.175621] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Autophagy is critically involved in myocardial ischemia-reperfusion (I/R). Autophagy inhibition exacerbates myocardial I/R injury. Few effective agents target autophagy to prevent myocardial I/R injury. Effective drugs that promote autophagy in myocardial I/R warrant further investigation. Galangin (Gal) enhances autophagy and alleviates I/R injury. Here we conducted both in vivo and in vitro experiments to observe the changes in autophagy after galangin treatment and investigated the cardioprotective effects of galangin on myocardial I/R. METHODS After 45-min occlusion of the left anterior descending coronary artery, myocardial I/R was induced by slipknot release. One day before surgery and immediately after surgery, the mice were injected intraperitoneally with the same volume of saline or Gal. The effects of Gal were evaluated using echocardiography, 2,3,5-triphenyltetrazolium chloride staining (TTC staining), western blotting, and transmission electron microscopy. Primary cardiomyocytes and bone marrow-derived macrophages were extracted in vitro to measure the cardioprotective effects of Gal. RESULTS Compared with the saline-treated group, Gal significantly improved cardiac function and limited infarct enlargement after myocardial I/R. In vivo and in vitro studies demonstrated that Gal treatment promoted autophagy during myocardial I/R. The anti-inflammatory effects of Gal were validated in bone marrow-derived macrophages. These results strongly suggest that Gal treatment can attenuate myocardial I/R injury. CONCLUSION Our data demonstrated that Gal could improve left ventricular ejection fraction and reduce infarct size after myocardial I/R by promoting autophagy and inhibiting inflammation.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China.
| | - Shiyu Hu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China.
| | - Yang Gao
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Xiang Wei
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, 200240, Shanghai, China
| | - Yanan Qu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Rifeng Gao
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, 200240, Shanghai, China
| | - Yang Lv
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, 200240, Shanghai, China
| | - Jingpu Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Yiwen Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Ji'e Yang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Jiatian Cao
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Feng Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China.
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China; Key Laboratory of Viral Heart Diseases, National Health Commission, 200032, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, 200032, Shanghai, China; National Clinical Research Center for Interventional Medicine, 200032, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
17
|
Thapa R, Afzal O, Alfawaz Altamimi AS, Goyal A, Almalki WH, Alzarea SI, Kazmi I, Jakhmola V, Singh SK, Dua K, Gilhotra R, Gupta G. Galangin as an inflammatory response modulator: An updated overview and therapeutic potential. Chem Biol Interact 2023; 378:110482. [PMID: 37044286 DOI: 10.1016/j.cbi.2023.110482] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/26/2023] [Accepted: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Numerous chronic diseases, such as cancer, diabetes, rheumatoid arthritis, cardiovascular disease, and gastrointestinal disorders, all have an inflammation-based etiology. In cellular and animal models of inflammation, flavonols were used to show potent anti-inflammatory activity. The flavonols enhanced the synthesis of the anti-inflammatory cytokines transforming growth factor and interleukin-10 (IL-10) and reduced the synthesis of the prostaglandins IL-6, tumor necrosis factor-alpha (TNF-α), and prostaglandin E2 (PGE2), IL-1. Galangin (GAL), a natural flavonol, has a strong ability to control apoptosis and inflammation. GAL was discovered to suppress extracellular signal-regulated kinase (ERK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)p65 phosphorylation, which results in anti-inflammatory actions. Arthritis, inflammatory bronchitis, stroke, and cognitive dysfunction have all been treated with GAL. The current review aimed to demonstrate the anti-inflammatory properties of GAL and their protective effects in treating various chronic illnesses, including those of the heart, brain, skin, lungs, liver, and inflammatory bowel diseases.
Collapse
Affiliation(s)
- Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | | | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, U.P, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Vikash Jakhmola
- Uttaranchal Institute of pharmaceutical Sciences, Uttaranchal University, Dehradun, 248007, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW, 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo-NSW, 2007, Australia
| | - Ritu Gilhotra
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
18
|
Abd El-Aal SA, AbdElrahman M, Reda AM, Afify H, Ragab GM, El-Gazar AA, Ibrahim SSA. Galangin Mitigates DOX-induced Cognitive Impairment in Rats: Implication of NOX-1/Nrf-2/HMGB1/TLR4 and TNF-α/MAPKs/RIPK/MLKL/BDNF. Neurotoxicology 2022; 92:77-90. [PMID: 35843304 DOI: 10.1016/j.neuro.2022.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/03/2022] [Accepted: 07/13/2022] [Indexed: 12/13/2022]
Abstract
The cognitive and behavioral decline observed in cancer survivors who underwent doxorubicin (DOX)-based treatment raises the need for therapeutic interventions to counteract these complications. Galangin (GAL) is a flavonoid-based phytochemical with pronounced protective effects in various neurological disorders. However, its impact on DOX-provoked neurotoxicity has not been clarified. Hence, the current investigation aimed to explore the ability of GAL to ameliorate DOX-provoked chemo-brain in rats. DOX (2mg/kg, once/week, i.p.) and GAL (50mg/kg, 5 times/week., via gavage) were administered for four successive weeks. The MWM and EPM tests were used to evaluate memory disruption and anxiety-like behavior, respectively. Meanwhile, targeted biochemical markers and molecular signals were examined by the aid of ELISA, Western blotting, and immune-histochemistry. In contrast to DOX-impaired rats, GAL effectively preserved hippocampal neurons, improved cognitive/behavioral functions, and enhanced the expression of the cell repair/growth index and BDNF. The antioxidant feature of GAL was confirmed by the amelioration of MDA, NO and NOX-1, along with restoring the Nrf-2/HO-1/GSH cue. In addition, GAL displayed marked anti-inflammatory properties as verified by the suppression of the HMGB1/TLR4 nexus and p-NF-κB p65 to inhibit TNF-α, IL-6, IL-1β, and iNOS. This inhibitory impact extended to entail astrocyte activation, as evidenced by the diminution of GFAP. These beneficial effects were associated with a notable reduction in p-p38MAPK, p-JNK1/2, and p-ERK1/2, as well as the necroptosis cascade p-RIPK1/p-RIPK3/p-MLKL. Together, these pleiotropic protective impacts advocate the concurrent use of GAL as an adjuvant agent for managing DOX-driven neurodegeneration and cognitive/behavioral deficits. DATA AVAILABILITY: The authors confirm that all relevant data are included in the supplementary materials.
Collapse
Affiliation(s)
- Sarah A Abd El-Aal
- Department of Pharmacy, Kut University College, Al Kut, Wasit 52001, Iraq.
| | - Mohamed AbdElrahman
- Department of Pharmacy, Al-Mustaqbal University College, Babylon 51001, Iraq; Department of Clinical Pharmacy, Badr University Hospital, Faculty of Medicine, Helwan University, Cairo 11795, Egypt
| | - Ahmed M Reda
- Department of Pharmacy, Kut University College, Al Kut, Wasit 52001, Iraq; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11562, Egypt
| | - Hassan Afify
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11562, Egypt
| | - Ghada M Ragab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr University for Science and Technology, Giza 12585, Egypt
| | - Amira A El-Gazar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt
| | | |
Collapse
|
19
|
Alghamdi SA, Mugri MH, Elamin NMH, Kamil MA, Osman H, Eid BG, Shaik RA, Shaker SS, Alrafiah A. A Possible Novel Protective Effect of Piceatannol against Isoproterenol (ISO)-Induced Histopathological, Histochemical, and Immunohistochemical Changes in Male Wistar Rats. Curr Issues Mol Biol 2022; 44:2505-2528. [PMID: 35735612 PMCID: PMC9221942 DOI: 10.3390/cimb44060171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/14/2022] [Accepted: 05/20/2022] [Indexed: 12/01/2022] Open
Abstract
Dry mouth is characterized by lower saliva production and changes in saliva composition. In patients with some salivary gland function remaining, pharmaceutical treatments are not recommended; therefore, new, more effective methods of promoting saliva production are needed. Hence, this study aimed to provide an overview of the histological changes in the salivary gland in the model of isoproterenol (ISO)-induced degenerative changes in male Wistar rats and to evaluate the protective effect of piceatannol. Thirty-two male Wistar rats were randomly divided into four groups: the control group, the ISO group, and the piceatannol (PIC)-1, and -2 groups. After the third day of the experiment, Iso (0.8 mg/100 g) was injected intraperitoneally (IP) twice daily into the animals. PIC was given IP in different daily doses (20 and 40 mg/kg) for three days before ISO and seven days with ISO injection. The salivary glands were rapidly dissected and processed for histological, histochemical, immunohistochemical (Ki-67), and morphometric analysis. Upon seven days of treatment with ISO, marked hypertrophy was observed, along with an increased number of positive Ki-67 cells. Proliferation was increased in some endothelial cells as well as in ducts themselves. Despite the significant decrease in proliferation activity, the control group did not return to the usual activity level after treatment with low-dose PIC. Treatment with a high dose of PIC reduced proliferative activity to the point where it was substantially identical to the results seen in the control group. An ISO-driven xerostomia model showed a novel protective effect of piceatannol. A new era of regenerative medicine is dawning around PIC’s promising role.
Collapse
Affiliation(s)
- Samar A. Alghamdi
- Department of Oral Biology, Faculty of Dentistry, King AbdulAziz University, Jeddah 22254, Saudi Arabia;
| | - Maryam H. Mugri
- Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (M.H.M.); (N.M.H.E.)
| | - Nahid M. H. Elamin
- Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (M.H.M.); (N.M.H.E.)
| | - Mona Awad Kamil
- Department of Preventive Dental Science, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (M.A.K.); (H.O.)
| | - Hind Osman
- Department of Preventive Dental Science, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (M.A.K.); (H.O.)
| | - Basma G. Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King AbdulAziz University, Jeddah 22254, Saudi Arabia; (B.G.E.); (R.A.S.)
| | - Rasheed A. Shaik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King AbdulAziz University, Jeddah 22254, Saudi Arabia; (B.G.E.); (R.A.S.)
| | - Soad S. Shaker
- Department of Histology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Aziza Alrafiah
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King AbdulAziz University, Jeddah 22254, Saudi Arabia
- Correspondence: ; Tel.: +966-0126401000 (ext. 23495); Fax: +966-0126401000 (ext. 21686)
| |
Collapse
|
20
|
Kumari R, Ray AG, Mukherjee D, Chander V, Kar D, Kumar US, Bharadwaj P.V.P. D, Banerjee SK, Konar A, Bandyopadhyay A. Downregulation of PTEN Promotes Autophagy via Concurrent Reduction in Apoptosis in Cardiac Hypertrophy in PPAR α−/− Mice. Front Cardiovasc Med 2022; 9:798639. [PMID: 35224041 PMCID: PMC8881053 DOI: 10.3389/fcvm.2022.798639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/14/2022] [Indexed: 01/05/2023] Open
Abstract
Cardiac hypertrophy is characterized by an increase in the size of the cardiomyocytes which is initially triggered as an adaptive response but ultimately becomes maladaptive with chronic exposure to different hypertrophic stimuli. Prolonged cardiac hypertrophy is often associated with mitochondrial dysfunctions and cardiomyocyte cell death. Peroxisome proliferator activated receptor alpha (PPAR α), which is critical for mitochondrial biogenesis and fatty acid oxidation, is down regulated in hypertrophied cardiomyocytes. Yet, the role of PPAR α in cardiomyocyte death is largely unknown. To assess the role of PPAR α in chronic hypertrophy, isoproterenol, a β-adrenergic receptor agonist was administered in PPAR α knock out (PPAR α−/−) mice for 2 weeks and hypertrophy associated changes in cardiac tissues were observed. Echocardiographic analysis ensured the development of cardiac hypertrophy and compromised hemodynamics in PPAR α−/− mice. Proteomic analysis using high resolution mass spectrometer identified about 1,200 proteins enriched in heart tissue. Proteins were classified according to biological pathway and molecular functions. We observed an unexpected down regulation of apoptotic markers, Annexin V and p53 in hypertrophied heart tissue. Further validation revealed a significant down regulation of apoptosis regulator, PTEN, along with other apoptosis markers like p53, Caspase 9 and c-PARP. The autophagy markers Atg3, Atg5, Atg7, p62, Beclin1 and LC3 A/B were up regulated in PPAR α−/− mice indicating an increase in autophagy. Similar observations were made in a high cholesterol diet fed PPAR α−/−mice. The results were further validated in vitro using NRVMs and H9C2 cell line by blocking PPAR α that resulted in enhanced autophagosome formation upon hypertrophic stimulation. The results demonstrate that in the absence of PPAR α apoptotic pathway is inhibited while autophagy is enhanced. The data suggest that PPAR α signaling might act as a molecular switch between apoptosis and autophagy thereby playing a critical role in adaptive process in cardiac hypertrophy.
Collapse
Affiliation(s)
- Ritu Kumari
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Aleepta Guha Ray
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Dibyanti Mukherjee
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Vivek Chander
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Dipak Kar
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Uppulapu Shravan Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Deepak Bharadwaj P.V.P.
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Sanjay K. Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Aditya Konar
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Arun Bandyopadhyay
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- *Correspondence: Arun Bandyopadhyay ; orcid.org/0000-0002-4885-7033
| |
Collapse
|
21
|
Mehmet Ekici, Güngör H, Karayığıt MÖ, Turgut NH, Koҫkaya M, Karataș Ö, Üner AG. Cardioprotective Effect of Empagliflozin in Rats with Isoproterenol-Induced Myocardial Infarction: Evaluation of Lipid Profile, Oxidative Stress, Inflammation, DNA Damage, and Apoptosis. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022130039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
22
|
Yan J, Ruan P, Ge Y, Gao J, Tan H, Xiao C, Gao Q, Zhang Z, Gao Y. Mechanisms and Molecular Targets of Compound Danshen Dropping Pill for Heart Disease Caused by High Altitude Based on Network Pharmacology and Molecular Docking. ACS OMEGA 2021; 6:26942-26951. [PMID: 34693115 PMCID: PMC8529605 DOI: 10.1021/acsomega.1c03282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/21/2021] [Indexed: 05/30/2023]
Abstract
Compound Danshen dropping pill (CDDP), a famous Chinese medicine formula, has been widely used to treat high-altitude heart disease in China. However, its molecular mechanisms, potential targets, and bioactive ingredients remain elusive. In this study, network pharmacology, molecular docking, and validation experiments were combined to investigate the effective active ingredients and molecular mechanisms of CDDP in the treatment of high-altitude heart disease. Tan IIA may be the main active component of CDDP in the treatment of high-altitude heart disease via HIF-1/PI3K/Akt pathways.
Collapse
Affiliation(s)
- Jiayi Yan
- School
of Traditional Chinese Medicine, Guangdong
Pharmaceutical University, Guangzhou 510006, China
- Department
of Pharmaceutical Sciences, Beijing Institute
of Radiation Medicine, Beijing 100850, China
| | - Panpan Ruan
- Department
of Pharmaceutical Sciences, Beijing Institute
of Radiation Medicine, Beijing 100850, China
- School
of Life Science, Heibei University, Baoding 071000, China
| | - Yunxuan Ge
- Department
of Pharmaceutical Sciences, Beijing Institute
of Radiation Medicine, Beijing 100850, China
- College
of Life Science and Bioengineering, Beijing
University of Technology, Beijing 100124, China
| | - Jing Gao
- Department
of Pharmaceutical Sciences, Beijing Institute
of Radiation Medicine, Beijing 100850, China
- School
of Pharmacy, Henan University, Kaifeng 475004, China
| | - Hongling Tan
- Department
of Pharmaceutical Sciences, Beijing Institute
of Radiation Medicine, Beijing 100850, China
| | - Chengrong Xiao
- Department
of Pharmaceutical Sciences, Beijing Institute
of Radiation Medicine, Beijing 100850, China
| | - Quansheng Gao
- Institute
of Enviromental and Operational Medicine, Academy of Military Medical
Sciences, Academy of Military Sciences, Tianjin 300381, China
| | - Zhuo Zhang
- Department
of Pharmaceutical Sciences, Beijing Institute
of Radiation Medicine, Beijing 100850, China
| | - Yue Gao
- School
of Traditional Chinese Medicine, Guangdong
Pharmaceutical University, Guangzhou 510006, China
- Department
of Pharmaceutical Sciences, Beijing Institute
of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
23
|
Oglakci-Ilhan A, Kusat-Ol K, Uzuner K, Uysal O, Sogut I, Yucel F, Kanbak G. Effect of chronic alcohol consumption on myocardial apoptosis in the rat model of isoproterenol-induced myocardial injury and investigation on the cardioprotective role of calpain inhibitor 1. Drug Chem Toxicol 2021; 45:2727-2738. [PMID: 34628987 DOI: 10.1080/01480545.2021.1985910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We investigated the presence of myocardial apoptosis on isoproterenol (ISO)-induced myocardial injury (MI) after long-term high dose alcohol consumption and examined the antiapoptotic role of calpain inhibitor 1. Male Wistar Albino rats (n = 108) were divided into six groups: Control, alcohol (ethanol was given during 30 days for chronic alcohol consumption), MI (150 mg/kg ISO injection at last two days of alcohol consumption), alcohol + MI, alcohol + MI + calpain inhibitor 1 (10 mg/kg inhibitor was injected at 15 min before ISO injections) and Dimethyl Sulfoxide (DMSO) groups. Biochemical, histological, and morphometric methods determined apoptosis levels in the heart tissue of rats. Cytochrome c, caspase 3, and calpain levels were significantly high in alcohol, MI, and alcohol + MI groups. In contrast, mitochondrial cardiolipin content was found to be low in alcohol, MI, and alcohol + MI groups. These parameters were close to the control group in the therapy group. Histological and morphometric data have supported biochemical results. As a result of our biochemical data, myocardial apoptosis was seen in the alcohol, MI, and especially alcohol after MI groups. Calpain inhibitor 1 reduced apoptotic cell death and prevented myocardial tissue injury in these groups. The efficiency of calpain inhibitor was very marked in MI after long-term high dose alcohol consumption.
Collapse
Affiliation(s)
- Aysegul Oglakci-Ilhan
- Department of Medical Services and Techniques, Vocational School of Eldivan Health Services, Çankırı Karatekin University, Çankırı, Turkey
| | - Kevser Kusat-Ol
- Turkish Medicines and Medical Devices Agency, Turkish Health of Ministry, Ankara, Turkey
| | - Kubilay Uzuner
- Department of Physiology, Faculty of Medicine, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Onur Uysal
- Cellular Therapy and Stem Cell Production, Application and Research Center ESTEM, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Ibrahim Sogut
- Department of Biochemistry, Faculty of Medicine, Demiroğlu Bilim University, Istanbul, Turkey
| | - Ferruh Yucel
- Department of Anatomy, Faculty of Medicine, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Gungor Kanbak
- Department of Medical Biochemistry, Faculty of Medicine, Eskişehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
24
|
Canonical transient receptor potential channels and their modulators: biology, pharmacology and therapeutic potentials. Arch Pharm Res 2021; 44:354-377. [PMID: 33763843 PMCID: PMC7989688 DOI: 10.1007/s12272-021-01319-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 03/14/2021] [Indexed: 12/17/2022]
Abstract
Canonical transient receptor potential channels (TRPCs) are nonselective, high calcium permeability cationic channels. The TRPCs family includes TRPC1, TRPC2, TRPC3, TRPC4, TRPC5, TRPC6, and TRPC7. These channels are widely expressed in the cardiovascular and nervous systems and exist in many other human tissues and cell types, playing several crucial roles in the human physiological and pathological processes. Hence, the emergence of TRPCs modulators can help investigate these channels’ applications in health and disease. It is worth noting that the TRPCs subfamilies have structural and functional similarities, which presents a significant difficulty in screening and discovering of TRPCs modulators. In the past few years, only a limited number of selective modulators of TRPCs were detected; thus, additional research on more potent and more selective TRPCs modulators is needed. The present review focuses on the striking desired therapeutic effects of TRPCs modulators, which provides intel on the structural modification of TRPCs modulators and further pharmacological research. Importantly, TRPCs modulators can significantly facilitate future studies of TRPCs and TRPCs related diseases.
Collapse
|