1
|
Fang Y, Zheng Y, Gao Q, Pang M, Wu Y, Feng X, Tao X, Hu Y, Lin Z, Lin W. Activation of the Nrf2/Keap1 signaling pathway mediates the neuroprotective effect of Perillyl alcohol against cerebral hypoxic-ischemic damage in neonatal rats. Redox Rep 2024; 29:2394714. [PMID: 39284589 PMCID: PMC11407389 DOI: 10.1080/13510002.2024.2394714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a severe disease with a poor prognosis, whose clinical treatment is still limited to therapeutic hypothermia with limited efficacy. Perillyl alcohol (POH), a natural monoterpene found in various plant essential oils, has shown neuroprotective properties, though its effects on HIE are not well understood. This study investigates the neuroprotective effects of POH on HIE both in vitro and in vivo. We established an in vitro model using glucose deprivation and hypoxia/reperfusion (OGD/R) in PC12 cells, alongside an in vivo model via the modified Rice-Vannucci method. Results indicated that POH acted as an indirect antioxidant, reducing inducible nitric oxide synthase and malondialdehyde production, maintaining content of antioxidant molecules and enzymes in OGD/R-induced PC12 cells. In vivo, POH remarkably lessened infarct volume, reduced cerebral edema, accelerated tissue regeneration, and blocked reactive astrogliosis after hypoxic-ischemic brain injury. POH exerted antiapoptotic activities through both the intrinsic and extrinsic apoptotic pathways. Mechanistically, POH activated Nrf2 and inactivated its negative regulator Keap1. The use of ML385, a Nrf2 inhibitor, reversed these effects. Overall, POH mitigates neuronal damage in HIE by combating oxidative stress, reducing inflammation, and inhibiting apoptosis via the Nrf2/Keap1 pathway, suggesting its potential for HIE treatment.
Collapse
Affiliation(s)
- Yu Fang
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yihui Zheng
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Qiqi Gao
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Mengdan Pang
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yiqing Wu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xiaoli Feng
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xiaoyue Tao
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yingying Hu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Zhenlang Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Wei Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
2
|
Dewanjee S, Bhattacharya H, Bhattacharyya C, Chakraborty P, Fleishman J, Alexiou A, Papadakis M, Jha SK. Nrf2/Keap1/ARE regulation by plant secondary metabolites: a new horizon in brain tumor management. Cell Commun Signal 2024; 22:497. [PMID: 39407193 PMCID: PMC11476647 DOI: 10.1186/s12964-024-01878-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Brain cancer is regarded as one of the most life-threatening forms of cancer worldwide. Oxidative stress acts to derange normal brain homeostasis, thus is involved in carcinogenesis in brain. The Nrf2/Keap1/ARE pathway is an important signaling cascade responsible for the maintenance of redox homeostasis, and regulation of anti-inflammatory and anticancer activities by multiple downstream pathways. Interestingly, Nrf2 plays a somewhat, contradictory role in cancers, including brain cancer. Nrf2 has traditionally been regarded as a tumor suppressor since its cytoprotective functions are considered to be the principle cellular defense mechanism against exogenous and endogenous insults, such as xenobiotics and oxidative stress. However, hyperactivation of the Nrf2 pathway supports the survival of normal as well as malignant cells, protecting them against oxidative stress, and therapeutic agents. Plants possess a pool of secondary metabolites with potential chemotherapeutic/chemopreventive actions. Modulation of Nrf2/ARE and downstream activities in a Keap1-dependant manner, with the aid of plant-derived secondary metabolites exhibits promise in the management of brain tumors. Current article highlights the effects of Nrf2/Keap1/ARE cascade on brain tumors, and the potential role of secondary metabolites regarding the management of the same.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India.
| | - Hiranmoy Bhattacharya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Chiranjib Bhattacharyya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Joshua Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, 11741, Greece
- Department of Research & Development, AFNP Med, Wien, 1030, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, Delhi, 110008, India.
| |
Collapse
|
3
|
Kakarla R, Vinjavarapu LA, Krishnamurthy S. Diet and Nutraceuticals for treatment and prevention of primary and secondary stroke: Emphasis on nutritional antiplatelet and antithrombotic agents. Neurochem Int 2024; 179:105823. [PMID: 39084351 DOI: 10.1016/j.neuint.2024.105823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024]
Abstract
Ischemic stroke is a devastating disease that causes morbidity and mortality. Malnutrition following ischemic stroke is common in stroke patients. During the rehabilitation, the death rates of stroke patients are significantly increased due to malnutrition. Nutritional supplements such as protein, vitamins, fish, fish oils, moderate wine or alcohol consumption, nuts, minerals, herbal products, food colorants, marine products, fiber, probiotics and Mediterranean diets have improved neurological functions in stroke patients as well as their quality of life. Platelets and their mediators contribute to the development of clots leading to stroke. Ischemic stroke patients are treated with thrombolytics, antiplatelets, and antithrombotic agents. Several systematic reviews, meta-analyses, and clinical trials recommended that consumption of these nutrients and diets mitigated the vascular, peripheral, and central complications associated with ischemic stroke (Fig. 2). Particularly, these nutraceuticals mitigated the platelet adhesion, activation, and aggregation that intended to reduce the risks of primary and secondary stroke. Although these nutraceuticals mitigate platelet dysfunction, there is a greater risk of bleeding if consumed excessively. Moreover, malnutrition must be evaluated and adequate amounts of nutrients must be provided to stroke patients during intensive care units and rehabilitation periods. In this review, we have summarized the importance of diet and nutraceuticals in ameliorating neurological complications and platelet dysfunction with an emphasis on primary and secondary prevention of ischemic stroke.
Collapse
Affiliation(s)
- Ramakrishna Kakarla
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, 522302, India
| | | | - Sairam Krishnamurthy
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University (IIT BHU), Varanasi, Uttar Pradesh, India.
| |
Collapse
|
4
|
Almeer R, Alyami NM. Effect of lycopene on TiO 2 nanoforms induced oxidative stress and neuroinflammation in SH-SY5Y cells: an in vitro study. Drug Chem Toxicol 2024:1-11. [PMID: 39227360 DOI: 10.1080/01480545.2024.2397429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/25/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024]
Abstract
Due to its antioxidant action, the carotenoid lycopene has been demonstrated to have a protective effect in several disease models; however, its effect on the nanoform of titanium oxide (nano-TiO2)-induced neurotoxicity has not yet been determined. The purpose of this study was to evaluate how lycopene affects neuronal damage brought on by nano-TiO2 and the mechanisms involved. SH-SY5Y cells were treated with different concentrations of nano-TiO2 for 48 hours, the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test was used after that to evaluate cell viability. IC50 of nano-TiO2 was determined and the results revealed that IC50 is equal 40 µM/mL, lycopene (10 µM) was applied to SH-SY5Y human neuroblastoma cells an hour before exposure to 40 µM nano-TiO2. Reactive oxygen species, lipid peroxidation, nitric oxide, glutathione, superoxide dismutase, and catalase, tumor necrosis factor-alpha, interleukin 1 beta, nuclear factor kappa B, and apoptotic markers (Bcl2, Bax, and caspase-3), were measured to determine the anti-oxidant effect of lycopene. In SH-SY5Y neuroblastoma cells, pretreatment with 10 µM lycopene significantly reduced the toxicity brought on by exposure to nano-TiO2, according to MTT assay findings and lactate dehydrogenase (LDH) cytotoxicity assessment. In cells exposed to nano-TiO2, lycopene pretreatment significantly boosted the activity of antioxidative enzymes and reduced oxidative stress. Furthermore, when SH-SY5Y cells were subjected to nano-TiO2, lycopene pretreatment stopped neuroinflammation and apoptosis. The findings of this study suggest that lycopene may be an effective neuroprotective against oxidative stress and neuroinflammation and may be used to stop neuronal death or injury in a variety of neurological illnesses.
Collapse
Affiliation(s)
- Rafa Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nouf M Alyami
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Guo Y, Chen Y, Zhang H, Zhang Q, Jin M, Wang S, Du X, Du Y, Xu D, Wang M, Li L, Luo L. Emodin attenuates hypoxic-ischemic brain damage by inhibiting neuronal apoptosis in neonatal mice. Neuroscience 2024; 554:83-95. [PMID: 38944149 DOI: 10.1016/j.neuroscience.2024.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Neonatal hypoxic-ischemic brain damage (HIBD) can lead to mortality and severe neurological dysfunction. Emodin is a natural anthraquinone derivative that is easy to obtain and has good neuroprotective effects. This study aimed to investigate the neuroprotective effect of emodin on neonatal mouse HIBD. The modified Rice-Vannucci method was used to induce HIBD in mouse pups. Eighty postnatal 7-day (P7) C57BL/6 neonatal mice were randomly divided into the sham group (sham), vehicle group (vehicle), and emodin group (emodin). TTC staining and whole-brain morphology were used to evaluate the infarct volume and morphology of the brain tissue. The condition of the neurons was observed through Nissl staining, HE staining, FJC staining, immunofluorescence and Western blot for NeuN, IBA-1, and GFAP. The physiological status of the mice was evaluated using weight measurements. The neural function of the mice was assessed using the negative geotaxis test, righting reflex test, and grip test. TUNEL staining was used to detect apoptosis in brain cells. Finally, Western blot and immunofluorescence were used to detect the expression levels of apoptosis-related proteins, such as P53, cleaved caspase-3, Bax and Bcl-2, in the brain. Experiments have shown that emodin can reduce the cerebral infarct volume, brain oedema, neuronal apoptosis, and degeneration and improve the reconstruction of brain tissue morphology, neuronal morphology, physiological conditions, and neural function. Additionally, emodin inhibited the expression of proapoptotic proteins such as P53, Bax and cleaved caspase-3 and promoted the expression of the antiapoptotic protein Bcl-2. Emodin attenuates HIBD by inhibiting neuronal apoptosis in neonatal mice.
Collapse
Affiliation(s)
- Yingqi Guo
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yingxiu Chen
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Huimei Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qi Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mingrui Jin
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Sijia Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xinyu Du
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yunjing Du
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Danyang Xu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mengxia Wang
- Intensive Care Unit, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| | - Lixia Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Li Luo
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Medical Association, Guangzhou 510180, China.
| |
Collapse
|
6
|
Tayman C, Çakır U, Kurt A, Ertekin Ö, Taskin Turkmenoglu T, Çağlayan M, Işık E. Evaluation of beneficial effects of dexpanthenol on hypoxic-ischemic encephalopathy. Biotech Histochem 2024:1-9. [PMID: 38869860 DOI: 10.1080/10520295.2024.2365231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a cause of serious morbidity and mortality in newborns. Dexpanthenol, which is metabolized into D-pantothenic acid, has antioxidant and other potentially therapeutic properties. We examined some effects of dexpanthenol on the brains of week-old rat pups with HIE induced by obstruction of the right carotid artery followed by keeping in 8% O2 for 2 hours. Dexpanthenol (500 mg/kg) was administered intraperitoneally to 16 of 32 pups with HIE. Protein, DNA, and lipid oxidation degradation products were assayed and hippocampal and cortical cell apoptosis and neuronal cell numbers were evaluated in stained sections. Dexpanthenol application reduced oxidative stress and inflammation. TNF-α and IL-6 cytokine levels in HIE also decreased with dexpanthenol treatment. The numbers of caspase-3 positive cells in the dentate gyrus and CA1/CA2/CA3 regions of the hippocampus was lower, and apoptosis was decreased in the dexpanthenol-treated animals. These findings suggest possible clinical applications of dexpanthenol in human HIE.
Collapse
Affiliation(s)
- Cuneyt Tayman
- Department of Neonatology, SBU Ankara City Hospital, Ankara, Turkey
| | - Ufuk Çakır
- Department of Neonatology, SBU Ankara City Hospital, Ankara, Turkey
| | - Abdullah Kurt
- Department of Neonatology, SBU Ankara City Hospital, Ankara, Turkey
| | - Ömer Ertekin
- Department of Neonatology, SBU Ankara City Hospital, Ankara, Turkey
| | - Tugba Taskin Turkmenoglu
- Department of Pathology, Ankara Dişkapi Yildirim Beyzat Training and Research Hospital, Ankara, Turkey
| | - Murat Çağlayan
- Department of Medical Biochemistry, Dışkapı Yıldırım Beyazıt Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Eray Işık
- Department of Otorhinolaryngology (Ear-Nose-Throat), Ankara Dişkapi Yildirim Beyzat Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
7
|
Abir MH, Mahamud AGMSU, Tonny SH, Anu MS, Hossain KHS, Protic IA, Khan MSU, Baroi A, Moni A, Uddin MJ. Pharmacological potentials of lycopene against aging and aging-related disorders: A review. Food Sci Nutr 2023; 11:5701-5735. [PMID: 37823149 PMCID: PMC10563689 DOI: 10.1002/fsn3.3523] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/25/2023] [Accepted: 06/13/2023] [Indexed: 10/13/2023] Open
Abstract
Aging and aging-related chronic disorders are one of the principal causes of death worldwide. The prevalence of these disorders is increasing gradually and globally. Considering this unwavering acceleration of the global burden, seeking alternatives to traditional medication to prevent the risk of aging disorders is needed. Among them, lycopene, a carotenoid, is abundant in many fruits and vegetables, including tomatoes, grapefruits, and watermelons, and it has a unique chemical structure to be a potent antioxidant compound. This nutraceutical also possesses several anti-aging actions, including combating aging biomarkers and ameliorating several chronic disorders. However, no systematic evaluation has yet been carried out that can comprehensively elucidate the effectiveness of lycopene in halting the course of aging and the emergence of chronic diseases linked to aging. This review, therefore, incorporates previous pre-clinical, clinical, and epidemiological studies on lycopene to understand its potency in treating aging disorders and its role as a mimic of caloric restriction. Lycopene-rich foods are found to prevent or attenuate aging disorders in various research. Based on the evidence, this review suggests the clinical application of lycopene to improve human health and alleviate the prevalence of aging and aging disorders.
Collapse
Affiliation(s)
- Mehedy Hasan Abir
- ABEx Bio‐Research CenterDhakaBangladesh
- Faculty of Food Science and TechnologyChattogram Veterinary and Animal Sciences UniversityChattogramBangladesh
| | - A. G. M. Sofi Uddin Mahamud
- ABEx Bio‐Research CenterDhakaBangladesh
- Department of Food Safety and Regulatory ScienceChung‐Ang UniversityAnseong‐siGyeonggi‐doRepublic of Korea
| | - Sadia Haque Tonny
- Faculty of AgricultureBangladesh Agricultural UniversityMymensinghBangladesh
| | - Mithila Saha Anu
- Department of Fisheries Biology and GeneticsFaculty of Fisheries, Bangladesh Agricultural UniversityMymensinghBangladesh
| | | | - Ismam Ahmed Protic
- Department of Plant PathologyFaculty of Agriculture, Bangladesh Agricultural UniversityMymensinghBangladesh
| | - Md Shihab Uddine Khan
- ABEx Bio‐Research CenterDhakaBangladesh
- Department of Crop BotanyFaculty of Agriculture, Bangladesh Agricultural UniversityMymensinghBangladesh
| | - Artho Baroi
- ABEx Bio‐Research CenterDhakaBangladesh
- Department of Crop BotanyFaculty of Agriculture, Bangladesh Agricultural UniversityMymensinghBangladesh
| | - Akhi Moni
- ABEx Bio‐Research CenterDhakaBangladesh
| | | |
Collapse
|
8
|
Feng J, Zheng Y, Guo M, Ares I, Martínez M, Lopez-Torres B, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Oxidative stress, the blood-brain barrier and neurodegenerative diseases: The critical beneficial role of dietary antioxidants. Acta Pharm Sin B 2023; 13:3988-4024. [PMID: 37799389 PMCID: PMC10547923 DOI: 10.1016/j.apsb.2023.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/16/2023] [Accepted: 06/13/2023] [Indexed: 10/07/2023] Open
Abstract
In recent years, growing awareness of the role of oxidative stress in brain health has prompted antioxidants, especially dietary antioxidants, to receive growing attention as possible treatments strategies for patients with neurodegenerative diseases (NDs). The most widely studied dietary antioxidants include active substances such as vitamins, carotenoids, flavonoids and polyphenols. Dietary antioxidants are found in usually consumed foods such as fresh fruits, vegetables, nuts and oils and are gaining popularity due to recently growing awareness of their potential for preventive and protective agents against NDs, as well as their abundant natural sources, generally non-toxic nature, and ease of long-term consumption. This review article examines the role of oxidative stress in the development of NDs, explores the 'two-sidedness' of the blood-brain barrier (BBB) as a protective barrier to the nervous system and an impeding barrier to the use of antioxidants as drug medicinal products and/or dietary antioxidants supplements for prevention and therapy and reviews the BBB permeability of common dietary antioxidant suplements and their potential efficacy in the prevention and treatment of NDs. Finally, current challenges and future directions for the prevention and treatment of NDs using dietary antioxidants are discussed, and useful information on the prevention and treatment of NDs is provided.
Collapse
Affiliation(s)
- Jin Feng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Youle Zheng
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingyue Guo
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| |
Collapse
|
9
|
Moratilla-Rivera I, Sánchez M, Valdés-González JA, Gómez-Serranillos MP. Natural Products as Modulators of Nrf2 Signaling Pathway in Neuroprotection. Int J Mol Sci 2023; 24:ijms24043748. [PMID: 36835155 PMCID: PMC9967135 DOI: 10.3390/ijms24043748] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023] Open
Abstract
Neurodegenerative diseases (NDs) affect the West due to the increase in life expectancy. Nervous cells accumulate oxidative damage, which is one of the factors that triggers and accelerates neurodegeneration. However, cells have mechanisms that scavenge reactive oxygen species (ROS) and alleviate oxidative stress (OS). Many of these endogenous antioxidant systems are regulated at the gene expression level by the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2). In the presence of prooxidant conditions, Nrf2 translocates to the nucleus and induces the transcription of genes containing ARE (antioxidant response element). In recent years, there has been an increase in the study of the Nrf2 pathway and the natural products that positively regulate it to reduce oxidative damage to the nervous system, both in in vitro models with neurons and microglia subjected to stress factors and in vivo models using mainly murine models. Quercetin, curcumin, anthocyanins, tea polyphenols, and other less studied phenolic compounds such as kaempferol, hesperetin, and icariin can also modulate Nrf2 by regulating several Nrf2 upstream activators. Another group of phytochemical compounds that upregulate this pathway are terpenoids, including monoterpenes (aucubin, catapol), diterpenes (ginkgolides), triterpenes (ginsenosides), and carotenoids (astaxanthin, lycopene). This review aims to update the knowledge on the influence of secondary metabolites of health interest on the activation of the Nrf2 pathway and their potential as treatments for NDs.
Collapse
|
10
|
Pluta R, Furmaga-Jabłońska W, Januszewski S, Tarkowska A. Melatonin: A Potential Candidate for the Treatment of Experimental and Clinical Perinatal Asphyxia. Molecules 2023; 28:1105. [PMID: 36770769 PMCID: PMC9919754 DOI: 10.3390/molecules28031105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Perinatal asphyxia is considered to be one of the major causes of brain neurodegeneration in full-term newborns. The worst consequence of perinatal asphyxia is neurodegenerative brain damage, also known as hypoxic-ischemic encephalopathy. Hypoxic-ischemic encephalopathy is the leading cause of mortality in term newborns. To date, due to the complex mechanisms of brain damage, no effective or causal treatment has been developed that would ensure complete neuroprotection. Although hypothermia is the standard of care for hypoxic-ischemic encephalopathy, it does not affect all changes associated with encephalopathy. Therefore, there is a need to develop effective treatment strategies, namely research into new agents and therapies. In recent years, it has been pointed out that natural compounds with neuroprotective properties, such as melatonin, can be used in the treatment of hypoxic-ischemic encephalopathy. This natural substance with anti-inflammatory, antioxidant, anti-apoptotic and neurofunctional properties has been shown to have pleiotropic prophylactic or therapeutic effects, mainly against experimental brain neurodegeneration in hypoxic-ischemic neonates. Melatonin is a natural neuroprotective hormone, which makes it promising for the treatment of neurodegeneration after asphyxia. It is supposed that melatonin alone or in combination with hypothermia may improve neurological outcomes in infants with hypoxic-ischemic encephalopathy. Melatonin has been shown to be effective in the last 20 years of research, mainly in animals with perinatal asphyxia but, so far, no clinical trials have been performed on a sufficient number of newborns. In this review, we summarize the advantages and limitations of melatonin research in the treatment of experimental and clinical perinatal asphyxia.
Collapse
Affiliation(s)
- Ryszard Pluta
- Ecotech-Complex Analytical and Programme Centre for Advanced Environmentally-Friendly Technologies, Marie Curie-Skłodowska University in Lublin, 20-612 Lublin, Poland
| | - Wanda Furmaga-Jabłońska
- Department of Neonate and Infant Pathology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Sławomir Januszewski
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Agata Tarkowska
- Department of Neonate and Infant Pathology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
11
|
Wang M, Yang X, Zhou Q, Guo Y, Chen Y, Song L, Yang J, Li L, Luo L. Neuroprotective Mechanism of Icariin on Hypoxic Ischemic Brain Damage in Neonatal Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1330928. [PMID: 36425058 PMCID: PMC9681555 DOI: 10.1155/2022/1330928] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/07/2022] [Accepted: 10/27/2022] [Indexed: 09/08/2024]
Abstract
Objective Our previous results showed that icariin (ICA) could inhibit apoptosis and provide neuroprotection against hypoxic-ischemic brain damage (HIBD) in neonatal mice, but the specific mechanism of its neuroprotective effect remains unknown. This study aims at exploring whether ICA plays a neuroprotective role in apoptosis inhibition by regulating autophagy through the estrogen receptor α (ERα)/estrogen receptor β (ERβ) pathway in neonatal mice with HIBD. Methods A neonatal mouse model of HIBD was constructed in vivo, and an oxygen and glucose deprivation (OGD) model in HT22 cells from the hippocampal neuronal system was constructed in vitro. The effects of ICA pretreatment on autophagy and the expression of ERα and ERβ were detected in vitro and in vivo, respectively. ICA pretreatment was also supplemented with the autophagy inhibitor 3-methyladenine (3-MA), ERα inhibitor methylpiperidino pyrazole (MPP), and ERβ inhibitor 4-(2-phenyl-5,7-bis (trifluoromethyl) pyrazolo [1,5-a] pyramidin-3-yl) phenol (PHTPP) to further detect whether ICA pretreatment can activate the ERα/ERβ pathway to promote autophagy and reduce HIBD-induced apoptosis to play a neuroprotective role against HIBD in neonatal mice. Results ICA pretreatment significantly promoted autophagy in HIBD mice. Treatment with 3-MA significantly inhibited the increase in autophagy induced by ICA pretreatment, reversed the neuroprotective effect of ICA pretreatment, and promoted apoptosis. Moreover, ICA pretreatment significantly increased the expression levels of the ERα and ERβ proteins in HIBD newborn mice. Both MPP and PHTPP administration significantly inhibited the expression levels of the ERα and ERβ proteins activated by ICA pretreatment, reversed the neuroprotective effects of ICA pretreatment, inhibited the increase in autophagy induced by ICA pretreatment, and promoted apoptosis. Conclusion ICA pretreatment may promote autophagy by activating the ERα and ERβ pathways, thus reducing the apoptosis induced by HIBD and exerting a neuroprotective effect on neonatal mice with HIBD.
Collapse
Affiliation(s)
- Mengxia Wang
- Intensive Care Unit, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Xiaoxia Yang
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qian Zhou
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yingqi Guo
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yingxiu Chen
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Linyang Song
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Junhua Yang
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lixia Li
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Li Luo
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Medical Association, Guangzhou 510180, China
| |
Collapse
|
12
|
Kapoor B, Gulati M, Rani P, Kochhar RS, Atanasov AG, Gupta R, Sharma D, Kapoor D. Lycopene: Sojourn from kitchen to an effective therapy in Alzheimer's disease. Biofactors 2022; 49:208-227. [PMID: 36318372 DOI: 10.1002/biof.1910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/05/2022] [Indexed: 01/03/2023]
Abstract
Reports on a significant positive correlation between consumption of carotenoid-rich food and prevention of Alzheimer's disease (AD) led to the investigation of carotenoids for the treatment and prevention of AD. More than 1100 types of carotenoids are found naturally, out of which only around 50 are absorbed and metabolized in human body. Lycopene is one of the most commonly ingested members of fat-soluble carotenoid family that gives vegetables and fruits their red, yellow, or orange color. Lycopene has established itself as a promising therapy for AD owing to its neuroprotective activities, including antioxidant, anti-inflammatory, and antiamyloidogenic properties. In this review, we highlight the various in vitro and preclinical studies demonstrating the neuroprotective effect of lycopene. Also, some epidemiological and interventional studies investigating the protective effect of lycopene in AD have been discussed. Diving deeper, we also discuss various significant mechanisms, through which lycopene exerts its remissive effects in AD. Finally, to overcome the issue of poor chemical stability and bioavailability of lycopene, some of the novel delivery systems developed for lycopene have also been briefly highlighted.
Collapse
Affiliation(s)
- Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Pooja Rani
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | | | - Atanas G Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Magdalenka, Poland
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Deepika Sharma
- Institute of Nanoscience and Technology, Mohali, Punjab, India
| | - Deepak Kapoor
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
- Punjab State Council for Science & Technology (PSCST), Chandigarh, India
| |
Collapse
|
13
|
Lycopene protects against Bisphenol A induced toxicity on the submandibular salivary glands via the upregulation of PPAR-γ and modulation of Wnt/β-catenin signaling. Int Immunopharmacol 2022; 112:109293. [DOI: 10.1016/j.intimp.2022.109293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/20/2022] [Accepted: 09/25/2022] [Indexed: 11/13/2022]
|
14
|
Ugwor EI, Ugbaja RN, Segun James A, Dosumu OA, Thomas FC, Ezenandu EO, Graham RE. Inhibition of fat accumulation, lipid dysmetabolism, cardiac inflammation, and improved NO signalling mediate the protective effects of lycopene against cardio-metabolic disorder in obese female rats. Nutr Res 2022; 104:140-153. [DOI: 10.1016/j.nutres.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 11/26/2022]
|
15
|
Effectiveness of Combined Thrombolysis and Mild Hypothermia Therapy in Acute Cerebral Infarction: A Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4044826. [PMID: 35469165 PMCID: PMC9034919 DOI: 10.1155/2022/4044826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/05/2022] [Accepted: 03/18/2022] [Indexed: 11/18/2022]
Abstract
Objective To evaluate the effectiveness and safety of thrombolytic therapy combined with mild hypothermia in patients with acute cerebral infarction (ACI), based on a meta-analysis of randomized controlled trials (RCTs). Methods PubMed, EMBASE, Cochrane Library, and Chinese National Knowledge Infrastructure Database of Controlled Trials were systematically screened for randomized controlled trials (RCTs) of thrombolytic therapy combined with mild hypothermia in treating ACI from inception to January 2021. Participation and outcomes among intervention enrollees are as follows: P, participants (patients in ACI); I, interventions (thrombolysis in combination with mild hypothermia therapy); C, controls (thrombolysis merely); O, outcomes (main outcomes are the change of NIHSS, glutathione peroxidase, superoxide dismutase, malondialdehyde, inflammatory factor interleukin-1β, tumor necrosis factor-α, and adverse reaction). Following data extraction and quality assessment, a meta-analysis was performed using RevMan 5.3 software. Results A total of 26 RCTs involving 2071 patients were included. Compared to thrombolysis alone, thrombolytic therapy combined with mild hypothermia leads to better therapeutic efficacy [RR = 1.23, 95% CI (1.16, 1.31)], NIHSS [MD = -2.02, 95% CI (-2.55, -1.49)], glutathione peroxidase [MD = 8.71, 95% CI (5.55, 11.87)], superoxide dismutase [MD = 16.52, 95% CI (12.31, 19.74)], malondialdehyde [MD = -1.86, 95% CI (-1.98, -1.75)], interleukin-1β [MD = -3.48, 95% CI (-4.88, -2.08)], tumor necrosis factor-α [MD = -0.46, 95% CI (-3.39, 2.48)], and adverse reaction [RR = 0.87, 95% CI (0.63, 1.20)]. Conclusions Thrombolytic therapy combined with mild hypothermia demonstrates a beneficial role in reducing brain nerve function impairment and inflammatory reactions in ACI subjects analysed in this meta-analysis.
Collapse
|
16
|
Kim JK, Park SU. Recent insights into the biological and pharmacological activity of lycopene. EXCLI JOURNAL 2022; 21:415-425. [PMID: 35391916 PMCID: PMC8983849 DOI: 10.17179/excli2022-4714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/10/2022] [Indexed: 12/27/2022]
Affiliation(s)
- Jae Kwang Kim
- Division of Life Sciences and Bio?Resource and Environmental Center, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.,Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| |
Collapse
|
17
|
Wang Y, Wang D, Yin K, Liu Y, Lu H, Zhao H, Xing M. Lycopene attenuates oxidative stress, inflammation, and apoptosis by modulating Nrf2/NF-κB balance in sulfamethoxazole-induced neurotoxicity in grass carp (Ctenopharyngodon Idella). FISH & SHELLFISH IMMUNOLOGY 2022; 121:322-331. [PMID: 35032680 DOI: 10.1016/j.fsi.2022.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
All drugs that can penetrate the blood-brain barrier (BBB) may lead to mental state changes, including the widely used anti-infective drug sulfamethoxazole (SMZ). Herein, we investigated whether lycopene (LYC) could ameliorate SMZ-induced brain injury and the postulated mechanisms involved. A total of 120 grass carps were exposed under SMZ (0.3 μg/L, waterborne) or LYC (10 mg/kg fish weight, diet) or their combination for 30 days. Firstly, brain injury induced by SMZ exposure was suggested by the damage of BBB (decreases of Claudins, Occludin and Zonula Occludens), and the decrease of neurotransmitter activity (AChE). Through inducing oxidative stress (elevations of malondialdehyde and 8-hydroxy-2 deoxyguanosine, inhibition of glutathione), SMZ increased the intra-nuclear level of NF-κB and its target genes (TNF-α and interleukins), creating an inflammatory microenvironment. As a positive feed-back mechanism, apoptosis begins with activation of pro-death proteins (Bax/Bcl-2) and activation of caspases (caspase-9 and caspase-3). Meanwhile, a compensatory upregulation of constitutive Nrf2 and its downstream antioxidative gene expression (NAD(P)H Quinone Dehydrogenase 1 and Heme oxygenase 1) and accelerated autophagy (increases of autophagy-related genes and p62 inhibition) were activated as a defense mechanism. Intriguingly, under SMZ stress, LYC co-administration decreased NF-κB/apoptosis cascades and restored Nrf2/autophagy levels. The neuroprotective roles of LYC make this natural compound a valuable agent for prevention SMZ stress in environment. This study suggests that LYC might be developed as a potential candidate for alleviating environmental SMZ stress in aquaculture.
Collapse
Affiliation(s)
- Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Dongxu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Kai Yin
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Yachen Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Hongmin Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| |
Collapse
|
18
|
Carranza ADV, Bonacci G, Moran Y, Asprelli P, Carrari F, Asis R. Assessment and characterization of tomato lipophilic electrophiles and their potential contribution to nutraceutical properties via SKN-1/Nrf2 signaling activation. Food Chem 2021; 366:130531. [PMID: 34284182 DOI: 10.1016/j.foodchem.2021.130531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 11/30/2022]
Abstract
Phytochemical electrophiles are drawing significant attention due to their properties to modulate signaling pathways related to cellular homeostasis. The aim of this study was to develop new tools to examine the electrophilic activity in food and predict their beneficial effects on health. We developed a spectrophotometric assay based on the nitrobenzenethiol (NBT) reactivity, as a thiol-reactive nucleophile, to screen electrophiles in tomato fruits. The method is robust, simple, inexpensive, and could be applied to other types of food. We quantified the electrophile activity in a tomato collection and associated this activity with the pigment composition. Thus, we identified lycopene, β- and γ-carotenes, 16 by-products of carotenoid oxidation and 18 unknown compounds as NBT-reactive by HPLC-MS/MS. The potential benefits of NBT-reactive compounds on health were evaluated in the in vivo model of C. elegans where they activated the SKN-1/Nrf2 pathway, evidencing the ability of electrophilic compounds to induce a biological response.
Collapse
Affiliation(s)
- Andrea Del Valle Carranza
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gustavo Bonacci
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Yanina Moran
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Pablo Asprelli
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria La Consulta, La Consulta, M5567 Mendoza, Argentina
| | - Fernando Carrari
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Ramón Asis
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
19
|
Wang H, Xu Y, Zhu S, Li X, Zhang H. Post-Treatment Sevoflurane Protects Against Hypoxic-Ischemic Brain Injury in Neonatal Rats by Downregulating Histone Methyltransferase G9a and Upregulating Nuclear Factor Erythroid 2-Related Factor 2 (NRF2). Med Sci Monit 2021; 27:e930042. [PMID: 34059615 PMCID: PMC8178995 DOI: 10.12659/msm.930042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Perinatal hypoxia and subsequent reduction of cerebral blood flow leads to neonatal hypoxic-ischemic brain injury (HIBI), resulting in severe disability and even death. Preconditioning or post-conditioning with sevoflurane protects against cerebral injury. This study investigated the mechanism of sevoflurane in HIBI. MATERIAL AND METHODS The HIBI model of neonatal rats was established and the model rats were post-treated with sevoflurane. The oxygen-glucose deprivation (OGD) cell model was established, and the OGD cells were transfected with NRF2-siRNA plasmid and post-treated with sevoflurane. The Morris water maze test was used to detect the motor activity, spatial learning, and memory ability of HIBI rats. Histological stainings were performed to observe the area of cerebral infarction, record the number of neurons in the hippocampus, and assess neuron apoptosis. The levels of inflammatory factors were detected by ELISA. The protein levels of histone methyltransferase G9a and histone H3 lysine 9 (H3K9me2) were detected by western blot assay. The apoptosis was detected by flow cytometry. RESULTS Sevoflurane post-treatment significantly shortened the escape latency of HIBI neonatal rats, increased the density of neurons, reduced the area of cerebral infarction, and decreased the levels of inflammatory factors and neuronal apoptosis. Sevoflurane post-treatment decreased G9a and H3K9me2 levels, and G9a level was negatively correlated with NRF2 level. NRF2 silencing reversed the alleviation of sevoflurane post-treatment on OGD-induced cell injury. CONCLUSIONS Sevoflurane post-treatment promotes NRF2 expression by inhibiting G9a and H3K9me2, thus alleviating HIBI in neonatal rats.
Collapse
Affiliation(s)
- HuaiMing Wang
- Department of Anesthesiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China (mainland)
| | - YiQuan Xu
- Department of Anesthesiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China (mainland)
| | - Shuying Zhu
- Department of Anesthesiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China (mainland)
| | - XueMing Li
- Department of Radiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China (mainland)
| | - HongWei Zhang
- Department of Anesthesiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China (mainland)
| |
Collapse
|