1
|
Koustenis K, Dovrolis N, Viazis N, Ioannou A, Bamias G, Karamanolis G, Gazouli M. Insights into Therapeutic Response Prediction for Ustekinumab in Ulcerative Colitis Using an Ensemble Bioinformatics Approach. Int J Mol Sci 2024; 25:5532. [PMID: 38791570 PMCID: PMC11122545 DOI: 10.3390/ijms25105532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
INTRODUCTION Optimizing treatment with biological agents is an ideal goal for patients with ulcerative colitis (UC). Recent data suggest that mucosal inflammation patterns and serum cytokine profiles differ between patients who respond and those who do not. Ustekinumab, a monoclonal antibody targeting the p40 subunit of interleukin (IL)-12 and IL-23, has shown promise, but predicting treatment response remains a challenge. We aimed to identify prognostic markers of response to ustekinumab in patients with active UC, utilizing information from their mucosal transcriptome. METHODS We performed a prospective observational study of 36 UC patients initiating treatment with ustekinumab. Colonic mucosal biopsies were obtained before treatment initiation for a gene expression analysis using a microarray panel of 84 inflammatory genes. A differential gene expression analysis (DGEA), correlation analysis, and network centrality analysis on co-expression networks were performed to identify potential biomarkers. Additionally, machine learning (ML) models were employed to predict treatment response based on gene expression data. RESULTS Seven genes, including BCL6, CXCL5, and FASLG, were significantly upregulated, while IL23A and IL23R were downregulated in non-responders compared to responders. The co-expression analysis revealed distinct patterns between responders and non-responders, with key genes like BCL6 and CRP highlighted in responders and CCL11 and CCL22 in non-responders. The ML algorithms demonstrated a high predictive power, emphasizing the significance of the IL23R, IL23A, and BCL6 genes. CONCLUSIONS Our study identifies potential biomarkers associated with ustekinumab response in UC patients, shedding light on its underlying mechanisms and variability in treatment outcomes. Integrating transcriptomic approaches, including gene expression analyses and ML, offers valuable insights for personalized treatment strategies and highlights avenues for further research to enhance therapeutic outcomes for patients with UC.
Collapse
Affiliation(s)
- Kanellos Koustenis
- Gastroenterology Department, Evangelismos-Polykliniki General Hospital, 115 27 Athens, Greece; (K.K.); (N.V.)
| | - Nikolas Dovrolis
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, Michalakopoulou 176, 115 27 Athens, Greece;
| | - Nikos Viazis
- Gastroenterology Department, Evangelismos-Polykliniki General Hospital, 115 27 Athens, Greece; (K.K.); (N.V.)
| | | | - Giorgos Bamias
- GI-Unit, 3rd Academic Department of Internal Medicine, National and Kapodistrian University of Athens, Sotiria Hospital, 115 27 Athens, Greece;
| | - George Karamanolis
- Gastroenterology Unit, Second Department of Surgery, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, Michalakopoulou 176, 115 27 Athens, Greece;
| |
Collapse
|
2
|
Wang J, Wu Z, Huang Y, Jin L, Xu J, Yao Z, Ouyang X, Zhou Z, Mao S, Cao J, Lai B, Shen W. IRF4 induces M1 macrophage polarization and aggravates ulcerative colitis progression by the Bcl6-dependent STAT3 pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:2390-2404. [PMID: 38164749 DOI: 10.1002/tox.24106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 01/03/2024]
Abstract
Ulcerative colitis (UC) is an idiopathic chronic intestinal inflammation. An increasing body of evidence shows that macrophages play an important role in the pathogenesis of UC. Interferon regulatory factor 4 (IRF4) is crucial for the development of autoimmune diseases via regulating immune cells. This research was designed to explore the function of IRF4 in UC and its association with macrophage polarization. The in vitro model of UC was established by stimulating colonic epithelial cells with tumor necrosis factor α (TNF-α). A mouse model of UC was constructed by injecting C57BL/6 mice with dextran sulfate sodium salt. Flow cytometry was used to assess percentage of CD11b+ CD86+ and CD11b+ CD206+ cells in bone marrow macrophages. Occult blood tests were used to detect hematochezia. Hematoxylin and eosin staining assay was used to assess colon pathological changes. Enzyme-linked immunosorbent assay (ELISA) was used to detect concentrations of inflammatory cytokines. The interaction of IRF4 and B-cell lymphoma 6 (Bcl6) was confirmed using GST pull-down and coimmunoprecipitation assays. Our findings revealed that IRF4 promoted cell apoptosis and stimulated M1 macrophage polarization in vitro. Furthermore, IRF4 aggravated symptoms of the mouse model of UC and aggravated M1 macrophage polarization in vivo. IRF4 negatively regulated Bcl6 expression. Downregulation of Bcl6 promoted apoptosis and M1 macrophage polarization in the presence of IRF4 in vitro and in vivo. Moreover, Bcl6 positively mediated the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway. In conclusion, IRF4 aggravated UC progression through promoting M1 macrophage polarization via Bcl6/JAK2/STAT3 pathway. These findings suggested that IRF4 might be a good target to competitively inhibit or to treat with UC.
Collapse
Affiliation(s)
- Jiwei Wang
- Department of Ultrasound, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhao Wu
- Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yulin Huang
- Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lin Jin
- Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jinyi Xu
- Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhiyi Yao
- Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xi Ouyang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhiyong Zhou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shengxun Mao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jiaqing Cao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Bin Lai
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wei Shen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Wu WC, Shiu C, Tong TK, Leung SO, Hui CW. Suppression of NK Cell Activation by JAK3 Inhibition: Implication in the Treatment of Autoimmune Diseases. J Immunol Res 2023; 2023:8924603. [PMID: 38106519 PMCID: PMC10723930 DOI: 10.1155/2023/8924603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023] Open
Abstract
Natural killer (NK) cell is an essential cytotoxic lymphocyte in our innate immunity. Activation of NK cells is of paramount importance in defending against pathogens, suppressing autoantibody production and regulating other immune cells. Common gamma chain (γc) cytokines, including IL-2, IL-15, and IL-21, are defined as essential regulators for NK cell homeostasis and development. However, it is inconclusive whether γc cytokine-driven NK cell activation plays a protective or pathogenic role in the development of autoimmunity. In this study, we investigate and correlate the differential effects of γc cytokines in NK cell expansion and activation. IL-2 and IL-15 are mainly responsible for NK cell activation, while IL-21 preferentially stimulates NK cell proliferation. Blockade of Janus tyrosine kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway by either JAK inhibitors or antibodies targeting γc receptor subunits reverses the γc cytokine-induced NK cell activation, leading to suppression of its autoimmunity-like phenotype in vitro. These results underline the mechanisms of how γc cytokines trigger autoimmune phenotype in NK cells as a potential target to autoimmune diseases.
Collapse
Affiliation(s)
- Wai Chung Wu
- SinoMab BioScience Limited, Units 303 and 305 to 307, No. 15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong
| | - Carol Shiu
- SinoMab BioScience Limited, Units 303 and 305 to 307, No. 15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong
| | - Tak Keung Tong
- SinoMab BioScience Limited, Units 303 and 305 to 307, No. 15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong
| | - Shui On Leung
- SinoMab BioScience Limited, Units 303 and 305 to 307, No. 15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong
| | - Chin Wai Hui
- SinoMab BioScience Limited, Units 303 and 305 to 307, No. 15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong
| |
Collapse
|
4
|
Guo J, Wang Y, Tang L, Tang T, Li Z, Li M, Wang L, Zeng A, Ma Y, Huang S, Jiang X, Guo W. The regulation of Tfh cell differentiation by β-hydroxybutyrylation modification of transcription factor Bcl6. Chromosoma 2023; 132:257-268. [PMID: 37227491 PMCID: PMC10209948 DOI: 10.1007/s00412-023-00799-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/25/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
Transcriptional repressor B cell lymphoma 6 (Bcl6) is a major transcription factor involved in Tfh cell differentiation and germinal center response, which is regulated by a variety of biological processes. However, the functional impact of post-translational modifications, particularly lysine β-hydroxybutyrylation (Kbhb), on Bcl6 remains elusive. In this study, we revealed that Bcl6 is modified by Kbhb to affect Tfh cell differentiation, resulting in the decrease of cell population and cytokine IL-21. Furthermore, the modification sites are identified from enzymatic reactions to be lysine residues at positions 376, 377, and 379 by mass spectrometry, which is confirmed by site-directed mutagenesis and functional analyses. Collectively, our present study provides evidence on the Kbhb modification of Bcl6 and also generates new insights into the regulation of Tfh cell differentiation, which is a starting point for a thorough understanding of the functional involvement of Kbhb modification in the differentiations of Tfh and other T cells.
Collapse
Affiliation(s)
- Jingtian Guo
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yimeng Wang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Lei Tang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Tiejun Tang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Zhuolan Li
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Mengyuan Li
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Liming Wang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Aizhong Zeng
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yuxiao Ma
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Shihao Huang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Xiaomeng Jiang
- Department of Gastroenterology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, People's Republic of China.
| | - Wei Guo
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
5
|
Long Y, Xia CS, Zeng X, Feng J, Ma Y, Liu C. Altered Phenotypes of Colonic and Peripheral Blood Follicular Helper and Follicular Cytotoxic T Cells in Mice with DSS-Induced Colitis. J Inflamm Res 2023; 16:2879-2892. [PMID: 37456782 PMCID: PMC10348340 DOI: 10.2147/jir.s411373] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/12/2023] [Indexed: 07/18/2023] Open
Abstract
Background Follicular helper T (Tfh), follicular regulatory T (Tfr), and follicular cytotoxic T (Tfc) cells play important roles in autoimmune diseases. Nevertheless, their changes of functional phenotypes in ulcerative colitis (UC), most importantly, their changes in colon tissue as the target-organ, have not been explored. Methods DSS-colitis was induced in Balb/c mice and lymphocytes were collected from spleen, mesenteric lymph nodes, peripheral blood and colon. Tfh, Tfr, and Tfc cells were analyzed using flow cytometry based on their CD4+CXCR5+FOXP3-Tfh, CD4+CXCR5+FOXP3+Tfr and CD8+CXCR5+Tfc expressions. Various functional characterization markers including CD44, CD62L, TIGIT, CD226, PD-1, ICOS, Helios, CTLA-4 and Bcl6 were analyzed in the T cell subsets of the organs. Results Tfh and Tfr cells in the colon were significantly increased in DSS-colitis mice. Additionally, the proportions of Tfr and Tfc cells in the peripheral blood were also increased, while Tfc cell proportions in the colon were decreased. The proportion of naïve cells in the Tfh, Tfr and Tfc cells in the colon and peripheral blood decreased, while the proportion of effector memory T cells increased. The TIGIT+CD226-Tfh and Tfc cells were upregulated in the colon of DSS-colitis mice. The PD-1+, ICOS+ and PD-1+ICOS+ Tfh cells were increased in both the colonic and peripheral blood Tfh and Tfc of DSS-colitis mice. The Bcl6+ proportions in the Tfh and Tfr were increased in the colon of DSS-colitis mice. Conclusion The colonic and peripheral blood Tfh and Tfc cells of DSS-colitis mice have a significantly activated T cell phenotype, which may play a significant role in the pathogenesis of UC.
Collapse
Affiliation(s)
- Yan Long
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Chang-Sheng Xia
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Xingyue Zeng
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Jinghong Feng
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Yinting Ma
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Chen Liu
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, People’s Republic of China
| |
Collapse
|
6
|
Sun M, Wang X, Zhang N, Wang L, Wang X, Fan W, Li Q, Liu Y, Song M, Guo X. Imbalance of follicular regulatory T (Tfr) cells/follicular helper T (Tfh) cells in adult patients with primary immune thrombocytopenia. Exp Biol Med (Maywood) 2023; 248:959-965. [PMID: 37208911 PMCID: PMC10525409 DOI: 10.1177/15353702231168142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/13/2023] [Indexed: 05/21/2023] Open
Abstract
This study is to investigate the role of follicular regulatory T (Tfr) cells/follicular helper T (Tfh) cells imbalance in adult patients with primary immune thrombocytopenia (ITP). Totally, 40 cases of primary ITP patients and 30 healthy controls were enrolled. Blood samples were collected from ITP patients (pre- and post-therapy) and controls. Flow cytometry was used to detect the proportion of Tfr and Tfh cells in peripheral blood. Real-time quantitative polymerase chain reaction (PCR) was performed to detect the mRNA expression levels of FOXP3, BCL-6, and BLIMP-1. Enzyme-linked immunosorbent assay (ELISA) was conducted to detect interleukin (IL)-10 and IL-21 levels. Spearman's correlation was used for correlation analysis. Compared with control, Tfr cell proportion, FOXP3 mRNA, and IL-10 were significantly decreased in the pre-therapy ITP group, but were significantly increased post-therapy. Tfh cell proportion, BCL-6 mRNA, and IL-21 were increased, while BLIMP-1 mRNA was decreased, in the pre-therapy ITP group than the control group. These effects were reversed in the post-therapy ITP group. Moreover, the Tfr/Tfh ratio was decreased in the pre-therapy ITP group than control group, whereas was increased in the post-therapy ITP group than the pre-therapy ITP group. Furthermore, Tfr cell proportion, FOXP3 mRNA, IL-10, and Tfr/Tfh ratio were positively correlated with the platelet count (PLT) in the ITP pre-therapy group. In addition, Tfh cell proportion, BCL-6 mRNA, and IL-21 were negatively correlated with the PLT, while BLIMP-1 mRNA was positively correlated with the PLT. Conclusively, Tfr cell proportion in peripheral blood is decreased and Tfh cell proportion is increased, leading to unbalanced Tfr/Tfh ratio in ITP patients pre-therapy. The imbalance of Tfr/Tfh is recovered post-therapy, suggesting that the Tfr and Tfh cells may be involved in ITP pathogenesis. The abnormal expression of FOXP3, BCL-6, and BLIMP-1 mRNA and the changes in IL-10 and IL-21 levels may be related to the imbalance of Tfr/Tfh.
Collapse
Affiliation(s)
- Mingling Sun
- Hematologic Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Research Institute of Hematology, Xinjiang Medical University, Urumqi 830011, China
| | - Xiujuan Wang
- Hematologic Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Research Institute of Hematology, Xinjiang Medical University, Urumqi 830011, China
| | - Ning Zhang
- Hematologic Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Research Institute of Hematology, Xinjiang Medical University, Urumqi 830011, China
| | - Lei Wang
- Hematologic Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Research Institute of Hematology, Xinjiang Medical University, Urumqi 830011, China
| | - Xinyou Wang
- Hematologic Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Research Institute of Hematology, Xinjiang Medical University, Urumqi 830011, China
| | - Wenxia Fan
- Hematologic Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Research Institute of Hematology, Xinjiang Medical University, Urumqi 830011, China
| | - Qinzhi Li
- Hematologic Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Research Institute of Hematology, Xinjiang Medical University, Urumqi 830011, China
| | - Ying Liu
- Hematologic Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Research Institute of Hematology, Xinjiang Medical University, Urumqi 830011, China
| | - Mengting Song
- Hematologic Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Research Institute of Hematology, Xinjiang Medical University, Urumqi 830011, China
| | - Xinhong Guo
- Hematologic Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Research Institute of Hematology, Xinjiang Medical University, Urumqi 830011, China
| |
Collapse
|
7
|
Cao Y, Hou Y, Zhao L, Huang Y, Liu G. New insights into follicular regulatory T cells in the intestinal and tumor microenvironments. J Cell Physiol 2023. [PMID: 37210730 DOI: 10.1002/jcp.31039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/03/2023] [Accepted: 04/28/2023] [Indexed: 05/23/2023]
Abstract
Follicular regulatory T (Tfr) cells are a novel and unique subset of effector regulatory T (Treg) cells that are located in germinal centers (GCs). Tfr cells express transcription profiles that are characteristic of both follicular helper T (Tfh) cells and Treg cells and negatively regulate GC reactions, including Tfh cell activation and cytokine production, class switch recombination and B cell activation. Evidence also shows that Tfr cells have specific characteristics in different local immune microenvironments. This review focuses on the regulation of Tfr cell differentiation and function in unique local immune microenvironments, including the intestine and tumor.
Collapse
Affiliation(s)
- Yejin Cao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yueru Hou
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Longhao Zhao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yijin Huang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
8
|
The Role of Inflammatory Cytokines in the Pathogenesis of Colorectal Carcinoma—Recent Findings and Review. Biomedicines 2022; 10:biomedicines10071670. [PMID: 35884974 PMCID: PMC9312930 DOI: 10.3390/biomedicines10071670] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
The inflammatory process plays a significant role in the development of colon cancer (CRC). Intestinal cytokine networks are critical mediators of tissue homeostasis and inflammation but also impact carcinogenesis at all stages of the disease. Recent studies suggest that inflammation is of greater importance in the serrated pathway than in the adenoma-carcinoma pathway. Interleukins have gained the most attention due to their potential role in CRC pathogenesis and promising results of clinical trials. Malignant transformation is associated with the pro-tumorigenic and anti-tumorigenic cytokines. The harmony between proinflammatory and anti-inflammatory factors is crucial to maintaining homeostasis. Immune cells in the tumor microenvironment modulate immune sensitivity and facilitate cancer escape from immune surveillance. Therefore, clarifying the role of underlying cytokine pathways and the effects of their modulation may be an important step to improve the effectiveness of cancer immunotherapy.
Collapse
|
9
|
Zhang L, Mao R, Lau CT, Chung WC, Chan JCP, Liang F, Zhao C, Zhang X, Bian Z. Identification of useful genes from multiple microarrays for ulcerative colitis diagnosis based on machine learning methods. Sci Rep 2022; 12:9962. [PMID: 35705632 PMCID: PMC9200771 DOI: 10.1038/s41598-022-14048-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/31/2022] [Indexed: 12/11/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic relapsing inflammatory bowel disease with an increasing incidence and prevalence worldwide. The diagnosis for UC mainly relies on clinical symptoms and laboratory examinations. As some previous studies have revealed that there is an association between gene expression signature and disease severity, we thereby aim to assess whether genes can help to diagnose UC and predict its correlation with immune regulation. A total of ten eligible microarrays (including 387 UC patients and 139 healthy subjects) were included in this study, specifically with six microarrays (GSE48634, GSE6731, GSE114527, GSE13367, GSE36807, and GSE3629) in the training group and four microarrays (GSE53306, GSE87473, GSE74265, and GSE96665) in the testing group. After the data processing, we found 87 differently expressed genes. Furthermore, a total of six machine learning methods, including support vector machine, least absolute shrinkage and selection operator, random forest, gradient boosting machine, principal component analysis, and neural network were adopted to identify potentially useful genes. The synthetic minority oversampling (SMOTE) was used to adjust the imbalanced sample size for two groups (if any). Consequently, six genes were selected for model establishment. According to the receiver operating characteristic, two genes of OLFM4 and C4BPB were finally identified. The average values of area under curve for these two genes are higher than 0.8, either in the original datasets or SMOTE-adjusted datasets. Besides, these two genes also significantly correlated to six immune cells, namely Macrophages M1, Macrophages M2, Mast cells activated, Mast cells resting, Monocytes, and NK cells activated (P < 0.05). OLFM4 and C4BPB may be conducive to identifying patients with UC. Further verification studies could be conducted.
Collapse
Affiliation(s)
- Lin Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Mao
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chung Tai Lau
- Chinese Clinical Trial Registry (Hong Kong), Hong Kong Chinese Medicine Clinical Study Centre, Chinese EQUATOR Centre, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Wai Chak Chung
- Chinese Clinical Trial Registry (Hong Kong), Hong Kong Chinese Medicine Clinical Study Centre, Chinese EQUATOR Centre, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Jacky C P Chan
- Department of Computer Science, HKBU Faculty of Science, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Feng Liang
- Chinese Clinical Trial Registry (Hong Kong), Hong Kong Chinese Medicine Clinical Study Centre, Chinese EQUATOR Centre, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Chenchen Zhao
- Oncology Department, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuan Zhang
- Chinese Clinical Trial Registry (Hong Kong), Hong Kong Chinese Medicine Clinical Study Centre, Chinese EQUATOR Centre, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China. .,Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong, SAR, China.
| | - Zhaoxiang Bian
- Chinese Clinical Trial Registry (Hong Kong), Hong Kong Chinese Medicine Clinical Study Centre, Chinese EQUATOR Centre, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China. .,Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong, SAR, China.
| |
Collapse
|
10
|
Wang HY, Ge W, Liu SQ, Long J, Jiang QQ, Zhou W, Zuo ZY, Liu DY, Zhao HM, Zhong YB. Curcumin Inhibits T Follicular Helper Cell Differentiation in Mice with Dextran Sulfate Sodium (DSS)-Induced Colitis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:275-293. [PMID: 34931590 DOI: 10.1142/s0192415x22500100] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Follicular helper T cells (Tfh) regulate the differentiation of germinal center B cells and maintain humoral immunity. Notably, imbalances in Tfh differentiation often lead to the development of autoimmune diseases, including inflammatory bowel disease (IBD). Curcumin, a natural product derived from Curcuma longa, is effective in relieving IBD in humans and animals, and its mechanisms of immune regulation need further elaboration. In this study, dextran sodium sulfate induced ulcerative colitis in BALB/c mice, and curcumin was administered simultaneously for 7 days. Curcumin effectively upregulated the change rate of mouse weight, colonic length, down-regulated colonic weight, index of colonic weight, colonic damage score and the levels of pro-inflammatory cytokines IL-6, IL-12, IL-23 and TGF-[Formula: see text]1 in colonic tissues of colitis mice. Importantly, curcumin regulated the differentiation balance of Tfh and their subpopulation in colitis mice; the percentages of Tfh (CD4[Formula: see text]CXCR5[Formula: see text]BCL-6[Formula: see text], CD4[Formula: see text]CXCR5[Formula: see text]PD-1[Formula: see text], CD4[Formula: see text]CXCR5[Formula: see text]PD-L1[Formula: see text], CD4[Formula: see text]CXCR5[Formula: see text]ICOS[Formula: see text], Tfh17 and Tem-Tfh were downregulated significantly, while CD4[Formula: see text]CXCR5[Formula: see text]Blimp-1[Formula: see text], Tfh1, Tfh10, Tfh21, Tfr, Tcm-Tfh and Tem-GC Tfh were upregulated. In addition, curcumin inhibited the expression of Tfh-related transcription factors BCL-6, p-STAT3, Foxp1, Roquin-1, Roquin-2 and SAP, and significantly upregulated the protein levels of Blimp-1 and STAT3 in colon tissue. In conclusion, curcumin may be effective in alleviating dextran sulfate sodium-induced colitis by regulating Tfh differentiation.
Collapse
Affiliation(s)
- Hai-Yan Wang
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330004, Jiangxi Province, P. R. China.,College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330004, Jiangxi Province, P. R. China
| | - Wei Ge
- Department of Proctology, Affiliated Hospital of Jiangxi, University of Chinese Medicine, 445 Bayi Avenue, Nanchang 330006, Jiangxi Province, P. R. China
| | - Su-Qing Liu
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330004, Jiangxi Province, P. R. China.,Department of Postgraduate, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330004, Jiangxi Province, P. R. China
| | - Jian Long
- Department of Postgraduate, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330004, Jiangxi Province, P. R. China
| | - Qing-Qing Jiang
- Department of Postgraduate, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330004, Jiangxi Province, P. R. China
| | - Wen Zhou
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330004, Jiangxi Province, P. R. China
| | - Zheng-Yun Zuo
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330004, Jiangxi Province, P. R. China
| | - Duan-Yong Liu
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330004, Jiangxi Province, P. R. China
| | - Hai-Mei Zhao
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330004, Jiangxi Province, P. R. China.,College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330004, Jiangxi Province, P. R. China
| | - You-Bao Zhong
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330004, Jiangxi Province, P. R. China.,Laboratory Animal Science and Technology Center, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330004, Jiangxi Province, P. R. China.,Department of Proctology, Affiliated Hospital of Jiangxi, University of Chinese Medicine, 445 Bayi Avenue, Nanchang 330006, Jiangxi Province, P. R. China
| |
Collapse
|
11
|
Gu G, Lv X, Liu G, Zeng R, Li S, Chen L, Liang Z, Wang H, Lu F, Zhan L, Lv X. Tnfaip6 Secreted by Bone Marrow-Derived Mesenchymal Stem Cells Attenuates TNBS-Induced Colitis by Modulating Follicular Helper T Cells and Follicular Regulatory T Cells Balance in Mice. Front Pharmacol 2021; 12:734040. [PMID: 34707499 PMCID: PMC8542666 DOI: 10.3389/fphar.2021.734040] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
Objective: To investigate the immunological mechanism of bone marrow-derived mesenchymal stem cells (BM-MSCs) in inflammatory bowel disease (IBD). Methods: Mice with 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis were intraperitoneally injected with phosphate-buffered saline, BM-MSCs, BM-MSCs with tumor necrosis factor-induced protein 6 (Tnfaip6) knockdown mediated by RNA interference recombinant adenovirus, and BM-MSCs-infected with control adenovirus or recombinant mouse Tnfaip6. The disease activity index, weight loss, and histological scores were recorded. Serum levels of Tnfaip6 and pro- and anti-inflammatory cytokines, including interleukin (IL)-21, tumor necrosis factor-alpha (TNF-α), IL-10 were measured by enzyme-linked immunosorbent assay. The relative expression levels of these cytokines, B-cell lymphoma 6 (BCL-6) and fork-like transcription factor p3 (Foxp3) in the colon were determined by real-time quantitative PCR (RT-qPCR). BCL-6 and Foxp3 are the master regulators of follicular helper T cells (Tfh) and follicular regulatory T cells (Tfr), respectively. The infiltration of Tfh and Tfr in mesenteric lymph nodes (MLNs) and spleens was analyzed by flow cytometry. Results: Compared to the normal control group, the expression levels of BCL-6 and IL-21 in the colon, Tfh infiltration, and ratios of Tfh/Tfr in the MLNs and spleen, and the serum concentrations of IL-21 and TNF-α increased significantly in the colitis model group (p < 0.05). Intraperitoneal injection of BM-MSCs or Tnfaip6 ameliorated weight loss and clinical and histological severity of colitis, downregulated the expression of BCL-6, IL-21, and TNF-α, upregulated the expression of Foxp3, IL-10, and Tnfaip6 (p < 0.05), increased Tfr and reduced the infiltration of Tfh in the MLNs and spleen, and downregulated the Tfh/Tfr ratio (p < 0.05). On the other hand, BM-MSCs lost the therapeutic effect and immune regulatory functions on Tfh and Tfr after Tnfaip6 knockdown. Conclusion: Tfh increase in the inflamed colon, Tfh decrease and Tfr increase during the colitis remission phase, and the imbalance of the Tfh/Tfr ratio is closely related to the progression of IBD. Tnfaip6 secreted by BM-MSCs alleviates IBD by inhibiting Tfh differentiation, promoting Tfr differentiation, and improving the imbalance of Tfh/Tfr in mice.
Collapse
Affiliation(s)
- Guangli Gu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaodan Lv
- Department of Clinical Experimental Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Gengfeng Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ruizhi Zeng
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shiquan Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lan Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhaoliang Liang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huiqin Wang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fei Lu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lingling Zhan
- Department of Clinical Experimental Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoping Lv
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
12
|
The Role of T Follicular Helper Cells and Interleukin-21 in the Pathogenesis of Inflammatory Bowel Disease. Gastroenterol Res Pract 2021; 2021:9621738. [PMID: 34471409 PMCID: PMC8405314 DOI: 10.1155/2021/9621738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/17/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
T follicular helper (Tfh) cells represent a novel subset of CD4+ T cells which can provide critical help for germinal center (GC) formation and antibody production. The Tfh cells are characterized by the expression of CXC chemokine receptor 5 (CXCR5), programmed death 1 (PD-1), inducible costimulatory molecule (ICOS), B cell lymphoma 6 (BCL-6), and the secretion of interleukin-21 (IL-21). Given the important role of Tfh cells in B cell activation and high-affinity antibody production, Tfh cells are involved in the pathogenesis of many human diseases. Inflammatory bowel disease (IBD) is a group of chronic inflammatory diseases characterized by symptoms such as diarrhea, abdominal pain, and weight loss. Ulcerative colitis (UC) and Crohn's disease (CD) are the most studied types of IBD. Dysregulated mucosal immune response plays an important role in the pathogenesis of IBD. In recent years, many studies have identified the critical role of Tfh cells and IL-21 in the pathogenic process IBD. In this paper, we will discuss the role of Tfh cells and IL-21 in IBD pathogenesis.
Collapse
|