1
|
Lipina TV, Li S, Petrova ES, Amstislavskaya TG, Cameron RT, Elliott C, Gondo Y, McGirr A, Mullins JGL, Baillie GS, Woodgett JR, Clapcote SJ. PDE4B Missense Variant Increases Susceptibility to Post-traumatic Stress Disorder-Relevant Phenotypes in Mice. J Neurosci 2024; 44:e0137242024. [PMID: 39256048 PMCID: PMC11502227 DOI: 10.1523/jneurosci.0137-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024] Open
Abstract
Large-scale genome-wide association studies (GWASs) have associated intronic variants in PDE4B, encoding cAMP-specific phosphodiesterase-4B (PDE4B), with increased risk for post-traumatic stress disorder (PTSD), as well as schizophrenia and substance use disorders that are often comorbid with it. However, the pathophysiological mechanisms of genetic risk involving PDE4B are poorly understood. To examine the effects of PDE4B variation on phenotypes with translational relevance to psychiatric disorders, we focused on PDE4B missense variant M220T, which is present in the human genome as rare coding variant rs775201287. When expressed in HEK-293 cells, PDE4B1-M220T exhibited an attenuated response to a forskolin-elicited increase in the intracellular cAMP concentration. In behavioral tests, homozygous Pde4b M220T male mice with a C57BL/6JJcl background exhibited increased reactivity to novel environments, startle hyperreactivity, prepulse inhibition deficits, altered cued fear conditioning, and enhanced spatial memory, accompanied by an increase in cAMP signaling pathway-regulated expression of BDNF in the hippocampus. In response to a traumatic event (10 tone-shock pairings), neuronal activity was decreased in the cortex but enhanced in the amygdala and hippocampus of Pde4b M220T mice. At 24 h post-trauma, Pde4b M220T mice exhibited increased startle hyperreactivity and decreased plasma corticosterone levels, similar to phenotypes exhibited by PTSD patients. Trauma-exposed Pde4b M220T mice also exhibited a slower decay in freezing at 15 and 30 d post-trauma, demonstrating enhanced persistence of traumatic memories, similar to that exhibited by PTSD patients. These findings provide substantive mouse model evidence linking PDE4B variation to PTSD-relevant phenotypes and thus highlight how genetic variation of PDE4B may contribute to PTSD risk.
Collapse
Affiliation(s)
- Tatiana V Lipina
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Shupeng Li
- School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518071, China
| | - Ekaterina S Petrova
- Federal State Budgetary Scientific Institution, Scientific Research Institute of Physiology & Basic Medicine, Novosibirsk 630117, Russia
| | - Tamara G Amstislavskaya
- Federal State Budgetary Scientific Institution, Scientific Research Institute of Physiology & Basic Medicine, Novosibirsk 630117, Russia
| | - Ryan T Cameron
- School of Cardiovascular & Metabolic Health, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Christina Elliott
- School of Cardiovascular & Metabolic Health, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Yoichi Gondo
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Alexander McGirr
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | - George S Baillie
- School of Cardiovascular & Metabolic Health, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Steven J Clapcote
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
2
|
Chen J, Wei X, Wu X, Zhang Q, Xia G, Xia H, Shang H, Lin S. Disorder of neuroplasticity aggravates cognitive impairment via neuroinflammation associated with intestinal flora dysbiosis in chronic heart failure. Aging (Albany NY) 2024; 16:10882-10904. [PMID: 38968172 PMCID: PMC11272129 DOI: 10.18632/aging.205960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/28/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Chronic heart failure (CHF) impairs cognitive function, yet its effects on brain structure and underlying mechanisms remain elusive. This study aims to explore the mechanisms behind cognitive impairment. METHODS CHF models in rats were induced by ligation of the left anterior descending coronary artery. Cardiac function was analyzed by cardiac ultrasound and hemodynamics. ELISA, immunofluorescence, Western blot, Golgi staining and transmission electron microscopy were performed on hippocampal tissues. The alterations of intestinal flora under the morbid state were investigated via 16S rRNA sequencing. The connection between neuroinflammation and synapses is confirmed by a co-culture system of BV2 microglia and HT22 cells in vitro. Results: CHF rats exhibited deteriorated cognitive behaviors. CHF induced neuronal structural disruption, loss of Nissl bodies, and synaptic damage, exhibiting alterations in multiple parameters. CHF rats showed increased hippocampal levels of inflammatory cytokines and activated microglia and astrocytes. Furthermore, the study highlights dysregulated PDE4-dependent cAMP signaling and intestinal flora dysbiosis, closely associated with neuroinflammation, and altered synaptic proteins. In vitro, microglial neuroinflammation impaired synaptic plasticity via PDE4-dependent cAMP signaling. CONCLUSIONS Neuroinflammation worsens CHF-related cognitive impairment through neuroplasticity disorder, tied to intestinal flora dysbiosis. PDE4 emerges as a potential therapeutic target. These findings provide insightful perspectives on the heart-gut-brain axis.
Collapse
Affiliation(s)
- Jie Chen
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xiaohong Wei
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xuefen Wu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Qian Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Guiyang Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Huan Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Sheng Lin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| |
Collapse
|
3
|
Cui X, Xu Y, Zhu H, Wang L, Zhou J. Long noncoding RNA NONHSAG045500 regulates serotonin transporter to ameliorate depressive-like behavior via the cAMP-PKA-CREB signaling pathway in a model of perinatal depression. J Matern Fetal Neonatal Med 2023; 36:2183468. [PMID: 36997170 DOI: 10.1080/14767058.2023.2183468] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
OBJECTIVE Perinatal depression (PND) is the most common complication of childbirth and negatively affects the mother. Long noncoding RNA (lncRNA) NONHSAG045500 inhibits the expression of 5-hydroxytryptamine (5-HT) transporter (i.e. serotonin transporter [SERT]) and produces an antidepressant effect. This study aimed to identify a link between the lncRNA NONHSAG045500 and the pathogenesis of PND. METHODS Female C57BL/6 J mice were divided into normal control group (control group, n = 15), chronic unpredictable stress (CUS) model group (PND group, n = 15), lncRNA NONHSAG045500-overexpressed group (LNC group, sublingual intravenous injection of NONHSAG045500 overexpression cells for 7 days, n = 15), and escitalopram treatment group (i.e. the selective serotonin reuptake inhibitor [SSRI] group, with escitalopram administered from the 10th day after pregnancy to the 10th day after delivery, n = 15). Control group mice were conceived normally, whereas, in the other groups, a CUS model was established before mice were conceived. Depressive-like behaviour was assessed via sucrose preference, forced swimming, and open-field tests. The expression levels of 5-HT, SERT, and cAMP-PKA-CREB pathway-related proteins in the prefrontal cortex were detected on the 10th day after delivery. RESULTS Mice in the PND group exhibited significant depressive-like behaviours compared with those in the control group, indicating that the PND model was successfully established. The expression of lncRNA NONHSAG045500 was markedly decreased in the PND group compared with that in the control group. After treatment, both LNC and SSRI groups showed a significant improvement in depression-like behaviour, and the expression of 5-HT in the prefrontal cortex was increased in these groups compared with that in the PND group. In addition, the LNC group displayed lower expression of SERT and higher expression of cAMP, PKA, and CREB when in comparison to PND group. CONCLUSION NONHSAG045500 mediates the development of PND mainly by activating the cAMP-PKA-CREB pathway, increasing the level of 5-HT, and decreasing the expression of SERT.
Collapse
Affiliation(s)
- Xuelian Cui
- Department of Psychology, Changzhou Maternity and Child Health Care Hospital, Changzhou, P.R. China
| | - Yongjuan Xu
- Department of Cervical, Changzhou Maternity and Child Health Care Hospital, Changzhou, P.R. China
| | - Haiyan Zhu
- Department of Psychology, Changzhou Maternity and Child Health Care Hospital, Changzhou, P.R. China
| | - Li Wang
- Department of Psychology, Changzhou Maternity and Child Health Care Hospital, Changzhou, P.R. China
| | - Jun Zhou
- Department of Respiratory, Changzhou Maternity and Child Health Care Hospital, Changzhou, P.R. China
| |
Collapse
|
4
|
Ji M, Zhang Z, Gao F, Yang S, Wang J, Wang X, Zhu G. Curculigoside rescues hippocampal synaptic deficits elicited by PTSD through activating cAMP-PKA signaling. Phytother Res 2023; 37:759-773. [PMID: 36200803 DOI: 10.1002/ptr.7658] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/26/2022] [Accepted: 08/12/2022] [Indexed: 02/17/2023]
Abstract
Chronic traumatic stress results in various psychiatric disorders, especially posttraumatic stress disorder (PTSD). Previous study demonstrated that curculigoside (CUR) a component of Rhizoma Curculiginis prevented fear extinction and stress-induced depression-like behaviors. However, its effects on PTSD and the mechanisms are still not completely clear. In this study, we observed typical PTSD-like phenotypes, synaptic deficit, and reduction of BDNF/TrkB signaling pathway in mice receiving modified single prolonged stress and electrical stimulation (SPS&S). By contrast, systemic administration of CUR blocked PTSD-like phenotypes and synaptic deficits, including reduction of BDNF/TrkB signaling pathway, GluA1 and Arc expression. Importantly, CUR reversed the impairment of PKA signaling pathway elicited by PTSD. We further confirmed that the effects of CUR on synaptic function were through PKA signaling pathway, as H-89, an inhibitor of PKA blocked the effect of CUR on behavioral changes and BDNF/TrkB signaling pathway. Thereafter, we verified that CUR on synaptic function were through PKA pathway using direct intracerebral injection of CUR and H-89. Direct intracerebral injection of CUR activated PKA/CREB/BDNF/TrkB, which was blocked by H-89. Additionally, the docking results showed high binding energies of CUR with A2AR, AC, PRKACA, and PRKAR1A, which might indicate that CUR functions through regulating PKA signaling pathway. In conclusion, CUR prevented the behavioral changes and hippocampal synaptic deficits elicited by PTSD through activating cAMP-PKA signaling.
Collapse
Affiliation(s)
- Manman Ji
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Zhengrong Zhang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Feng Gao
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Shaojie Yang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Juan Wang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Xuncui Wang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
5
|
Li J, Zhou F, Shang L, Liu N, Liu Y, Zhang M, Wang S, Yang S. Integrated network pharmacology and experimental verification to investigate the mechanisms of YYFZBJS against colorectal cancer via CDK1/PI3K/Akt signaling. Front Oncol 2022; 12:961653. [PMID: 36457504 PMCID: PMC9706206 DOI: 10.3389/fonc.2022.961653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 10/25/2022] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a common digestive tract malignancy with rising incidence and morbidity worldwide during recent years. Yi-Yi-Fu-Zi-Bai-Jiang-San (YYFZBJS), a traditional Chinese medicine formula, has showed positive effects against cancers. However, the mechanisms underlying its anticancer effects requires investigation. METHODS Information on bioactive compounds, potential YYFZBJS targets, and CRC-associated genes, was obtained from public databases. The key targets and ingredients as well their corresponding signaling pathways were identified using bioinformatic approaches, including Kyoto encyclopedia of genes and genomes (KEGG) analyses, gene ontology (GO), and protein-protein interaction (PPI). Subsequently, molecular docking was used to verify the main compounds-targets. Potential YYFZBJS therapeutic effects against CRC were validated in vitro and in vivo. RESULTS Using pharmacological network analysis, 40 YYFZBJS active compounds and 21 potential anti-CRC targets were identified. YYFZBJS was an important regulator of CRC through various targets and signaling pathways, particularly the cell cycle and PI3K/AKT pathway. Additionally, YYFZBJS suppressed the proliferation of CRC cells. Flow cytometry showed that YYFZBJS induced apoptosis and cell cycle arrest in the G2/M phase. Western blotting analysis indicated that YYFZBJS reduced the protein levels of CDK1, p-AKT, and p-PI3K, without altering total PI3K and AKT protein levels. In vivo analysis found that YYFZBJS inhibited tumor growth and PI3K/AKT signaling in a mouse model of CRC. CONCLUSION As predicted by network pharmacology and validated by the experimental results, YYFZBJS inhibited proliferation, induced apoptosis and arrested cell cycle progression in CRC by modulating the CDK1/PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Jinxiao Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fangyuan Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Luorui Shang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Na Liu
- Rehabilitation Department of traditional Chinese Medicine, Union Red Cross Hospital, Wuhan, China
| | - Yuhan Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengqi Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuhan Wang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shenglan Yang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
6
|
Li Y, Guo Q, Huang J, Wang Z. Antidepressant Active Ingredients From Chinese Traditional Herb Panax Notoginseng: A Pharmacological Mechanism Review. Front Pharmacol 2022; 13:922337. [PMID: 35795547 PMCID: PMC9252462 DOI: 10.3389/fphar.2022.922337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Depression is one of the most common mental illnesses in the world and is highly disabling, lethal, and seriously endangers social stability. The side effects of clinical drugs used to treat depression are obvious, and the onset time is longer. Therefore, there is a great demand for antidepressant drugs with better curative effects, fewer side effects, and shorter onset time. Panax notoginseng, a Chinese herbal medication, has been used to treat depression for thousands of years and shown to have a therapeutic effect on depression. This review surveyed PubMed’s most recent 20 years of research on Panax notoginseng’s use for treating depression. We mainly highlight animal model research and outlined the pathways influenced by medicines. We provide a narrative review of recent empirical evidence of the anti-depressive effects of Panax Notoginseng and novel ideas for developing innovative clinical antidepressants with fewer side effects.
Collapse
Affiliation(s)
- Yanwei Li
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Qingwan Guo
- Interdisciplinary Institute for Personalized Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Junqing Huang
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- *Correspondence: Junqing Huang, ; Ziying Wang,
| | - Ziying Wang
- Interdisciplinary Institute for Personalized Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- *Correspondence: Junqing Huang, ; Ziying Wang,
| |
Collapse
|
7
|
Lu J, Wang X, Wu A, Cao Y, Dai X, Liang Y, Li X. Ginsenosides in central nervous system diseases: Pharmacological actions, mechanisms, and therapeutics. Phytother Res 2022; 36:1523-1544. [PMID: 35084783 DOI: 10.1002/ptr.7395] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 12/11/2022]
Abstract
The nervous system is one of the most complex physiological systems, and central nervous system diseases (CNSDs) are serious diseases that affect human health. Ginseng (Panax L.), the root of Panax species, are famous Chinese herbs that have been used for various diseases in China, Japan, and Korea since ancient times, and remain a popular natural medicine used worldwide in modern times. Ginsenosides are the main active components of ginseng, and increasing evidence has demonstrated that ginsenosides can prevent CNSDs, including neurodegenerative diseases, memory and cognitive impairment, cerebral ischemia injury, depression, brain glioma, multiple sclerosis, which has been confirmed in numerous studies. Therefore, this review summarizes the potential pathways by which ginsenosides affect the pathogenesis of CNSDs mainly including antioxidant effects, anti-inflammatory effects, anti-apoptotic effects, and nerve protection, which provides novel ideas for the treatment of CNSDs.
Collapse
Affiliation(s)
- Jing Lu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xian Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Anxin Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Cao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Dai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Youdan Liang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Zhang H, Yao S, Zhang Z, Zhou C, Fu F, Bian Y, Luo H, Li Y, Yan S, Ge Y, Chen Y, Zhan K, Ge Y, Chen Z, Yue M, Li X, Du W, Jin H, Tong P, Ruan H, Wu C. Network Pharmacology and Experimental Validation to Reveal the Pharmacological Mechanisms of Liuwei Dihuang Decoction Against Intervertebral Disc Degeneration. Drug Des Devel Ther 2021; 15:4911-4924. [PMID: 34880601 PMCID: PMC8648103 DOI: 10.2147/dddt.s338439] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022] Open
Abstract
Purpose To explore the pharmacological mechanisms of Liuwei Dihuang Decoction (LWDHD) against intervertebral disc (IVD) degeneration (IVDD) via network pharmacology analysis combined with experimental validation. Methods First, active ingredients and related targets of LWDHD, as well as related genes of IVDD, were collected from public databases. The protein–protein interaction (PPI) network, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses were performed to predict the core targets and pathways of LWDHD against IVDD. Secondly, the IVDD model of mice treated with LWDHD was selected to validate the major targets predicted by network pharmacology. Results By searching the intersection of the active ingredient targets and IVDD targets, a total of 110 targets matched the related targets of 30 active ingredients in LWDHD and IVDD were retrieved. PPI network analysis indicated that 17 targets, including Caspase-3, IL-1β, P53, etc., were hub targets. GO and KEGG enrichment analyses showed that the apoptosis pathway was enriched by multiple targets and served as the target for in vivo experimental study validation. The results of animal experiments revealed that LWDHD administration not only restored the decrease in disc height and abnormal degradation of matrix metabolism in IVDD mice but also reversed the high expression of Bax, Caspase-3, IL-1β, P53, and low expression of Bcl-2, thereby inhibiting the apoptosis of IVD tissue and ameliorating the progression of IVDD. Conclusion Using a comprehensive network pharmacology approach, our findings predicted the active ingredients and potential targets of LWDHD intervention for IVDD, and some major target proteins involved in the predictive signaling pathway were validated experimentally, which gave us a new understanding of the pharmacological mechanism of LWDHD in treating IVDD at the comprehensive level.
Collapse
Affiliation(s)
- Huihao Zhang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Sai Yao
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Zhiguo Zhang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Chengcong Zhou
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Fangda Fu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Yishan Bian
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Huan Luo
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yan Li
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Shuxin Yan
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Yuying Ge
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Yuying Chen
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Kunyu Zhan
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Yanzhi Ge
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Zuxiang Chen
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Ming Yue
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaofeng Li
- Department of Orthopedics and Traumatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Weibin Du
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China.,Research Institute of Orthopedics, The Affiliated JiangNan Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Peijian Tong
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Hongfeng Ruan
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China.,Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Chengliang Wu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
9
|
Chen L, Li R, Chen F, Zhang H, Zhu Z, Xu S, Cheng Y, Zhao Y. A possible mechanism to the antidepressant-like effects of 20 (S)-protopanaxadiol based on its target protein 14-3-3 ζ. J Ginseng Res 2021; 46:666-674. [PMID: 36090685 PMCID: PMC9459030 DOI: 10.1016/j.jgr.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 12/04/2022] Open
Abstract
Background Ginsenosides and their metabolites have antidepressant-like effects, but the underlying mechanisms remain unclear. We previously identified 14-3-3 ζ as one of the target proteins of 20 (S)-protopanaxadiol (PPD), a fully deglycosylated ginsenoside metabolite. Methods Corticosterone (CORT) was administered repeatedly to induce the depression model, and PPD was given concurrently. The tail suspension test (TST) and the forced swimming test (FST) were used for behavioral evaluation. All mice were sacrificed. Golgi-cox staining, GSK 3β activity assay, and Western blot analysis were performed. In vitro, the kinetic binding analysis with the Biolayer Interferometry (BLI) was used to determine the molecular interactions. Results TST and FST both revealed that PPD reversed CORT-induced behavioral deficits. PPD also ameliorated the CORT-induced expression alterations of hippocampal Ser9 phosphorylated glycogen synthase kinase 3β (p-Ser9 GSK 3β), Ser133 phosphorylated cAMP response element-binding protein (p-Ser133 CREB), and brain-derived neurotrophic factor (BDNF). Moreover, PPD attenuated the CORT-induced increase in GSK 3β activity and decrease in dendritic spine density in the hippocampus. In vitro, 14-3-3 ζ protein specifically bound to p-Ser9 GSK 3β polypeptide. PPD promoted the binding and subsequently decreased GSK 3β activity. Conclusion These findings demonstrated the antidepressant-like effects of PPD on the CORT-induced mouse depression model and indicated a possible target-based mechanism. The combination of PPD with the 14-3-3 ζ protein may promote the binding of 14-3-3 ζ to p-GSK 3β (Ser9) and enhance the inhibition of Ser9 phosphorylation on GSK 3β kinase activity, thereby activating the plasticity-related CREB–BDNF signaling pathway.
Collapse
Affiliation(s)
- Lin Chen
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ruimei Li
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feiyan Chen
- Research and Innovation Center, College of Traditional Chinese Medicine Integrated Chinese and Western Medicine College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hantao Zhang
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhu Zhu
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuyi Xu
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yao Cheng
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yunan Zhao
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Corresponding author. Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|