1
|
Nafiz TN, Sankar P, Mishra LK, Rousseau RP, Saqib M, Subbian S, Parihar SP, Mishra BB. Differential requirement of formyl peptide receptor 1 in macrophages and neutrophils in the host defense against Mycobacterium tuberculosis Infection. Sci Rep 2024; 14:23595. [PMID: 39384825 PMCID: PMC11464745 DOI: 10.1038/s41598-024-71180-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/26/2024] [Indexed: 10/11/2024] Open
Abstract
Formyl peptide receptors (FPR), part of the G-protein coupled receptor superfamily, are pivotal in directing phagocyte migration towards chemotactic signals from bacteria and host tissues. Although their roles in acute bacterial infections are well-documented, their involvement in immunity against tuberculosis (TB) remains unexplored. Here, we investigate the functions of Fpr1 and Fpr2 in defense against Mycobacterium tuberculosis (Mtb), the causative agent of TB. Elevated levels of Fpr1 and Fpr2 were found in the lungs of mice, rabbits and peripheral blood of humans infected with Mtb, suggesting a crucial role in the immune response. The effects of Fpr1 and Fpr2 deletion on bacterial load, lung damage, and cellular inflammation were assessed in a murine TB model utilizing hypervirulent strain of Mtb from the W-Beijing lineage. While Fpr2 deletion had no impact on disease outcome, Fpr1-deficient mice demonstrated improved bacterial control, especially by macrophages. Bone marrow-derived macrophages from these Fpr1-/- mice exhibited an enhanced ability to contain bacterial growth over time. Contrarily, treating genetically susceptible mice with Fpr1-specific inhibitors caused impaired early bacterial control, corresponding with increased Mtb persistence in necrotic neutrophils. Furthermore, ex vivo assays revealed that Fpr1-/- neutrophils were unable to restrain Mtb growth, indicating a differential function of Fpr1 among myeloid cells. These findings highlight the distinct and complex roles of Fpr1 in myeloid cell-mediated immunity against Mtb infection, underscoring the need for further research into these mechanisms for a better understanding of TB immunity.
Collapse
Affiliation(s)
- Tanvir Noor Nafiz
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Poornima Sankar
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Lokesh K Mishra
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Robert P Rousseau
- Center for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa
| | - Mohd Saqib
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Suraj P Parihar
- Center for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa
| | - Bibhuti B Mishra
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
2
|
Ye C, Li P, Chen B, Mo Y, Huang Q, Li Q, Hou Q, Mo L, Yan J. Pan-cancer analysis and experimental validation of FPR3 as a prognostic and immune infiltration-related biomarker for glioma. Front Genet 2024; 15:1466617. [PMID: 39445161 PMCID: PMC11496095 DOI: 10.3389/fgene.2024.1466617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Formyl peptide receptor 3 (FPR3) is known to have implications in the progression of various cancer types. Despite this, its biological significance within pan-cancer datasets has yet to be investigated. In this investigation, we scrutinized FPR3's expression profiles, genetic alterations, prognostic significance, immune-related characteristics, methylation status, tumor mutation burden (TMB), and microsatellite instability (MSI) across different types of cancer. We utilized TISCH's single-cell data to identify immune cells closely associated with FPR3. The predictive significance of FPR3 was evaluated independently in gliomas using data from TCGA and CGGA datasets, leading to the development of a prognostic nomogram. Immunohistochemistry and Western blot analysis confirmed FPR3 expression in gliomas. Lastly, the CCK-8 and wound-healing assays were employed to assess the impact of FPR3 on the proliferation and metastasis of GBM cell lines. In numerous cancer types, heightened FPR3 expression correlated with adverse outcomes, immune cell infiltration, immune checkpoints, TMB, and MSI. In glioma, FPR3 emerged as a notable risk factor, with the prognostic model effectively forecasting patient results. The potential biological relevance of FPR3 was confirmed in glioma, and it was shown to have significant involvement in the processes of glioma growth, immune infiltration, and metastasis. Our results imply a potential association of FPR3 with tumor immunity, indicating its viability as a prognostic indicator in glioma.
Collapse
Affiliation(s)
- Chenglin Ye
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Peng Li
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Boxu Chen
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yong Mo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qianrong Huang
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qiuyun Li
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qinhan Hou
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ligen Mo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jun Yan
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
3
|
Zhou Q, Yan X, Guo Y, Jiang X, Cao T, Ke Y. Machine learning algorithms for predicting glioma patient prognosis based on CD163+FPR3+ macrophage signature. NPJ Precis Oncol 2024; 8:201. [PMID: 39271911 PMCID: PMC11399388 DOI: 10.1038/s41698-024-00692-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Tumor-associated macrophages (TAMs) play a vital role in glioma progression and are associated with poor outcomes in glioma patients. However, the specific roles of different subpopulations of TAMs remain poorly understood. Two distinct cell types, glioma and myeloid cells, were identified through single-cell sequencing analysis in gliomas. Within the TAMs-associated weighted gene co-expression network analysis (WGCNA) module, FPR3 emerged as a hub gene and was found to be expressed on CD163+ macrophages, while also being associated with clinical outcomes. Subsequently, a comprehensive assessment was undertaken to investigate the correlation between FPR3 expression and immune characteristics, revealing that FPR3 potentially plays a role in reshaping the glioma microenvironment. We identified a macrophage subset with the nonzero expression of CD163 and FPR3 (CD163+FPR3+). Using the expression profiles of CD163+FPR3+ macrophage-related signature, we employed ten machine learning algorithms to construct a prognostic model across six glioma cohorts. Subsequently, we employed an optimal algorithm to generate an artificial intelligence-driven prognostic signature specifically for CD163+FPR3+ macrophages. The development of this model was based on the average C-index observed in the aforementioned six cohorts. The risk score of this model consistently and effectively predicted overall survival, surpassing the accuracy of conventional clinical factors and 100 previously published signatures. Consequently, the CD163+FPR3+ macrophage-related score shows potential as a prognostic biomarker for glioma patients.
Collapse
Affiliation(s)
- Quanwei Zhou
- The National Key Clinical Specialty, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xuejun Yan
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.
| | - Youwei Guo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xingjun Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
| | - Tuo Cao
- Department of Clinical Laboratory, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China.
| | - Yiquan Ke
- The National Key Clinical Specialty, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Nafiz TN, Sankar P, Mishra LK, Rousseau RP, Saqib M, Subbian S, Parihar SP, Mishra BB. Differential requirement of Formyl Peptide Receptor 1 in macrophages and neutrophils in the host defense against Mycobacterium tuberculosis Infection. RESEARCH SQUARE 2024:rs.3.rs-4421561. [PMID: 38853986 PMCID: PMC11160921 DOI: 10.21203/rs.3.rs-4421561/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Formyl peptide receptors (FPR), part of the G-protein coupled receptor superfamily, are pivotal in directing phagocyte migration towards chemotactic signals from bacteria and host tissues. Although their roles in acute bacterial infections are well-documented, their involvement in immunity against tuberculosis (TB) remains unexplored. This study investigates the functions of Fpr1 and Fpr2 in defense against Mycobacterium tuberculosis (Mtb), the causative agent of TB. Elevated levels of Fpr1 and Fpr2 were found in the lungs of mice, rabbits and peripheral blood of humans infected with Mtb, suggesting a crucial role in the immune response. The effects of Fpr1 and Fpr2 deletion on bacterial load, lung damage, and cellular inflammation were assessed using a TB model of hypervirulent strain of Mtb from the W-Beijing lineage. While Fpr2 deletion showed no impact on disease outcome, Fpr1-deficient mice demonstrated improved bacterial control, especially by macrophages. Bone marrow-derived macrophages from these Fpr1 -/- mice exhibited an enhanced ability to contain bacterial growth over time. Contrarily, treating genetically susceptible mice with Fpr1-specific inhibitors caused impaired early bacterial control, corresponding with increased bacterial persistence in necrotic neutrophils. Furthermore, ex vivo assays revealed that Fpr1 -/- neutrophils were unable to restrain Mtb growth, indicating a differential function of Fpr1 among myeloid cells. These findings highlight the distinct and complex roles of Fpr1 in myeloid cell-mediated immunity against Mtb infection, underscoring the need for further research into these mechanisms for a better understanding of TB immunity.
Collapse
Affiliation(s)
- Tanvir Noor Nafiz
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Poornima Sankar
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Lokesh K Mishra
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Robert P. Rousseau
- Center for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Mohd Saqib
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Suraj P. Parihar
- Center for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Bibhuti B. Mishra
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| |
Collapse
|
5
|
Liu R, Liu J, Cao Q, Chu Y, Chi H, Zhang J, Fu J, Zhang T, Fan L, Liang C, Luo X, Yang X, Li B. Identification of crucial genes through WGCNA in the progression of gastric cancer. J Cancer 2024; 15:3284-3296. [PMID: 38817876 PMCID: PMC11134444 DOI: 10.7150/jca.95757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/11/2024] [Indexed: 06/01/2024] Open
Abstract
Background: To explore the hub gene closely related to the progression of gastric cancer (GC), so as to provide a theoretical basis for revealing the therapeutic mechanism of GC. Methods: The gene expression profile and clinical data of GSE15459 in Gene Expression Omnibus (GEO) database were downloaded. The weighted gene co-expression network analysis (WGCNA) was used to screen the key modules related to GC progression. Survival analysis was used to assess the influence of hub genes on patients' outcomes. CIBERSORT analysis was used to predict the tissue infiltrating immune cells in patients. Immunohistochemical staining was conducted to further verify the expression of hub genes. Results: Through WGCNA, a total of 26 co-expression modules were constructed, in which salmon module and royalblue module had strong correlation with GC progression. The results of enrichment analysis showed that genes in the two modules were mainly involved in toll-like receptor signaling pathway, cholesterol metabolism and neuroactive ligand-receptor interaction. Six hub genes (C1QA, C1QB, C1QC, FCER1G, FPR3 and TYROBP) related to GC progression were screened. Survival analysis showed overall survival in the high expression group was significantly lower than that in the low expression group. CIBERSORT analysis revealed that immune characteristics difference between patients in early stage and advanced stage. Immunohistochemical results confirmed that C1QB, FCER1G, FPR3 and TYROBP were significantly associated with disease progression in GC. Conclusion: Our study identified that C1QB, FCER1G, FPR3 and TYROBP played important roles in the progression of GC, and their specific mechanisms are worth further study.
Collapse
Affiliation(s)
- Rui Liu
- Vascular surgery Department, The Affiliated Hospital of Southwest Medical University, Lu Zhou, China
- Department of gastrointestinal surgery, Meishan People 's Hospital, Meishan, China
| | - Jie Liu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Sichuan, China
- Department of general surgery, Dazhou Central Hospital, Dazhou, China
| | - Qiang Cao
- School of Medicine, Macau University of Science and Technology, 999078, Macau, China
| | - Yanpeng Chu
- Department of general surgery, Dazhou Central Hospital, Dazhou, China
- Medical College, Sichuan University of Arts and Science, Dazhou, China
| | - Hao Chi
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Jun Zhang
- Department of general surgery, Dazhou Central Hospital, Dazhou, China
| | - Jiangping Fu
- Oncology department, Dazhou Central Hospital, Dazhou, China
| | - Tianchi Zhang
- Department of general surgery, Dazhou Central Hospital, Dazhou, China
| | - Linguang Fan
- Department of general surgery, Dazhou Central Hospital, Dazhou, China
| | - Chaozhong Liang
- Department of general surgery, Dazhou Central Hospital, Dazhou, China
| | - Xiufang Luo
- Geriatric department, Dazhou Central Hospital, Dazhou, China
| | - Xiaoli Yang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Bo Li
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| |
Collapse
|
6
|
Pu T, Jin Y, Tang C, Fu J, Zhang C, Su B, Cao A. An innovative predictive model for cervical cancer constructed around a gene profile associated with cholesterol metabolism. ENVIRONMENTAL TOXICOLOGY 2024; 39:1055-1071. [PMID: 37694961 DOI: 10.1002/tox.23969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023]
Abstract
Cholesterol metabolism is crucial for cell survival and cancer progression. The prognostic patterns of genes linked to cholesterol metabolism (CMAGs) in CESC, however, have received very little attention in research. From public databases, TCGA-CESC cohorts with mRNA expression patterns and the accompanying clinical information of patients were gathered. Consensus clustering was used to find the molecular subtype connected to cholesterol metabolism. In the TCGA-CESC cohort, a predictive risk model with 28 CMAGs was created using Lasso-Cox regression. The function enrichment analysis between groups with high-and low-risk were investigated by employing GO, KEGG, and GSVA software. The immune cell infiltration was analyzed using ESTIMATE, CIBERSORT, and MCPCOUNTER methods. Finally, we select 7 genes in risk model for further multivariate Cox analysis, and ultimately a hub gene, CHIT1, was identified. Meanwhile, the function of CHIT1 was preliminarily verified in cell and mice tumor model. In conclusion, the abundance of the CHIT1 gene might be beneficial for forecasting the prognosis of CESC, demonstrating that cholesterol metabolism could be a promising treatment target for CESC.
Collapse
Affiliation(s)
- Tengda Pu
- Department of Gynecology, Hainan Cancer Hospital, Haikou, China
| | - Ying Jin
- Department of Ultrasound, Hainan Cancer Hospital, Haikou, China
| | - Chuai Tang
- Department of Rehabilitation Therapeutics, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jingjing Fu
- Department of Gynecology, Hainan Cancer Hospital, Haikou, China
| | - Chengyuan Zhang
- Department of Gynecology, Hainan Cancer Hospital, Haikou, China
| | - Bingfeng Su
- Department of Gynecology, Hainan Cancer Hospital, Haikou, China
| | - Aie Cao
- Department of Gynecology, Hainan Cancer Hospital, Haikou, China
| |
Collapse
|
7
|
Park SJ, Greer PL, Lee N. From odor to oncology: non-canonical odorant receptors in cancer. Oncogene 2024; 43:304-318. [PMID: 38087050 DOI: 10.1038/s41388-023-02908-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 01/31/2024]
Abstract
Odorant receptors, traditionally associated with olfaction as chemoreceptors, have been increasingly recognized for their presence and diverse functions in various non-nasal tissues throughout the body. Beyond their roles in sensory perception, emerging evidence suggests a compelling interplay between odorant receptors and cancer progression as well. Alongside the canonical GPCR odorant receptors, dysregulation of non-canonical odorant receptors such as trace amine-associated receptors (TAARs), formyl peptide receptors (FPRs), and membrane-spanning 4A family (MS4As) has been observed in various cancer types, suggesting their contributions to cancer progression. The roles of these non-canonical chemoreceptors in cancer are complex, with some receptors promoting tumorigenesis and others acting as tumor-suppressing factors upon activation, depending on the cancer type. These findings shed light on the potential of non-canonical odorant receptors as therapeutic targets and prognostic markers in cancer, inviting further exploration to unravel their precise mechanisms of action and implications in cancer biology. In this review, we provide a comprehensive overview of the intricate relationships between these chemoreceptors and various types of cancer, potentially paving the way for innovative odor-based therapeutics. Ultimately, this review discusses the potential development of novel therapeutic strategies targeting these non-canonical chemoreceptors.
Collapse
Affiliation(s)
- Sung Jin Park
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Paul L Greer
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Namgyu Lee
- Department of Biomedical Science and Engineering, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
8
|
Miraki Feriz A, Bahraini F, Khosrojerdi A, Azarkar S, Sajjadi SM, HosseiniGol E, Honardoost MA, Saghafi S, Silvestris N, Leone P, Safarpour H, Racanelli V. Deciphering the immune landscape of head and neck squamous cell carcinoma: A single-cell transcriptomic analysis of regulatory T cell responses to PD-1 blockade therapy. PLoS One 2023; 18:e0295863. [PMID: 38096229 PMCID: PMC10721039 DOI: 10.1371/journal.pone.0295863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Immunotherapy is changing the Head and Neck Squamous Cell Carcinoma (HNSCC) landscape and improving outcomes for patients with recurrent or metastatic HNSCC. A deeper understanding of the tumor microenvironment (TME) is required in light of the limitations of patients' responses to immunotherapy. Here, we aimed to examine how Nivolumab affects infiltrating Tregs in the HNSCC TME. We used single-cell RNA sequencing data from eight tissues isolated from four HNSCC donors before and after Nivolumab treatment. Interestingly, the study found that Treg counts and suppressive activity increased following Nivolumab therapy. We also discovered that changes in the CD44-SSP1 axis, NKG2C/D-HLA-E axis, and KRAS signaling may have contributed to the increase in Treg numbers. Furthermore, our study suggests that decreasing the activity of the KRAS and Notch signaling pathways, and increasing FOXP3, CTLA-4, LAG-3, and GZMA expression, may be mechanisms that enhance the killing and suppressive capacity of Tregs. Additionally, the result of pseudo-temporal analysis of the HNSCC TME indicated that after Nivolumab therapy, the expression of certain inhibitory immune checkpoints including TIGIT, ENTPD1, and CD276 and LY9, were decreased in Tregs, while LAG-3 showed an increased expression level. The study also found that Tregs had a dense communication network with cluster two, and that certain ligand-receptor pairs, including SPP1/CD44, HLA-E/KLRC2, HLA-E/KLRK1, ANXA1/FPR3, and CXCL9/FCGR2A, had notable changes after the therapy. These changes in gene expression and cell interactions may have implications for the role of Tregs in the TME and in response to Nivolumab therapy.
Collapse
Affiliation(s)
- Adib Miraki Feriz
- Student Research Committee, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Fatemeh Bahraini
- Student Research Committee, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | | | - Setareh Azarkar
- Student Research Committee, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | | | - Edris HosseiniGol
- Department of Computer Engineering, University of Birjand, Birjand, Iran
| | - Mohammad Amin Honardoost
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Samira Saghafi
- Cellular and Molecular Research Center (CMRC), BUMS, Birjand, Iran
- Department of Internal Medicine, School of Medicine, BUMS, Birjand, Iran
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, Messina, Italy
| | - Patrizia Leone
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | | | - Vito Racanelli
- Centre for Medical Sciences (CISMed), University of Trento and Internal Medicine Division, Santa Chiara Hospital, Provincial Health Care Agency (APSS), Trento, Italy
| |
Collapse
|
9
|
Hautz T, Salcher S, Fodor M, Sturm G, Ebner S, Mair A, Trebo M, Untergasser G, Sopper S, Cardini B, Martowicz A, Hofmann J, Daum S, Kalb M, Resch T, Krendl F, Weissenbacher A, Otarashvili G, Obrist P, Zelger B, Öfner D, Trajanoski Z, Troppmair J, Oberhuber R, Pircher A, Wolf D, Schneeberger S. Immune cell dynamics deconvoluted by single-cell RNA sequencing in normothermic machine perfusion of the liver. Nat Commun 2023; 14:2285. [PMID: 37085477 PMCID: PMC10121614 DOI: 10.1038/s41467-023-37674-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/27/2023] [Indexed: 04/23/2023] Open
Abstract
Normothermic machine perfusion (NMP) has emerged as an innovative organ preservation technique. Developing an understanding for the donor organ immune cell composition and its dynamic changes during NMP is essential. We aimed for a comprehensive characterization of immune cell (sub)populations, cell trafficking and cytokine release during liver NMP. Single-cell transcriptome profiling of human donor livers prior to, during NMP and after transplantation shows an abundance of CXC chemokine receptor 1+/2+ (CXCR1+/CXCR2+) neutrophils, which significantly decreased during NMP. This is paralleled by a large efflux of passenger leukocytes with neutrophil predominance in the perfusate. During NMP, neutrophils shift from a pro-inflammatory state towards an aged/chronically activated/exhausted phenotype, while anti-inflammatory/tolerogenic monocytes/macrophages are increased. We herein describe the dynamics of the immune cell repertoire, phenotypic immune cell shifts and a dominance of neutrophils during liver NMP, which potentially contribute to the inflammatory response. Our findings may serve as resource to initiate future immune-interventional studies.
Collapse
Affiliation(s)
- T Hautz
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - S Salcher
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - M Fodor
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - G Sturm
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - S Ebner
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - A Mair
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - M Trebo
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - G Untergasser
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
- Tyrolpath Obrist Brunhuber GmbH, Zams, Austria
| | - S Sopper
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - B Cardini
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - A Martowicz
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
- Tyrolpath Obrist Brunhuber GmbH, Zams, Austria
| | - J Hofmann
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - S Daum
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - M Kalb
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - T Resch
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - F Krendl
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - A Weissenbacher
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - G Otarashvili
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - P Obrist
- Tyrolpath Obrist Brunhuber GmbH, Zams, Austria
| | - B Zelger
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - D Öfner
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - Z Trajanoski
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - J Troppmair
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - R Oberhuber
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - A Pircher
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - D Wolf
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria.
| | - S Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
10
|
Identification of molecular subtypes and a novel prognostic model of diffuse large B-cell lymphoma based on a metabolism-associated gene signature. J Transl Med 2022; 20:186. [PMID: 35468826 PMCID: PMC9036805 DOI: 10.1186/s12967-022-03393-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022] Open
Abstract
Background Diffuse large B cell lymphoma (DLBCL) is the most common lymphoma in adults. Metabolic reprogramming in tumors is closely related to the immune microenvironment. This study aimed to explore the interactions between metabolism-associated genes (MAGs) and DLBCL prognosis and their potential associations with the immune microenvironment. Methods Gene expression and clinical data on DLBCL patients were obtained from the GEO database. Metabolism-associated molecular subtypes were identified by consensus clustering. A prognostic risk model containing 14 MAGs was established using Lasso-Cox regression in the GEO training cohort. It was then validated in the GEO internal testing cohort and TCGA external validation cohort. GO, KEGG and GSVA were used to explore the differences in enriched pathways between high- and low-risk groups. ESTIMATE, CIBERSORT, and ssGSEA analyses were used to assess the immune microenvironment. Finally, WGCNA analysis was used to identify two hub genes among the 14 model MAGs, and they were preliminarily verified in our tissue microarray (TMA) using multiple fluorescence immunohistochemistry (mIHC). Results Consensus clustering divided DLBCL patients into two metabolic subtypes with significant differences in prognosis and the immune microenvironment. Poor prognosis was associated with an immunosuppressive microenvironment. A prognostic risk model was constructed based on 14 MAGs and it was used to classify the patients into two risk groups; the high-risk group had poorer prognosis and an immunosuppressive microenvironment characterized by low immune score, low immune status, high abundance of immunosuppressive cells, and high expression of immune checkpoints. Cox regression, ROC curve analysis, and a nomogram indicated that the risk model was an independent prognostic factor and had a better prognostic value than the International Prognostic Index (IPI) score. The risk model underwent multiple validations and the verification of the two hub genes in TMA indicated consistent results with the bioinformatics analyses. Conclusions The molecular subtypes and a risk model based on MAGs proposed in our study are both promising prognostic classifications in DLBCL, which may provide novel insights for developing accurate targeted cancer therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03393-9.
Collapse
|
11
|
Hu Y, Liu S, Liu W, Zhang Z, Liu Y, Sun D, Zhang M, Fang J. Bioinformatics analysis of genes related to iron death in diabetic nephropathy through network and pathway levels based approaches. PLoS One 2021; 16:e0259436. [PMID: 34735495 PMCID: PMC8568295 DOI: 10.1371/journal.pone.0259436] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/20/2021] [Indexed: 12/16/2022] Open
Abstract
Diabetic nephropathy is one of the common microvascular complications of diabetes. Iron death is a recently reported way of cell death. To explore the effects of iron death on diabetic nephropathy, iron death score of diabetic nephropathy was analyzed based on the network and pathway levels. Furthermore, markers related to iron death were screened. Using RNA-seq data of diabetic nephropathy, samples were clustered uniformly and the disease was classified. Differentially expressed gene analysis was conducted on the typed disease samples, and the WGCNA algorithm was used to obtain key modules. String database was used to perform protein interaction analysis on key module genes for the selection of Hub genes. Moreover, principal component analysis method was applied to get transcription factors and non-coding genes, which interact with the Hub gene. All samples can be divided into two categories and principal component analysis shows that the two categories are significantly different. Hub genes (FPR3, C3AR1, CD14, ITGB2, RAC2 and ITGAM) related to iron death in diabetic nephropathy were obtained through gene expression differential analysis between different subtypes. Non-coding genes that interact with Hub genes, including hsa-miR-572, hsa-miR-29a-3p, hsa-miR-29b-3p, hsa-miR-208a-3p, hsa-miR-153-3p and hsa-miR-29c-3p, may be related to diabetic nephropathy. Transcription factors HIF1α, KLF4, KLF5, RUNX1, SP1, VDR and WT1 may be related to diabetic nephropathy. The above factors and Hub genes are collectively involved in the occurrence and development of diabetic nephropathy, which can be further studied in the future. Moreover, these factors and genes may be potential target for therapeutic drugs.
Collapse
Affiliation(s)
- Yaling Hu
- Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Nephrology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shuang Liu
- Department of Urology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wenyuan Liu
- Department of Nephrology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ziyuan Zhang
- Department of Nephrology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yuxiang Liu
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Dalin Sun
- Department of Nephrology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Mingyu Zhang
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jingai Fang
- Department of Nephrology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- * E-mail:
| |
Collapse
|
12
|
Ye Z, Zou S, Niu Z, Xu Z, Hu Y. A Novel Risk Model Based on Lipid Metabolism-Associated Genes Predicts Prognosis and Indicates Immune Microenvironment in Breast Cancer. Front Cell Dev Biol 2021; 9:691676. [PMID: 34195202 PMCID: PMC8236894 DOI: 10.3389/fcell.2021.691676] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/07/2021] [Indexed: 02/05/2023] Open
Abstract
Background Breast cancer (BRCA) is the most common tumor in women, and lipid metabolism involvement has been demonstrated in its tumorigenesis and development. However, the role of lipid metabolism-associated genes (LMAGs) in the immune microenvironment and prognosis of BRCA remains unclear. Methods A total of 1076 patients with BRCA were extracted from The Cancer Genome Atlas database and randomly assigned to the training cohort (n = 760) or validation cohort (n = 316). Kaplan–Meier analysis was used to assess differences in survival. Consensus clustering was performed to categorize the patients with BRCA into subtypes. Using multivariate Cox regression analysis, an LMAG-based prognostic risk model was constructed from the training cohort and validated using the validation cohort. The immune microenvironment was evaluated using the ESTIMATE and tumor immune estimation resource algorithms, CIBERSORT, and single sample gene set enrichment analyses. Results Consensus clustering classified the patients with BRCA into two subgroups with significantly different overall survival rates and immune microenvironments. Better prognosis was associated with high immune infiltration. The prognostic risk model, based on four LMAGs (MED10, PLA2G2D, CYP4F11, and GPS2), successfully stratified the patients into high- and low-risk groups in both the training and validation sets. High risk scores predicted poor prognosis and indicated low immune status. Subgroup analysis suggested that the risk model was an independent predictor of prognosis in BRCA. Conclusion This study demonstrated, for the first time, that LMAG expression plays a crucial role in BRCA. The LMAG-based risk model successfully predicted the prognosis and indicated the immune microenvironment of patients with BRCA. Our study may provide inspiration for further research on BRCA pathomechanisms.
Collapse
Affiliation(s)
- Zhimin Ye
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, China.,Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Shengmei Zou
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiyuan Niu
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, China.,Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Yongbin Hu
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, China.,Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Wang Y, Zhong Q, Li Z, Lin Z, Chen H, Wang P. Integrated Profiling Identifies CCNA2 as a Potential Biomarker of Immunotherapy in Breast Cancer. Onco Targets Ther 2021; 14:2433-2448. [PMID: 33859479 PMCID: PMC8043851 DOI: 10.2147/ott.s296373] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/26/2021] [Indexed: 12/24/2022] Open
Abstract
Introduction Breast cancer is the main reason for cancer-related deaths in women and the most common malignant cancer among women. In recent years, immunosuppressive factors have become a new type of treatment for cancer. However, there are no effective biomarkers for breast cancer immunotherapy. Therefore, exploring immune-related biomarkers is presently an important topic in breast cancer. Methods Gene expression profile data of breast cancer from The Cancer Genome Atlas (TCGA) was downloaded. Scale-free gene co-expression networks were built with weighted gene co-expression network analysis. The correlation of genes was performed with Pearson’s correlation values. The potential associations between clinical features and gene sets were studied, and the hub genes were screened out. Gene Ontology and gene set enrichment analysis were used to reveal the function of hub gene in breast cancer. The gene expression profiles of GSE15852, downloaded from the Gene Expression Omnibus database, were used for hub gene verification. In addition, candidate biomarkers expression in breast cancer was studied. Survival analysis was performed using Log rank test and Kaplan–Meier. Immunohistochemistry was used to analyze the expression of CCNA2. Results A total of 6 modules related to immune cell infiltration were identified via the average linkage hierarchical clustering. According to the threshold criteria (module membership >0.9 and gene significance >0.35), a significant module consisting of 13 genes associated with immune cells infiltration were identified as candidate hub genes after performed with the human protein interaction network. And 3 genes with high correlation to clinical traits were identified as hub genes, which were negatively associated with the overall survival. Among them, the expression of CCNA2 was increased in metastatic breast cancer compare with non-metastatic breast cancer, who underwent immunotherapy. Immunohistochemistry results showed that CCNA2 expression in carcinoma tissues was elevated compared with normal control. Discussion CCNA2 identified as a potential immune therapy marker in breast cancer, which were first reported here and deserved further research.
Collapse
Affiliation(s)
- Yichao Wang
- Department of Clinical Laboratory Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, 318000, People's Republic of China
| | - Qianyi Zhong
- Department of Clinical Laboratory Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, 318000, People's Republic of China
| | - Zhaoyun Li
- Department of Clinical Laboratory Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, 318000, People's Republic of China
| | - Zhu Lin
- Department of Ultrasound, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, 318000, People's Republic of China
| | - Hanjun Chen
- Department of Clinical Laboratory Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, 318000, People's Republic of China
| | - Pan Wang
- Department of Clinical Laboratory Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, 318000, People's Republic of China
| |
Collapse
|