1
|
Huang Z, Chen L, Xiao L, Ye Y, Mo W, Zheng Z, Li X. Monascus-fermented quinoa alleviates hyperlipidemia in mice by regulating the amino acid metabolism pathway. Food Funct 2024; 15:9210-9223. [PMID: 39158509 DOI: 10.1039/d4fo00930d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Monascus has the ability to produce secondary metabolites, such as monacolin K (MK), known for its physiological functions, including lipid-lowering effects. Widely utilized in industries such as health food and medicine, MK is a significant compound derived from Monascus. Quinoa, recognized by the Food and Agriculture Organization of the United Nations as "the only plant food that can meet human basic nutritional needs by itself", possesses dual advantages of high nutritional value and medicinal food homology. This study employed animal experiments to investigate the hypolipidemic activity of Monascus-fermented quinoa (MFQ) and explored the molecular mechanism underlying the lipid-lowering effect of MFQ on hyperlipidemic mice through transcriptomic and metabolomic analyses. The results demonstrated that high-dose MFQ intervention (1600 mg kg-1 d-1) effectively decreased weight gain in hyperlipidemic mice without significant changes in cardiac index, renal index, or spleen index. Moreover, hepatic steatosis in mice was significantly improved. Serum levels of total cholesterol, triglycerides, and low-density lipoprotein cholesterol were markedly reduced, demonstrating that the lipid-lowering effect of MFQ was comparable to the drug control lovastatin. Conversely, both low-dose MFQ (400 mg kg-1 d-1) and unfermented quinoa exhibited no significant lipid-lowering effect. Integrated analysis of the transcriptome and metabolome suggested that MFQ may regulate amino acid levels in hyperlipidemic mice by influencing metabolic pathways such as phenylalanine, tyrosine, and tryptophan metabolism. This regulation alleviates hyperlipidemia induced by a high-fat diet, resulting in a significant reduction in blood lipid levels in mice.
Collapse
Affiliation(s)
- Zhiwei Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lichen Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lishi Xiao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanfang Ye
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenlan Mo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenghuai Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiangyou Li
- Fujian Pinghuhong Biological Technology Co., Ltd, Ningde 352256, China
| |
Collapse
|
2
|
Gao W, Chen X, Wu S, Jin L, Chen X, Mao G, Wan X, Xing W. Monascus red pigments alleviate high-fat and high-sugar diet-induced NAFLD in mice by modulating the gut microbiota and metabolites. Food Sci Nutr 2024; 12:5762-5775. [PMID: 39139961 PMCID: PMC11317676 DOI: 10.1002/fsn3.4208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/21/2024] [Accepted: 04/27/2024] [Indexed: 08/15/2024] Open
Abstract
Monascus red pigments (MRP) may have benefits against NAFLD with an unclear mechanism. This study aimed to explore the protective effect of MRP supplementation against NAFLD through regulation of gut microbiota and metabolites. The C57BL/6 mice animals were randomly allocated into the normal diet (NC), HFHS diet-induced NAFLD model, and MRP intervention group fed with HFHS diet. Serum lipid profiles and liver function parameters were measured. Liver and colon histopathology analysis was conducted to determine the injury in the liver and colon. 16S rRNA gene sequencing was employed to analyze gut microbial composition from fecal samples. Untargeted metabonomics was performed to analyze changes in metabolites in serum and fecal samples. MRP supplementation significantly improved the HFHS-induced alterations in body weight, lipid profiles, and liver function (p < .01). MRP supplementation decreased the abundance of Akkermansia, Candidatus saccharimonas, Dubosiella, and Oscillibacter, while increasing Lactobacillus, Lachnospiraceae NK4A136 group, and Rikenella in mice fed the HFHS diet. Furthermore, MRP supplementation improved the serum and fecal metabolic profiles induced by the HFHS diet, primarily involving the arachidonic acid metabolism, unsaturated fatty acid biosynthesis, and adipocyte lipolysis pathways. Liver function and lipid profiles were closely associated with the abundance of Lactobacillus, Streptococcus, Oscillibacter, Akkemansia, and Desulfovibrio (p < .01). These findings revealed that MRP supplementation may help restore gut microbiota composition and balance its metabolites, thereby improving NAFLD. This study presents a novel outlook on the potential benefits of MRP supplementation in ameliorating NAFLD and supports the application of MRP as a new functional food.
Collapse
Affiliation(s)
- Wenyan Gao
- School of PharmacyHangzhou Medical CollegeHangzhouChina
| | - Xinghao Chen
- School of PharmacyHangzhou Medical CollegeHangzhouChina
| | - Shaokang Wu
- Department of PharmacyQingdao Sixth People's HospitalQingdaoChina
| | - Lu Jin
- School of PharmacyHangzhou Medical CollegeHangzhouChina
| | - Xu Chen
- School of PharmacyHangzhou Medical CollegeHangzhouChina
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of GeriatricsZhejiang HospitalHangzhouChina
| | - Xiaoqing Wan
- Zhejiang Provincial Key Lab of GeriatricsZhejiang HospitalHangzhouChina
| | - Wenmin Xing
- Zhejiang Provincial Key Lab of GeriatricsZhejiang HospitalHangzhouChina
| |
Collapse
|
3
|
Zhou Y, Bai F, Xiao R, Chen M, Sun Y, Ye J. Proteomics and Its Combined Analysis with Transcriptomics: Liver Fat-Lowering Effect of Taurine in High-Fat Fed Grouper ( Epinephelus coioides). Animals (Basel) 2024; 14:2039. [PMID: 39061501 PMCID: PMC11274106 DOI: 10.3390/ani14142039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
In order to understand the intervention effect of taurine on liver fat deposition induced by high fat intake in the orange-spotted grouper (Epinephelus coioides), we performed proteomic analysis and association analysis with previously obtained transcriptomic data. Three isoproteic (47% crude protein) diets were designed to contain two levels of fat and were named as the 10% fat diet (10F), 15% fat diet (15F), and 15% fat with 1% taurine (15FT). The 10F diet was used as the control diet. After 8 weeks of feeding, the 15F diet exhibited comparable weight gain, feed conversion ratio, and hepatosomatic index as the 10F diet, but the former increased liver fat content vs. the latter. Feeding with the 15FT diet resulted in an improvement in weight gain and a reduction in feed conversion ratio, hepatosomatic index, and liver fat content compared with feeding the 15F diet. When comparing liver proteomic data between the 15F and 15FT groups, a total of 133 differentially expressed proteins (DEPs) were identified, of which 51 were upregulated DEPs and 82 were downregulated DEPs. Among these DEPs, cholesterol 27-hydroxylase, phosphatidate phosphatase LPIN, phosphatidylinositol phospholipase C, and 6-phosphofructo-2-kinase were further screened out and were involved in primary bile acid biosynthesis, glycerolipid metabolism, the phosphatidylinositol signaling system, and the AMPK signaling pathway as key DEPs in terms of alleviating liver fat deposition of taurine in high-fat fed fish. With the association analysis of transcriptomic and proteomic data through KEGG, three differentially expressed genes (atp1a, arf1_2, and plcd) and four DEPs (CYP27α1, LPIN, PLCD, and PTK2B) were co-enriched into five pathways related to fat metabolism including primary bile acid synthesis, bile secretion, glycerolipid metabolism, phospholipid D signaling, or/and phosphatidylinositol signaling. The results showed that dietary taurine intervention could trigger activation of bile acid biosynthesis and inhibition of triglyceride biosynthesis, thereby mediating the liver fat-lowering effects in high-fat fed orange-spotted grouper. The present study contributes some novel insight into the liver fat-lowering effects of dietary taurine in high-fat fed groupers.
Collapse
Affiliation(s)
| | | | | | | | | | - Jidan Ye
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College of Jimei University, Xiamen 361021, China; (Y.Z.); (F.B.); (R.X.); (M.C.); (Y.S.)
| |
Collapse
|
4
|
Ren C, Hong B, Zhang S, Yuan D, Feng J, Shan S, Zhang J, Guan L, Zhu L, Lu S. Autoclaving-treated germinated brown rice relieves hyperlipidemia by modulating gut microbiota in humans. Front Nutr 2024; 11:1403200. [PMID: 38826585 PMCID: PMC11140153 DOI: 10.3389/fnut.2024.1403200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/30/2024] [Indexed: 06/04/2024] Open
Abstract
Introduction Germinated brown rice is a functional food with a promising potential for alleviating metabolic diseases. This study aimed to explore the hypolipidemic effects of autoclaving-treated germinated brown rice (AGBR) and the underlying mechanisms involving gut microbiota. Methods Dietary intervention with AGBR or polished rice (PR) was implemented in patients with hyperlipidemia for 3 months, and blood lipids were analyzed. Nutritional characteristics of AGBR and PR were measured and compared. Additionally, 16S rDNA sequencing was performed to reveal the differences in gut microbiota between the AGBR and PR groups. Results AGBR relieves hyperlipidemia in patients, as evidenced by reduced levels of triglycerides, total cholesterol, low-density lipoprotein cholesterol, and apolipoprotein-B, and elevated levels of high-density lipoprotein cholesterol and apolipoprotein-A1. In terms of nutrition, AGBR had significantly higher concentrations of free amino acids (10/16 species), γ-aminobutyric acid, resistant starch, soluble dietary fiber, and flavonoids (11/13 species) than PR. In addition, higher microbial abundance, diversity, and uniformity were observed in the AGBR group than in the PR group. At the phylum level, AGBR reduced Firmicutes, Proteobacteria, Desulfobacterota, and Synergistota, and elevated Bacteroidota and Verrucomicrobiota. At the genus level, AGBR elevated Bacteroides, Faecalibacterium, Dialister, Prevotella, and Bifidobacterium, and reduced Escherichia-Shigella, Blautia, Romboutsia, and Turicibacter. Discussion AGBR contributes to the remission of hyperlipidemia by modulating the gut microbiota.
Collapse
Affiliation(s)
- Chuanying Ren
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin, China
| | - Bin Hong
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Shan Zhang
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Di Yuan
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Junran Feng
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Shan Shan
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Jingyi Zhang
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Lijun Guan
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Ling Zhu
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Shuwen Lu
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
5
|
Wang X, Li L, Ding C, Li Z, Ding W, Liu H, Wang N, Wang C, Guo Q. Disruption of UDP-galactopyranose mutase expression: A novel strategy for regulation of galactomannan biosynthesis and monascus pigments secretion in Monascus purpureus M9. Int J Biol Macromol 2024; 259:129369. [PMID: 38218271 DOI: 10.1016/j.ijbiomac.2024.129369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/13/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
The impact of the cell wall structure of Monascus purpureus M9 on the secretion of extracellular monascus pigments (exMPs) was investigated. To modify the cell wall structure, UDP-galactopyranose mutase (GlfA) was knocked out using Agrobacterium-mediated transformation method, leading to a significant reduction in the Galf-based polysaccharide within the cell wall. Changes in mycelium morphology, sporogenesis, and the expression of relevant genes in M9 were also observed following the mutation. Regarding MPs secretion, a notable increase was observed in six types of exMPs (R1, R2, Y1, Y2, O1 and O2). Specifically, these exMPs exhibited enhancement of 1.33, 1.59, 0.8, 2.45, 2.89 and 4.03 times, respectively, compared to the wild-type strain. These findings suggest that the alteration of the cell wall structure could selectively influence the secretion of MPs in M9. The underlying mechanisms were also discussed. This research contributes new insights into the regulation of the synthesis and secretion of MPs in Monascus spp..
Collapse
Affiliation(s)
- Xufeng Wang
- State Key Laboratory of Food Nutrition and Safety, School of Food Science and Engineering, Tianjin University of Science & Technology, No.9, 13th Street, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, China
| | - Li Li
- State Key Laboratory of Food Nutrition and Safety, School of Food Science and Engineering, Tianjin University of Science & Technology, No.9, 13th Street, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, China
| | - Chengfang Ding
- State Key Laboratory of Food Nutrition and Safety, School of Food Science and Engineering, Tianjin University of Science & Technology, No.9, 13th Street, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, China
| | - Zhenjing Li
- State Key Laboratory of Food Nutrition and Safety, School of Food Science and Engineering, Tianjin University of Science & Technology, No.9, 13th Street, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, China
| | - Wentao Ding
- State Key Laboratory of Food Nutrition and Safety, School of Food Science and Engineering, Tianjin University of Science & Technology, No.9, 13th Street, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, China
| | - Huanhuan Liu
- State Key Laboratory of Food Nutrition and Safety, School of Food Science and Engineering, Tianjin University of Science & Technology, No.9, 13th Street, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, China
| | - Nifei Wang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Changlu Wang
- State Key Laboratory of Food Nutrition and Safety, School of Food Science and Engineering, Tianjin University of Science & Technology, No.9, 13th Street, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, China.
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, School of Food Science and Engineering, Tianjin University of Science & Technology, No.9, 13th Street, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, China.
| |
Collapse
|
6
|
Wu M, Wang Q, Zhang H, Pan Z, Zeng Q, Fang W, Mao J, Li J, Wu H, Qiu Z. Performance and mechanism of co-culture of Monascus purpureus, Lacticaseibacillus casei, and Saccharomyces cerevisiae to enhance lovastatin production and lipid-lowering effects. Bioprocess Biosyst Eng 2023; 46:1411-1426. [PMID: 37688635 DOI: 10.1007/s00449-023-02903-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/04/2023] [Indexed: 09/11/2023]
Abstract
To facilitate lipid-lowering effects, a lovastatin-producing microbial co-culture system (LPMCS) was constituted with a novel strain Monascus purpureus R5 in combination with Lacticaseibacillus casei S5 and Saccharomyces cerevisiae J7, which increased lovastatin production by 54.21% compared with the single strain R5. Response Surface Methodology (RSM) optimization indicated lovastatin yield peaked at 7.43 mg/g with a fermentation time of 13.88 d, water content of 50.5%, and inoculum ratio of 10.27%. Meanwhile, lovastatin in LPMCS co-fermentation extracts (LFE) was qualitatively and quantitatively analyzed by Thin-Layer Chromatography (TLC) and High-Performance Liquid Chromatography (HPLC). Cellular experiments demonstrated that LFE exhibited no obvious cytotoxicity to L-02 cells and exhibited excellent biosafety. Most notably, high-dose LFE (100 mg/L) exhibited the highest reduction of lipid accumulation, total cholesterol, and triglycerides simultaneously in oleic acid-induced L-02 cells, which decreased by 71.59%, 38.64%, and 58.85% than untreated cells, respectively. Overall, LPMCS provides a potential approach to upgrade the lipid-lowering activity of Monascus-fermented products with higher health-beneficial effects.
Collapse
Affiliation(s)
- Minghui Wu
- School of Life Science and Engineering, Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, Southwest Jiaotong University, No. 111 Second Ring Road, Chengdu, 610031, Sichuan, People's Republic of China
| | - Qiqi Wang
- School of Life Science and Engineering, Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, Southwest Jiaotong University, No. 111 Second Ring Road, Chengdu, 610031, Sichuan, People's Republic of China
| | - Han Zhang
- School of Life Science and Engineering, Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, Southwest Jiaotong University, No. 111 Second Ring Road, Chengdu, 610031, Sichuan, People's Republic of China
| | - Zhengyong Pan
- School of Life Science and Engineering, Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, Southwest Jiaotong University, No. 111 Second Ring Road, Chengdu, 610031, Sichuan, People's Republic of China
| | - Qilu Zeng
- School of Life Science and Engineering, Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, Southwest Jiaotong University, No. 111 Second Ring Road, Chengdu, 610031, Sichuan, People's Republic of China
| | - Weizhen Fang
- Analysis & Testing Center, Southwest Jiaotong University, Chengdu, 610031, Sichuan, People's Republic of China
| | - Jilong Mao
- School of Life Science and Engineering, Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, Southwest Jiaotong University, No. 111 Second Ring Road, Chengdu, 610031, Sichuan, People's Republic of China
- Chengdu Nuohe Shengtai Biotechnology Co., Ltd, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jianpeng Li
- School of Life Science and Engineering, Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, Southwest Jiaotong University, No. 111 Second Ring Road, Chengdu, 610031, Sichuan, People's Republic of China
| | - Han Wu
- School of Life Science and Engineering, Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, Southwest Jiaotong University, No. 111 Second Ring Road, Chengdu, 610031, Sichuan, People's Republic of China
| | - Zhongping Qiu
- School of Life Science and Engineering, Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, Southwest Jiaotong University, No. 111 Second Ring Road, Chengdu, 610031, Sichuan, People's Republic of China.
| |
Collapse
|
7
|
Wang YH, Zhang SS, Li HT, Zhi HW, Wu HY. Rhabdomyolysis-induced acute kidney injury after administration of a red yeast rice supplement: A case report. World J Clin Cases 2023; 11:5547-5553. [PMID: 37637685 PMCID: PMC10450378 DOI: 10.12998/wjcc.v11.i23.5547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/17/2023] [Accepted: 07/17/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND A few reports have revealed induction of rhabdomyolysis by a red yeast rice (RYR) supplement or by RYR in combination with abiraterone (an androgen biosynthesis inhibitor). CASE SUMMARY A 76-year-old man presented with progressive limb weakness, muscle soreness, and acute kidney injury (AKI). He had been taking the anti-prostate cancer drug abiraterone for 14 mo and had added a RYR supplement 3 mo before symptom onset. After being diagnosed with rhabdomyolysis-induced AKI, the patient discontinued these drugs and responded well to hemodialysis and hemoperfusion. After 23 d of treatment, creatine kinase levels returned to normal and serum creatinine levels decreased. CONCLUSION We speculate that statins, the main lipid-lowering component of RYR, or a combination of statins and abiraterone, will increase the risk of rhabdomyolysis.
Collapse
Affiliation(s)
- Ya-Han Wang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong Province, China
| | - Si-Shuo Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong Province, China
| | - Hai-Tao Li
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong Province, China
| | - Hong-Wei Zhi
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong Province, China
| | - Hong-Yun Wu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong Province, China
| |
Collapse
|
8
|
Chen C, Chen W, Ding H, Zhang G, Xie K, Zhang T. Integrated Metabolomic and Transcriptomic Analysis Reveals Potential Gut-Liver Crosstalks in the Lipogenesis of Chicken. Animals (Basel) 2023; 13:ani13101659. [PMID: 37238090 DOI: 10.3390/ani13101659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Growing evidence has shown the involvement of the gut-liver axis in lipogenesis and fat deposition. However, how the gut crosstalk with the liver and the potential role of gut-liver crosstalk in the lipogenesis of chicken remains largely unknown. In this study, to identify gut-liver crosstalks involved in regulating the lipogenesis of chicken, we first established an HFD-induced obese chicken model. Using this model, we detected the changes in the metabolic profiles of the cecum and liver in response to the HFD-induced excessive lipogenesis using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis. The changes in the gene expression profiles of the liver were examined by RNA sequencing. The potential gut-liver crosstalks were identified by the correlation analysis of key metabolites and genes. The results showed that a total of 113 and 73 differentially abundant metabolites (DAMs) between NFD and HFD groups were identified in the chicken cecum and liver, respectively. Eleven DAMs overlayed between the two comparisons, in which ten DAMs showed consistent abundance trends in the cecum and liver after HFD feeding, suggesting their potential as signaling molecules between the gut and liver. RNA sequencing identified 271 differentially expressed genes (DEGs) in the liver of chickens fed with NFD vs. HFD. Thirty-five DEGs were involved in the lipid metabolic process, which might be candidate genes regulating the lipogenesis of chicken. Correlation analysis indicated that 5-hydroxyisourate, alpha-linolenic acid, bovinic acid, linoleic acid, and trans-2-octenoic acid might be transported from gut to liver, and thereby up-regulate the expression of ACSS2, PCSK9, and CYP2C18 and down-regulate one or more genes of CDS1, ST8SIA6, LOC415787, MOGAT1, PLIN1, LOC423719, and EDN2 in the liver to enhance the lipogenesis of chicken. Moreover, taurocholic acid might be transported from the gut to the liver and contribute to HFD-induced lipogenesis by regulating the expression of ACACA, FASN, AACS, and LPL in the liver. Our findings contribute to a better understanding of gut-liver crosstalks and their potential roles in regulating chicken lipogenesis.
Collapse
Affiliation(s)
- Can Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Weilin Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Hao Ding
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
9
|
Ding X, Liu Z, Liu Y, Xu B, Chen J, Pu J, Wu D, Yu H, Jin C, Wang X. Comprehensive evaluation of the mechanism of Gastrodia elata Blume in ameliorating cerebral ischemia-reperfusion injury based on integrating fecal metabonomics and 16S rDNA sequencing. Front Cell Infect Microbiol 2022; 12:1026627. [PMID: 36389137 PMCID: PMC9648199 DOI: 10.3389/fcimb.2022.1026627] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/22/2022] [Indexed: 01/24/2023] Open
Abstract
Gastrodia elata Blume was used to treat stroke and headaches caused by "Feng" for thousands of years. The present study has shown a significant effect of G. elata Blume in improving cerebral ischemia-reperfusion injury (CIRI). However, the mechanism of G. elata Blume in improving CIRI by regulating the intestinal flora has not been reported until now. This research aimed to comprehensively evaluate the mechanism of G. elata Blume in CIRI based on fecal metabolomics and 16S rDNA sequencing. The rat model with CIRI was created based on the Zea Longa method. Enzyme-linked immunosorbent assay (ELISA) was used to monitor the inflammatory factors in rat serum. Damages of brain tissues were observed using hematoxylin and eosin (H&E) staining. Cerebral infarction was observed by 2,3,5-triphenyltetrazolium chloride (TTC) staining. The balance of intestinal flora in cecal contents of rats was evaluated by high-throughput sequencing. Changes of metabolites in the intestinal flora were evaluated by fecal metabolomics through Ultra high performance liquid chromatography-orbitrap exploris-mass spectrometer (UHPLC-OE-MS). The area of brain necrosis, cerebral infarction volume, and the contents of inflammatory factors in CIRI rats can be effectively reduced after oral administration of G. elata Blume. CIRI can cause disturbances in the intestinal flora and its associated metabolites. G. elata Blume can significantly regulate the composition of the intestinal microflora. It reversed CIRI-induced changes in the levels of multiple intestinal bacteria, including Prevotellaceae, Coriobacteriaceae; Prevotella, Gamma proteobacteria unclassified, Barnesiella, Escherichia, Shigella; uncultured Shigella sp., Flavonifractor sp., Escherichia sp. enrichment culture clone NBAR004, Veillonella sp. R-32, and Lactobacillus intestinalis. The levels of metabolites in cecal contents were disturbed in rats with CIRI, including amino acid, purine, and sphingolipid metabolism. The changes in the level of biomarkers in amino acid metabolism induced by CIRI were significantly reversed after treatment with G. elata Blume. Correlation studies show that Prevotellaceae was significantly positively correlated with interleukin (IL)-6, and L. intestinalis and L-phenylalanine were negatively interrelated to IL-1β. Beta-glycerophosphoric acid was significantly negatively interrelated to high-sensitivity C-reactive protein (hs-CRP). There were significantly negative correlations between L-phenylalanine and L. intestinalis, beta-glycerophosphoric acid and Prevotellaceae. G. elata Blume protected against CIRI, which may be related to improved intestinal microflora composition and metabolism, resulting in decreased inflammation.
Collapse
Affiliation(s)
- Ximeng Ding
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China,Heritage Base of Traditional Chinese Medicine (TCM) Processing Technology of National Administration of Traditional Chinese Medicine (NATCM), Anhui University of Chinese Medicine, Hefei, China,Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department Anhui University of Chinese Medicine (ACUM), Hefei, China
| | - Zilu Liu
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China,Heritage Base of Traditional Chinese Medicine (TCM) Processing Technology of National Administration of Traditional Chinese Medicine (NATCM), Anhui University of Chinese Medicine, Hefei, China,Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department Anhui University of Chinese Medicine (ACUM), Hefei, China
| | - Yi Liu
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China,Heritage Base of Traditional Chinese Medicine (TCM) Processing Technology of National Administration of Traditional Chinese Medicine (NATCM), Anhui University of Chinese Medicine, Hefei, China,Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department Anhui University of Chinese Medicine (ACUM), Hefei, China
| | - Baiyang Xu
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China,Heritage Base of Traditional Chinese Medicine (TCM) Processing Technology of National Administration of Traditional Chinese Medicine (NATCM), Anhui University of Chinese Medicine, Hefei, China,Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department Anhui University of Chinese Medicine (ACUM), Hefei, China
| | - Juan Chen
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department Anhui University of Chinese Medicine (ACUM), Hefei, China
| | - Jingzhe Pu
- Anhui Institute for Food and Drug Control, Hefei, China
| | - Deling Wu
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Hao Yu
- College of Traditional Chinese Medicine, BoZhou University, Bozhou, China
| | - Chuanshan Jin
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China,Heritage Base of Traditional Chinese Medicine (TCM) Processing Technology of National Administration of Traditional Chinese Medicine (NATCM), Anhui University of Chinese Medicine, Hefei, China,Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department Anhui University of Chinese Medicine (ACUM), Hefei, China,Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Bozhou, China,*Correspondence: Chuanshan Jin, ; Xiaoli Wang,
| | - Xiaoli Wang
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China,Heritage Base of Traditional Chinese Medicine (TCM) Processing Technology of National Administration of Traditional Chinese Medicine (NATCM), Anhui University of Chinese Medicine, Hefei, China,Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department Anhui University of Chinese Medicine (ACUM), Hefei, China,Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Bozhou, China,*Correspondence: Chuanshan Jin, ; Xiaoli Wang,
| |
Collapse
|
10
|
Farawahida AH, Palmer J, Flint S. Monascus spp. and citrinin: Identification, selection of Monascus spp. isolates, occurrence, detection and reduction of citrinin during the fermentation of red fermented rice. Int J Food Microbiol 2022; 379:109829. [PMID: 35863149 DOI: 10.1016/j.ijfoodmicro.2022.109829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/18/2022] [Accepted: 07/02/2022] [Indexed: 10/17/2022]
Abstract
Red fermented rice (RFR) is rice fermented using Monascus spp. This product contains monacolin K, providing health benefits including mitigation of diarrhoea and improving blood circulation. RFR can produce pigments that can act as natural colour and flavouring agents. However, Monascus spp. (a fungal starter to ferment RFR) can also produce the mycotoxin, citrinin (CIT) which is believed to have adverse effects on human health. CIT in RFR has been reported worldwide by using different methods of detection. This review focuses on the production of RFR by solid-state fermentation (SSF) and submerged fermentation (SmF), the occurrence of CIT in RFR, CIT quantification, the factors affecting the growth of Monascus spp., pigments and CIT production in RFR, and possible methods to reduce CIT in RFR. This review will help the food industries, researchers, and consumers understand the risk of consuming RFR, and the possibility of controlling CIT in RFR.
Collapse
Affiliation(s)
- Abdul Halim Farawahida
- School of Food and Advanced Technology, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
| | - Jon Palmer
- School of Food and Advanced Technology, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Steve Flint
- School of Food and Advanced Technology, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| |
Collapse
|
11
|
Zhu CQ, Wei Q, Hu WJ, Kong YL, Xiang XJ, Zhang H, Cao XC, Zhu LF, Liu J, Tian WH, Jin QY, Zhang JH. Unearthing the alleviatory mechanisms of hydrogen sulfide in aluminum toxicity in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 182:133-144. [PMID: 35490639 DOI: 10.1016/j.plaphy.2022.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Hydrogen sulfide (H2S) improves aluminum (Al) resistance in rice, however, the underlying mechanism remains unclear. In the present study, treatment with 30-μM Al significantly inhibited rice root growth and increased the total Al content, apoplastic and cytoplasm Al concentration in the rice roots. However, pretreatment with NaHS (H2S donor) reversed these negative effects. Pretreatment with NaHS significantly increased energy production under Al toxicity conditions, such as by increasing the content of ATP and nonstructural carbohydrates. In addition, NaHS stimulated the AsA-GSH cycle to decrease the peroxidation damage induced by Al toxicity. Pretreatment with NaHS significantly inhibited ethylene emissions in the rice and then inhibited pectin synthesis and increased the pectin methylation degree to reduce cell wall Al deposition. The phytohormones indole-3-acetic and brassinolide were also involved in the alleviation of Al toxicity by H2S. The transcriptome results further confirmed that H2S alleviates Al toxicity by increasing the pathways relating to material and energy metabolism, redox reactions, cell wall components, and signal transduction. These findings improve our understanding of how H2S affects rice responses to Al toxicity, which will facilitate further studies on crop safety.
Collapse
Affiliation(s)
- Chun Quan Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - QianQian Wei
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China; Anhui University, Hefei, Anhui Province, China
| | - Wen Jun Hu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, 310021, China
| | - Ya Li Kong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | | | - Hui Zhang
- Agricultural Resources and Environment Institute, Jiangsu Academy of Agricultural Sciences, 210014, Jiangsu, PR China
| | - Xiao Chuang Cao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Lian Feng Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jia Liu
- Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi Province, China
| | - Wen Hao Tian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Qian Yu Jin
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jun Hua Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
| |
Collapse
|
12
|
Zhao Q, Liu Z, Zhu Y, Wang H, Dai Z, Yang X, Ren X, Xue Y, Shen Q. Cooked Adzuki Bean Reduces High-Fat Diet-Induced Body Weight Gain, Ameliorates Inflammation, and Modulates Intestinal Homeostasis in Mice. Front Nutr 2022; 9:918696. [PMID: 35782919 PMCID: PMC9241564 DOI: 10.3389/fnut.2022.918696] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
Adzuki bean is widely consumed in East Asia. Although the positive effects of its biologically active ingredients on obesity have been confirmed, the role of whole cooked adzuki bean in preventing obesity and the relationship between the effects and gut microbiota remain unclear. Mice were fed either a low-fat diet (LFD) or high-fat diet (HFD) with or without 15% cooked adzuki bean for 12 weeks. Cooked adzuki bean significantly inhibited weight gain and hepatic steatosis, reduced high levels of serum triacylglycerol (TG), alanine aminotransferase (ALT), and aspartate aminotransferase (AST), and alleviated systemic inflammation and metabolic endotoxemia in mice fed a HFD. Importantly, cooked adzuki bean regulated gut microbiota composition, decreased the abundance of lipopolysaccharide (LPS)-producing bacteria (Desulfovibrionaceae,Helicobacter,and Bilophila), and HFD-dependent taxa (Deferribacteraceae, Ruminiclostridium_9, Ruminiclostridium, Mucispirillum, Oscillibacter, Enterorhabdus, Tyzzerella, Anaerotruncus, Intestinimonas, unclassified_f_Ruminococcaceae, Ruminiclostridium_5, and Ruminococcaceae), and enriched Muribaculaceae, norank_f_Muribaculaceae, Anaeroplasma, Lachnospiraceae_NK4A136_group, and Lachnospiraceae to alleviate inflammation and metabolic disorders induced by HFD. These findings provide new evidence for understanding the anti-obesity effect of cooked adzuki bean.
Collapse
Affiliation(s)
- Qingyu Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Zhenyu Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Yiqing Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Han Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Zijian Dai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Xuehao Yang
- Cofco Nutrition and Health Research Institute Co., LTD., Beijing, China
| | - Xin Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Yong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
- *Correspondence: Qun Shen,
| |
Collapse
|
13
|
Zhang X, Gérard P. Diet-gut microbiota interactions on cardiovascular disease. Comput Struct Biotechnol J 2022; 20:1528-1540. [PMID: 35422966 PMCID: PMC8983311 DOI: 10.1016/j.csbj.2022.03.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/23/2022] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVD) are a group of disorders of the heart and blood vessels and remain the leading cause of morbidity and mortality worldwide. Over the past decades, accumulating studies indicated that the gut microbiota, an indispensable "invisible organ", plays a vital role in human metabolism and disease states including CVD. Among many endogenous and exogenous factors that can impact gut microbial communities, the dietary nutrients emerge as an essential component of host-microbiota relationships that can be involved in CVD susceptibility. In this review, we summarize the major concepts of dietary modulation of the gut microbiota and the chief principles of the involvement of this microbiota in CVD development. We also discuss the mechanisms of diet-microbiota crosstalk that regulate CVD progression, including endotoxemia, inflammation, gut barrier dysfunction and lipid metabolism dysfunction. In addition, we describe how metabolites produced by the microbiota, including trimethylamine-N-oxide (TMAO), secondary bile acids (BAs), short chain fatty acids (SCFAs) as well as aromatic amino acids (AAAs) derived metabolites play a role in CVD pathogenesis. Finally, we present the potential dietary interventions which interacted with gut microbiota as novel preventive and therapeutic strategies for CVD management.
Collapse
Affiliation(s)
- Xufei Zhang
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Philippe Gérard
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
14
|
Fan X, Han J, Zhang F, Chen W. Red yeast rice: a functional food used to reduce hyperlipidemia. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2043894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Xiangcheng Fan
- Department of Pharmacy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
| | - Jun Han
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Zhang
- Department of Pharmacy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
| |
Collapse
|
15
|
Callejón-Leblic B, Selma-Royo M, Collado MC, Gómez-Ariza JL, Abril N, García-Barrera T. Untargeted Gut Metabolomics to Delve the Interplay between Selenium Supplementation and Gut Microbiota. J Proteome Res 2021; 21:758-767. [PMID: 34734730 PMCID: PMC8902802 DOI: 10.1021/acs.jproteome.1c00411] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Selenium (Se) is an essential trace element with important health roles due to the antioxidant properties of selenoproteins. To analyze the interplay between Se and gut microbiota, gut metabolomic profiles were determined in conventional (C) and microbiota depleted mice (Abx) after Se-supplementation (Abx-Se) by untargeted metabolomics, using an analytical multiplatform based on GC-MS and UHPLC-QTOF-MS (MassIVE ID MSV000087829). Gut microbiota profiling was performed by 16S rRNA gene amplicon sequencing. Significant differences in the levels of about 70% of the gut metabolites determined, including fatty acyls, glycerolipids, glycerophospholipids, and steroids, were found in Abx-Se compared to Abx, and only 30% were different between Abx-Se and C, suggesting an important effect of Se-supplementation on Abx mice metabolism. At genus level, the correlation analysis showed strong associations between metabolites and gut bacterial profiles. Likewise, higher abundance of Lactobacillus spp., a potentially beneficial genus enriched after Se-supplementation, was associated with higher levels of prenol lipids, phosphatidylglycerols (C-Se), steroids and diterpenoids (Abx-Se), and also with lower levels of fatty acids (Abx-Se). Thus, we observed a crucial interaction between Se intake-microbiota-metabolites, although further studies to clarify the specific mechanisms are needed. This is the first study about untargeted gut metabolomics after microbiota depletion and Se-supplementation.
Collapse
Affiliation(s)
- Belén Callejón-Leblic
- Research Center of Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, Campus El Carmen, University of Huelva, Fuerzas Armadas Avenue, 21007 Huelva, Spain
| | - Marta Selma-Royo
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Department of Biotechnology, Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - María Carmen Collado
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Department of Biotechnology, Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - José Luis Gómez-Ariza
- Research Center of Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, Campus El Carmen, University of Huelva, Fuerzas Armadas Avenue, 21007 Huelva, Spain
| | - Nieves Abril
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Edificio Severo Ochoa, 14071 Córdoba, Spain
| | - Tamara García-Barrera
- Research Center of Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, Campus El Carmen, University of Huelva, Fuerzas Armadas Avenue, 21007 Huelva, Spain
| |
Collapse
|