1
|
Ma H, Huang L, Guo L, Chen S, Liu J, Liu C, Dou Y, Sun X, He L, Ma G. Identification and management of a novel Danshen leaf anthracnose caused by Colletotrichum karstii in Salvia miltiorrhiza Bunge in China. FRONTIERS IN PLANT SCIENCE 2025; 16:1526038. [PMID: 39967818 PMCID: PMC11832477 DOI: 10.3389/fpls.2025.1526038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025]
Abstract
Danshen (Salvia miltiorrhiza Bunge), a member of the genus Salvia within the Lamiaceae family, holds significant economic and medicinal value. Regrettably, the emergence of a novel leaf anthracnose in 2020 has significantly impacted its cultivation, leading to decreased yield and compromised quality. This newly identified pathogen was meticulously isolated from affected leaves, employing meticulous single conidia isolation techniques. Subsequent confirmation of pathogenicity was achieved through strict adherence of Koch's postulates. To ensure precise identification, morphological characteristics were supplemented with tandem sequence analysis targeting the rDNA internal transcribed spacer (ITS), β-tubulin (TUB), and histone (His3) regions. Combining molecular biology techniques with morphological observation and Koch's postulates, the pathogen was conclusively identified as Colletotrichum karstii. Further investigations focused on understanding the environmental factors influencing the mycelial growth and sporulation of the pathogen. The optimum temperature for the growth of C.karstii is 25°C, the suitable light conditions are 12h light/12h dark or 24h dark, and the suitable pH is 5 to 9. Utilizing BIOLOG phenotypic analysis technique, the metabolic utilization of carbon and nitrogen sources by the pathogen was assessed across different temperatures (20°C, 25°C, and 30°C). Results indicated the highest utilization rates at 25°C, particularly for arbutin and L-tryptophan. Lastly, the efficacy of 15 chemical fungicides and six botanical fungiticide against C. karstii was evaluated in vitro, revealing fluazinam as the most potent inhibitor against mycelial growth with EC50 of 0.0725 mg/mL for mycelium and 0.0378 mg/mL for spore germination, respectively. The 1 % osthole emulsion in water was found to have the strongest inhibitory effect on the growth of mycelium, with an EC50 value of 4.8984 µg/mL. Spore germination was most strongly inhibited by the 80 % ethylicin EC, which had an EC50 value of 0.5541 µg/mL. This study represents the first documentation of C. karstii as a causative agent of anthrax in Danshen, underscoring the significance of these findings for agricultural management and disease control strategies.
Collapse
Affiliation(s)
- Haoyue Ma
- College of Plant Protection, Southwest University, Chongqing, China
- Dezhou Academy of Agricultural Sciences, Shandong, China
| | - Liguo Huang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Lulu Guo
- College of Plant Protection, Southwest University, Chongqing, China
- Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Shan Chen
- College of Plant Protection, Southwest University, Chongqing, China
| | - Jiale Liu
- College of Plant Protection, Southwest University, Chongqing, China
| | - Changyun Liu
- College of Plant Protection, Southwest University, Chongqing, China
| | - Yanxia Dou
- College of Plant Protection, Southwest University, Chongqing, China
| | - Xianchao Sun
- College of Plant Protection, Southwest University, Chongqing, China
| | - Lin He
- College of Plant Protection, Southwest University, Chongqing, China
| | - Guanhua Ma
- College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Cheng D, Sheng S, Hu J, Cai S, Liu Y, Gan R, Zhu Z, Ge L, Chen W, Cheng X. Ershen Zhenwu Decoction suppresses myocardial fibrosis of chronic heart failure with heart-kidney Yang deficiency by down-regulating the Ras Homolog Gene Family Member A/Rho-Associated Coiled-Coil Kinases signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119146. [PMID: 39580131 DOI: 10.1016/j.jep.2024.119146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
ETHNOPHARMACOLOGICAL SIGNIFICANCE The therapeutic efficacy of Ershen Zhenwu Decoction (ESZWD)-a famous formulation from Xin'an for patients with chronic heart failure heart-kidney Yang deficiency (CHF-HKYD)-is well established. Still, the underlying molecular mechanism is not clear. AIM OF THE STUDY This study investigated mechanisms by which ESZWD suppresses cardiac pathology, including myocardial fibrosis, in CHF-HKYD model rats and Ang II-stimulated cardiac fibroblasts (CFs). MATERIALS AND METHODS The components in ESZWD were analyzed by ultra-high-performance liquid chromatography coupled with Quadrupole Time-Of-Flight mass spectrometry (UHPLC-Q-TOF-MS). CHF-HKYD model was established in the male Sprague-Dawley rats through bilateral thyroidectomy and intraperitoneal administration of 0.02% doxorubicin (DOX), twice weekly for 3 weeks. Subsequently, the CHF-HKYD model rats were randomly categorized into the Model, ESZWD-L (3.96 g/kg/d ESZWD), ESZWD-M (7.92 g/kg/d ESZWD), ESZWD-H (15.84 g/kg/d ESZWD), and Sac/Val (68 mg/kg/d sacubitril/valsartan) groups and treated daily for 4 weeks. As a control, the sham surgery group (Sham) was used. Primary cardiac fibroblasts (CFs) were categorized into Control, Model, ESZWD, and Sac/Val groups. Then, the CFs were stimulated with Ang-II. The ESZWD and Sac/Val groups were incubated with different concentrations of drug-containing sera and their effects on CF viability were assessed via the CCK-8 assay. The ESZWD and Sac/Val groups received drug-containing serum concentrations determined by CCK-8 assay results. The cardioprotective effects of ESZWD were determined using echocardiography, Hematoxylin & Eosin (H&E) staining, Masson staining, and Sirius red staining, and the Enzyme Linked Immunosorbent Assay (ELISA). ESZWD's effects on the Ras Homolog Gene Family Member A (RhoA)/Rho-Associated Coiled-Coil Kinases (ROCKs) signaling pathway and myocardial fibrosis were assessed by Western blotting and Quantitative Real-Time PCR (qRT-PCR) analyses. Immunofluorescence was used to observe fibrotic markers in CFs. RESULTS ESZWD treatment improved cardiac function in the CHF-HKYD rats by significantly reducing myocardial fibrosis and ventricular remodeling. ESZWD treatment increased the rats' body temperature (Tb) and 24-h urine volume, left ventricular ejection fraction (LVEF) and LV fractional shortening (LVFS), and decreased LV internal systolic diameter (LVIDs), LV internal diastolic diameter (LVIDd), and heart weight/body weight (HW/BW) compared to the Model group. In comparison to the model rats, ESZWD treatment decreased serum levels of B-type natriuretic peptide precursor (NT-proBNP), tumor necrosis factor-alpha (TNF-α), interleukin-11 (IL-11), and IL-17A. ESZWD treatment significantly down-regulated the protein and mRNA expression levels of collagen I A1, α-SMA, RhoA, ROCK1, and ROCK2 in the heart tissues of the CHF-HKYD rats and the Ang II-stimulated CFs. CONCLUSION ESZWD significantly improved cardiac function and attenuated myocardial fibrosis and inflammation in the CHF-HKYD rats by inhibiting the RhoA/ROCKs signaling pathway.
Collapse
Affiliation(s)
- Dan Cheng
- First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China; Shuguang Hospital Affiliated with Shanghai University of Chinese Medicine, Anhui Hospital, Hefei, China; Xin'an Key Laboratory of Medical Science, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Sheng Sheng
- Shuguang Hospital Affiliated with Shanghai University of Chinese Medicine, Anhui Hospital, Hefei, China; Xin'an Key Laboratory of Medical Science, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Hu
- First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China; Xin'an Key Laboratory of Medical Science, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Shanshan Cai
- First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China; Xin'an Key Laboratory of Medical Science, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Yan Liu
- First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China; Xin'an Key Laboratory of Medical Science, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Ruixi Gan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zhenpeng Zhu
- First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China; Xin'an Key Laboratory of Medical Science, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Lan Ge
- First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China; Xin'an Key Laboratory of Medical Science, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China.
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.
| | - Xiaoyu Cheng
- First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China; Xin'an Key Laboratory of Medical Science, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
3
|
Wang L, Wang S, Dai X, Yue G, Yin J, Xu T, Shi H, Liu T, Jia Z, Brömme D, Zhang S, Zhang D. Salvia miltiorrhiza in osteoporosis: a review of its phytochemistry, traditional clinical uses and preclinical studies (2014-2024). Front Pharmacol 2024; 15:1483431. [PMID: 39421672 PMCID: PMC11484006 DOI: 10.3389/fphar.2024.1483431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
Osteoporosis becomes a global public health concern due to its rising prevalence and substantial impact on life quality. Salvia miltiorrhiza Bunge (Salviae Miltiorrhizae Radix et Rhizoma, SM) has been firstly recorded in Shen Nong's Herbal Classic, and is frequently prescribed in conjunction with other herbs for the management of osteoporosis. This systematic review aims to comprehensively analyze the recent advances of SM on osteoporosis in traditional Chinese clinical uses and preclinical investigations. Literature encompassing pertinent studies were systematically retrieved across multiple databases, including the PubMed, Web of Science, Chinese National Knowledge Infrastructure, Chinese VIP Database, and Chinese Biomedical Literature Database. Original investigations spanning from February 2014 to March 2024, including traditional Chinese medicine (TCM) clinical trials and preclinical studies, were employed to analyze the effects and actions of SM on osteoporosis. Thirty-eight TCM clinical trials were identified to employ SM in combination with other herbs for the management of primary and secondary osteoporosis. The overall efficacy was between 77% and 96.67%. Forty preclinical studies were identified to investigate the effects and actions of SM and/or its ingredients on osteoporosis. The anti-osteoporosis actions of this herb may be attributed to inhibit osteoclastogenesis/bone resorption and promote osteoblastogenesis/osteogenesis. The ethanol extracts and its ingredients (tanshinones) inhibit osteoclastogenesis/bone resorption by inhibiting the MAPK/NF-κB/NFATc1 signaling pathway and cathepsin K-induced collagen degradation. Both ethanol extracts (tanshinones) and water extracts (Sal B and tanshinol) contribute to osteoblastogenesis by promoting osteogenesis and angiogenesis via activation of the Wnt/β-catenin/VEGF and ERK/TAZ pathways, and eliminating ROS production targeting Nrf2/ARE/HO-1 pathway. In conclusions, SM may offer a novel strategy for osteoporosis management. Well-designed clinical trials are still needed to evaluate the actions of this herb and its ingredients on bone remodeling.
Collapse
Affiliation(s)
- Lili Wang
- Department of TCM Pharmacology, Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing, China
| | - Shan Wang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xuan Dai
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Gaiyue Yue
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jiyuan Yin
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tianshu Xu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hanfen Shi
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tianyuan Liu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhanhong Jia
- Department of TCM Pharmacology, Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing, China
| | - Dieter Brömme
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, Canada
| | - Shuofeng Zhang
- Department of TCM Pharmacology, Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing, China
| | - Dongwei Zhang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Hou M, Gao D, Chen W, Jiang W, Yu D, Li X. UHPLC-QTOF-MS-Based Targeted Metabolomics Provides Novel Insights into the Accumulative Mechanism of Soil Types on the Bioactive Components of Salvia miltiorrhiza. Molecules 2024; 29:4016. [PMID: 39274864 PMCID: PMC11396046 DOI: 10.3390/molecules29174016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
The root of Salvia miltiorrhiza Bunge (SMB) has been widely used to treat cardiovascular diseases. However, the contents of secondary metabolites in the roots from different production areas are significantly different, and the impact of soil factors on this accumulation remains unclear. Therefore, this study aimed to elucidate the regularity of variation between the active components and soil factors through targeted metabolomics and chemical dosimetry. Soils were collected from five different cities (A, B, C, D, and E) and transplanted into the study area. The results showed that there were significant differences in the soil fertility characteristics and heavy metal pollution levels in different soils. Ten water- and twelve lipid-soluble metabolites were identified in SMBs grown in all soil types. SMBs from D cities exhibited the highest total tanshinone content (p < 0.05). The salvianolic acid B content in SMBs from E cities was the highest (p < 0.05). Interestingly, correlation analysis revealed a significant negative correlation between the accumulation of lipid-soluble and water-soluble metabolites. Double-matrix correlation analysis demonstrated that available potassium (AK) was significantly negatively correlated with salvianolic acid B (r = -0.80, p = 0.0004) and positively correlated with tanshinone IIA (r = 0.66, p = 0.008). Conversely, cadmium (Cd) and cuprum (Cu) were significantly positively and negatively correlated with salvianolic acid B (r = 0.96, p < 0.0001 and r = 0.72, p = 0.0024) and tanshinone IIA (r = 0.40, p = 0.14 and r = 0.73, p = 0.0018), respectively. Mantel's test indicated that AK (r > 0.52, p < 0.001), Cu (r > 0.60, p < 0.005), and Cd (r > 0.31, p < 0.05) were the primary drivers of the differences in the active components of SMBs. These findings provide a theoretical framework for modulating targeted metabolites of SMB through soil factors, with significant implications for the cultivation and quality control of medicinal plants.
Collapse
Affiliation(s)
- Mengmeng Hou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- College of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Dan Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Weixu Chen
- China Shangyao Huayu (Linyi) Traditional Chinese Medicine Resources Co., Ltd., Linyi 273300, China
| | - Wenjun Jiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dade Yu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiwen Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
5
|
Xing Z, Bi G, Li T, Zhang Q, Knight PR. Effect of Harvest Time on Growth and Bioactive Compounds in Salvia miltiorrhiza. PLANTS (BASEL, SWITZERLAND) 2024; 13:1788. [PMID: 38999628 PMCID: PMC11243644 DOI: 10.3390/plants13131788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024]
Abstract
Danshen (Salvia miltiorrhiza) is a perennial medicinal plant belonging to the Lamiaceae family. It is adapted to a wide range of soil pH with the potential to serve as an alternative crop in the United States. To enhance its cultivation and economic viability, it is crucial to develop production practices that maximize bioactive compound yields for danshen. The objective of this study was to investigate the effects of different harvest times on plant growth and subsequent yields of bioactive components of danshen. Three harvest times were selected (60, 120, or 180 days after transplanting [DAT]). In general, plants harvested at 180 DAT had higher plant growth index (PGI), shoot number, shoot weight, root number, maximum root length, maximum root diameter, and root weight compared to plants harvested at 60 or 120 DAT. However, plants harvested at 60 or 120 DAT had higher SPAD (Soil Plant Analysis Development) values. Plants harvested at 120 or 180 DAT had a higher content of tanshinone I, tanshinone IIA, cryptotanshinone, and salvianolic acid B compared to those harvested at 60 DAT. This study provides insights for optimizing the time of harvest of danshen to maximize plant growth and bioactive compound production.
Collapse
Affiliation(s)
- Zhiheng Xing
- Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - Guihong Bi
- Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - Tongyin Li
- Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - Qianwen Zhang
- Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - Patricia R Knight
- Coastal Research and Extension Center, Mississippi State University, Poplarville, MS 39470, USA
| |
Collapse
|
6
|
Ryu DH, Cho JY, Yu HS, Kim JW, Kim JC, Son YJ, Nho CW, Hamayun M, Kim HY. Salvia miltiorrhiza bunge extracts: a promising source for anti-atopic dermatitis activity. BMC Complement Med Ther 2024; 24:217. [PMID: 38844985 PMCID: PMC11155122 DOI: 10.1186/s12906-024-04524-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic inflammatory condition characterized by the accumulation of reactive oxygen species and the expression of inflammatory factors. Regarding its anti-atopic activity, numerous traditional medicinal materials and secondary metabolic products play pivotal roles in modulating the associated mechanisms. METHODS This study aimed to utilize Salvia miltiorrhiza Bunge (SMB) as an anti-AD source. In-vitro activity assessments and qualitative and quantitative analyses using UPLC-TQ-MS/MS and HPLC-DAD were conducted in two cultivars ('Dasan' and 'Kosan'). Statistical analysis indicated that the profiles of their secondary metabolites contribute significantly to their pharmacological properties. Consequently, bio-guided fractionation was undertaken to figure out the distinct roles of the secondary metabolites present in SMB. RESULTS Comparative study of two cultivars indicated that 'Dasan', having higher salvianolic acid A and B, exhibited stronger antioxidant and anti-inflammatory activities. Meanwhile, 'Kosan', containing higher tanshinones, showed higher alleviating activities on anti-AD related genes in mRNA levels. Additionally, performed bio-guided fractionation re-confirmed that the hydrophilic compounds of SMB can prevent AD by inhibiting accumulation of ROS and suppressing inflammatory factors and the lipophilic components can directly inhibit AD. CONCLUSIONS SMB was revealed as a good source for anti-AD activity. Several bioactive compounds were identified from the UPLC-TQ-MS/MS and different compounds content was linked to biological activities. Characterization of these compounds may be helpful to understand differential role of secondary metabolites from SMB on alleviation of AD.
Collapse
Affiliation(s)
- Da Hye Ryu
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon, 25451, Republic of Korea
| | - Jwa Yeong Cho
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon, 25451, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Hyung-Seok Yu
- Natural Product Informatics Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea
| | - Jin-Woo Kim
- Natural Product Informatics Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin-Chul Kim
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
- Natural Product Informatics Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea
| | - Yang-Ju Son
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Chu Won Nho
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon, 25451, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University Mardan, Garden Campus, Khyber Pakhtunkhwa, 23200, Pakistan
| | - Ho-Youn Kim
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon, 25451, Republic of Korea.
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
7
|
Xu Z, Cai K, Su SL, Zhu Y, Liu F, Duan JA. Salvianolic acid B and tanshinone IIA synergistically improve early diabetic nephropathy through regulating PI3K/Akt/NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117356. [PMID: 37890803 DOI: 10.1016/j.jep.2023.117356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/10/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic nephropathy (DN) is one of the most common and serious complications of diabetes, which lacks effective treatment. Salviae Miltiorrhizae Radix Et Rhizoma is one of the key compatible traditional Chinese medicine in the prescription for the treatment of DN. Salvianolic acid B and tanshinone IIA are two monomer active components with high content and clear structure in Salvia miltiorrhiza, which can effectively improve early (DN), respectively. AIM OF THE STUDY To evaluate the compatible effect of salvianolic acid B and tanshinone IIA on early DN rats and elucidate the mechanism. METHODS Early DN rats were induced by streptozotocin combined with high glucose and high fat diet, and intervened by salvianolic acid B, tanshinone IIA and their combinations. The pathological sections of kidney, liver and biochemical indexes were analyzed. Network pharmacology method was used to predict the possible mechanism. The mechanisms were elucidated by metabolomics, Elisa, and Western blot. RESULTS Given our analysis, salvianolic acid B and tanshinone IIA can synergistically regulate 24 h UTP, Urea and Scr and improve kidney damage in early DN rats. The metabolic abnormalities of early DN rats were improved by regulating the biosynthesis of saturated fatty acids, glycerol phospholipid metabolism, steroid biosynthesis, alanine, and arachidonic acid. Salvianolic acid B combined with tanshinone IIA at a mass ratio of 13.4:1 can significantly reduce kidney inflammation, up-regulate p-PI3K/PI3K and p-Akt/Akt and down-regulate p-NF-κB/NF-κB, which better than the single-used group and can be reversed by PI3K inhibitor LY294002. CONCLUSION Salvianolic acid B and tanshinone IIA can synergistically improve glucose and lipid disorders, liver and kidney damage, and resist kidney inflammation in early DN rats, and the mechanism may be related to regulating PI3K/Akt/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zhuo Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ke Cai
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shu-Lan Su
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yue Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Feng Liu
- Shaanxi Institute of International Trade and Commerce, Xianyang, 710061, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
8
|
Cai L, Chen Y, Xue H, Yang Y, Wang Y, Xu J, Zhu C, He L, Xiao Y. Effect and pharmacological mechanism of Salvia miltiorrhiza and its characteristic extracts on diabetic nephropathy. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117354. [PMID: 38380573 DOI: 10.1016/j.jep.2023.117354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/08/2023] [Accepted: 10/23/2023] [Indexed: 02/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic nephropathy (DN) is a severe diabetic microvascular complication with an increasing prevalence rate and lack of effective treatment. Traditional Chinese medicine has been proven to have favorable efficacy on DN, especially Salvia miltiorrhiza Bunge (SM), one of the most critical and conventional herbs in the treatment. Over the past decades, studies have demonstrated that SM is a potential treatment for DN, and the exploration of the underlying mechanism has also received much attention. AIM OF THIS REVIEW This review aims to systematically study the efficacy and pharmacological mechanism of SM in the treatment of DN to understand its therapeutic potential more comprehensively. MATERIALS AND METHODS Relevant information was sourced from Google Scholar, PubMed, Web of Science, and CNKI databases. RESULTS Several clinical trials and systematic reviews have indicated that SM has definite benefits on the kidneys of diabetic patients. And many laboratory studies have further revealed that SM and its characteristic extracts, mainly including salvianolic acids and tanshinones, can exhibit pharmacological activity against DN by the regulation of metabolism, renal hemodynamic, oxidative stress, inflammation, fibrosis, autophagy, et cetera, and several involved signaling pathways, thereby preventing various renal cells from abnormal changes in DN, including endothelial cells, podocytes, epithelial cells, and mesangial cells. CONCLUSION As a potential drug for the treatment of DN, SM has multi-component, multi-target, and multi-pathway pharmacological effects. This work will not only verify the satisfactory curative effect of SM in the treatment of DN but also provide helpful insights for the development of new anti-DN drugs and the application of traditional Chinese medicine.
Collapse
Affiliation(s)
- Luqi Cai
- The First Clinical Medical School, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Yu Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Huizhong Xue
- The First Clinical Medical School, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Yimeng Yang
- The First Clinical Medical School, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Yuqi Wang
- The First Clinical Medical School, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Junhe Xu
- The First Clinical Medical School, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Chunyan Zhu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Long He
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Yonghua Xiao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
9
|
Zhang Z, Song Y, Zhang X, Wang S, Jia Z, Wang L, Wang C, Wang X, Mao J. Optimized new Shengmai powder ameliorates myocardial fibrosis in rats with heart failure by inhibition of the MAPK signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117210. [PMID: 37739104 DOI: 10.1016/j.jep.2023.117210] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/10/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Optimized New Shengmai Powder (ONSMP) is a traditional Chinese medicine (TCM) formula for heart failure treatment. MAPK signaling pathway is the key driver of myocardial fibrosis in heart failure. However, the mechanism of ONSMP on myocardial fibrosis and MAPK signaling pathway remains unclear. AIM OF THE STUDY To evaluate the effect of ONSMP against myocardial fibrosis in heart failure and the underlying mechanisms. MATERIALS AND METHODS Firstly, UHPLC-Q-Exactive-MS/MS was used to identify the active components in ONSMP. Secondly, a rat model of heart failure was established by ligating the left anterior descending branch of the coronary artery. After four weeks of intragastric administration of ONSMP, we used various classic tests, including echocardiography, exhaustive swimming, cardiopulmonary coefficient, heart failure markers, and cardiac pathological section, to assess the prescription's anti-myocardial fibrosis in heart failure properties. AGEs, Ang Ⅱ, VEGF, CTGF, and TGFβ levels in rat serum were quantified using ELISA. The positive expression of p-ERK1/2 and p-JNK1/2 of rat myocardium was determined immunohistochemical. The protein and mRNA levels of genes involved in the MAPK signaling pathway and myocardial fibrosis were measured using western blotting or real-time PCR. RESULTS The main components of ONSMP that regulate the MAPK signaling pathway are isorhamnetin, kaempferol, quercetin, and tanshinone ⅡA. ONSMP ameliorated cardiac function and exercise tolerance and reduced cardiopulmonary coefficient, heart failure marker levels, and myocardial fibrosis in the heart failure rats. In addition, ONSMP diminished the serum MAPK pathway activator levels, positive expression level of p-ERK1/2 and p-JNK1/2, protein and mRNA levels of components of the MAPK signaling pathway in the myocardial tissue of heart failure rat, indicating that it inhibits MAPK signaling pathway. CONCLUSIONS ONSMP delayed heart failure by inhibiting myocardial fibrosis via the MAPK signaling pathway.
Collapse
Affiliation(s)
- Zeyu Zhang
- Department of First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China.
| | - Yuwei Song
- Department of First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China.
| | - Xuan Zhang
- Department of First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China.
| | - Shuai Wang
- Department of First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China.
| | - Zhuangzhuang Jia
- Department of First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China.
| | - Lin Wang
- Department of First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China.
| | - Ci Wang
- Department of First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China.
| | - Xianliang Wang
- Department of First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China.
| | - Jingyuan Mao
- Department of First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China.
| |
Collapse
|
10
|
Li Y, Zhang X, Li Y, Yang P, Zhang Z, Wu H, Zhu L, Liu Y. Preparation methods, structural characteristics, and biological activity of polysaccharides from Salvia miltiorrhiza: A review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116090. [PMID: 36587878 DOI: 10.1016/j.jep.2022.116090] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia miltiorrhiza is a traditional Chinese medicine with the application of more than a two-thousand-year history. It is a common medicine used in the clinical treatment of cardiovascular and cerebrovascular diseases and is listed as the top grade in Shennong's Classic of Materia Medica. Polysaccharide is an important chemical component of Salvia miltiorrhiza and has a variety of biological activities. AIM OF THE STUDY In this review, we summarized the preparation methods, structural characteristics, and biological activities of Salvia miltiorrhiza polysaccharides, as well as discussed current research problems, providing support for further research, development, and utilization. MATERIALS AND METHODS By inputting the search term "Salvia miltiorrhiza polysaccharides", relevant research information was obtained from databases such as Google Scholar, PubMed, VIP, Web of Science, and China Knowledge Network (CNKI). RESULTS It has been found that the monosaccharide composition of Salvia miltiorrhiza polysaccharides containing glucose (Glc), galactose (Gal), mannose (Man), and arabinose (Ara) has antioxidant, anti-tumor, liver protection, and other activities. CONCLUSIONS We summarized the preparation methods, structural information, and biological activities of Salvia miltiorrhiza polysaccharides in this review and discussed the issues that are currently being researched. Although this product has a wide range of biological activities and has high development and utilization potential, its structure information and structure-activity relationship require further investigation.
Collapse
Affiliation(s)
- Yuanyuan Li
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xin Zhang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yining Li
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Pei Yang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zhiyuan Zhang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Hang Wu
- Youth League Committee, Fu'an Sub-district Office of Shandong Jiaozhou District, Qingdao, 266300, China
| | - Lihao Zhu
- Sishui Siheyuan Culture and Tourism Development Company, Ltd, Sishui, 273200, China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
11
|
Jairoun AA, Al Hemyari SS, Abdulla NM, Shahwan M, Jairoun M, Godman B, El-Dahiyat F, Kurdi A. Development and Validation of a Tool to Improve Community Pharmacists’ Surveillance Role in the Safe Dispensing of Herbal Supplements. Front Pharmacol 2022; 13:916223. [PMID: 35860014 PMCID: PMC9289787 DOI: 10.3389/fphar.2022.916223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/20/2022] [Indexed: 12/11/2022] Open
Abstract
Background: There has been an appreciable increase in the use of herbal supplements, including immune boosters, during the current COVID-19 pandemic. However, there are concerns with falsified herbal supplements. Objectives: Developed a new questionnaire that can potentially help community pharmacists identify the extent of falsified herbal supplements. Methods: A 9-month cross sectional study was conducted among 500 community pharmacies across United Arab Emirates. A new 5-factor, 24-itmes scale was developed based on current labelling requirements across countries and piloted. This included seven items on identified uses and contraindication, seven items on hazard identification, four items on product identity, three items on packaging and product insert and three items on product handling and storage. The face and content validity of the scale was assessed via the content validity index (CVI). Its construct validity was tested using an exploratory factor analysis (EFA) via principally component analysis (PCA). The model was subsequently confirmed through partial confirmatory factor analysis (PCFA). Its reliability was assessed via test-retest reliability, internal consistency, item internal consistency (IIC), and intraclass correlation coefficients (ICCs). Results: The CVI of the finalized questionnaire was 0.843. The Kaiser-Meyer-Olkin measure of sampling adequacy was 0.891, and Bartlett’s test of sphericity indicated significance (p-value < 0.001). Confirmation of the subsequent 5-domains was achieved through PCFA using maximum likelihood analysis with oblimin rotation. The PCFA obtained values was 0.962 for NFI, 0.977 for CFI, and 0.987 for the Tucker Lewis Index. All values were greater than 0.95, and the RMSEA value was 0.03 (i.e., less than 0.06). Consequently, the model had a good fit. All domains demonstrated Cronbach’s alpha coefficients above 0.70, with 0.940 for the full instrument. Meanwhile, all items met the IIC correlation standard of ≥0.40. The instrument presented good ICC statistics of 0.940 (0.928–0.950) as well as statistical significance (p < 0.001). Community pharmacists with more than 10 experience years were more likely to identify falsified herbal supplements compared to those with 1–10 years experience (p < 0.001). Conclusion: This study developed and validated a new instrument to identify safe herbal supplements, which should enhance the role of the community pharmacists in the safe and effective treatment of suitable patients with herbal supplements.
Collapse
Affiliation(s)
- Ammar Abdulrahman Jairoun
- Health and Safety Department, Dubai Municipality, Dubai, United Arab Emirates
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
- *Correspondence: Ammar Abdulrahman Jairoun, ; Moyad Shahwan,
| | - Sabaa Saleh Al Hemyari
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
- Pharmacy Department, Emirates Health Services, Dubai, United Arab Emirates
| | - Naseem Mohammed Abdulla
- Health and Safety Department, Dubai Municipality, Dubai, United Arab Emirates
- School of Health and Environmental Studies, Hamdan Bin Mohammed Smart University (HBMSU), Dubai, United Arab Emirates
- Department of Environmental Health Sciences, Canadian University Dubai, Dubai, United Arab Emirates
| | - Moyad Shahwan
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- *Correspondence: Ammar Abdulrahman Jairoun, ; Moyad Shahwan,
| | - Maimona Jairoun
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Brian Godman
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, United Kingdom
- Division of Public Health Pharmacy and Management, School of Pharmacy, Sefako -Makgatho Health Sciences University, Pretoria, South Africa
| | - Faris El-Dahiyat
- Clinical Pharmacy Program, College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Amanj Kurdi
- Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, United Kingdom
- Center of Research and strategic studies, Lebanese French University, Erbil, Iraq
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| |
Collapse
|
12
|
Gómez-Garduño J, León-Rodríguez R, Alemón-Medina R, Pérez-Guillé BE, Soriano-Rosales RE, González-Ortiz A, Chávez-Pacheco JL, Solorio-López E, Fernandez-Pérez P, Rivera-Espinosa L. Phytochemicals That Interfere With Drug Metabolism and Transport, Modifying Plasma Concentration in Humans and Animals. Dose Response 2022; 20:15593258221120485. [PMID: 36158743 PMCID: PMC9500303 DOI: 10.1177/15593258221120485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 11/16/2022] Open
Abstract
Phytochemicals (Pch) present in fruits, vegetables and other foods, are known to inhibit or induce drug metabolism and transport. An exhaustive search was performed in five databases covering from 2000 to 2021. Twenty-one compounds from plants were found to modulate CYP3A and/or P-gp activities and modified the pharmacokinetics and the therapeutic effect of 27 different drugs. Flavonols, flavanones, flavones, stilbenes, diferuloylmethanes, tannins, protoalkaloids, flavans, hyperforin and terpenes, reduce plasma concentration of cyclosporine, simvastatin, celiprolol, midazolam, saquinavir, buspirone, everolimus, nadolol, tamoxifen, alprazolam, verapamil, quazepam, digoxin, fexofenadine, theophylline, indinavir, clopidogrel. Anthocyanins, flavonols, flavones, flavanones, flavonoid glycosides, stilbenes, diferuloylmethanes, catechin, hyperforin, alkaloids, terpenes, tannins and protoalkaloids increase of plasma concentration of buspirone, losartan, diltiazem, felodipine, midazolam, cyclosporine, triazolam, verapamil, carbamazepine, diltiazem, aripiprazole, tamoxifen, doxorubicin, paclitaxel, nicardipine. Interactions between Pchs and drugs affect the gene expression and enzymatic activity of CYP3A and P-gp transporter, which has an impact on their bioavailability; such that co-administration of drugs with food, beverages and food supplements can cause a subtherapeutic effect or overdose. Therefore, it is important for the clinician to consider these interactions to obtain a better therapeutic effect.
Collapse
Affiliation(s)
| | - Renato León-Rodríguez
- Laboratorio de Contención Biológica BSL-3, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, UNAM, Mexico City, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Yao SC, Jiang YY, Ni S, Wang L, Feng J, Yang RW, Yang LX, Len QY, Zhang L. Development of a highly efficient virus-free regeneration system of Salvia miltiorrhiza from Sichuan using apical meristem as explants. PLANT METHODS 2022; 18:50. [PMID: 35436933 PMCID: PMC9014595 DOI: 10.1186/s13007-022-00872-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
BCAKGROUND The dry root and rhizome of Salvia miltiorrhiza are used to treat cardiovascular diseases, chronic pain, and thoracic obstruction over 2000 years in Asian countries. For high quality, Sichuan Zhongjiang is regarded as the genuine producing area of S. miltiorrhiza. Given its abnormal pollen development, S. miltiorrhiza from Sichuan (S.m.-SC) relies on root reproduction and zymad accumulation; part of diseased plants present typical viral disease symptoms and seed quality degeneration. This study aim to detected unknown viruses from mosaic-diseased plants and establish a highly efficient virus-free regeneration system to recover germplasm properties. RESULTS Tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV) were detected from mosaic-diseased plants. Primary apical meristem with two phyllo podium in 0.15-0.5 mm peeled from diseased plants were achieved 73.33% virus-free rate. The results showed that the medium containing MS, 0.5 mg/L 6-BA, 0.1 mg/L NAA, 0.1 mg/L GA3, 30 g/L sucrose and 7.5 g/L agar can achieve embryonic-tissue (apical meristem, petiole and leaf callus) high efficient organogenesis. For callus induction, the optimal condition was detected on the medium containing MS, 2 mg/L TDZ, 0.1 mg/L NAA by using secondary petiole of virus-free plants under 24 h dark/d condition for 21 d. The optimal system for root induction was the nutrient solution with 1/2 MS supplemented with 1 mg/L NAA. After transplant, the detection of agronomic metric and salvianolic acid B content confirmed the great germplasm properties of S.m.-SC virus-free plants. CONCLUSIONS A highly efficient virus-free regeneration system of S.m.-SC was established based on the detected viruses to recover superior seed quality. The proposed system laid support to control disease spread, recover good germplasm properties in S.m.-SC.
Collapse
Affiliation(s)
- Si Cheng Yao
- College of Science, Sichuan Agricultural University, Ya'an, 625000, China
- Featured Medicinal Plants Sharing and Service Plantform of Sichuan Province, Ya'an, 625000, China
| | - Yuan Yuan Jiang
- College of Science, Sichuan Agricultural University, Ya'an, 625000, China
- Featured Medicinal Plants Sharing and Service Plantform of Sichuan Province, Ya'an, 625000, China
| | - Su Ni
- Featured Medicinal Plants Sharing and Service Plantform of Sichuan Province, Ya'an, 625000, China
- College of Agriculture, Sichuan Agricultural University, Chengdu, 610000, China
| | - Long Wang
- Featured Medicinal Plants Sharing and Service Plantform of Sichuan Province, Ya'an, 625000, China
| | - Jun Feng
- College of Science, Sichuan Agricultural University, Ya'an, 625000, China
- Featured Medicinal Plants Sharing and Service Plantform of Sichuan Province, Ya'an, 625000, China
| | - Rui Wu Yang
- Featured Medicinal Plants Sharing and Service Plantform of Sichuan Province, Ya'an, 625000, China
| | - Li Xia Yang
- College of Science, Sichuan Agricultural University, Ya'an, 625000, China
- Featured Medicinal Plants Sharing and Service Plantform of Sichuan Province, Ya'an, 625000, China
| | - Qiu Yan Len
- College of Science, Sichuan Agricultural University, Ya'an, 625000, China
- Featured Medicinal Plants Sharing and Service Plantform of Sichuan Province, Ya'an, 625000, China
| | - Li Zhang
- College of Science, Sichuan Agricultural University, Ya'an, 625000, China.
- Featured Medicinal Plants Sharing and Service Plantform of Sichuan Province, Ya'an, 625000, China.
| |
Collapse
|
14
|
Molecular Mechanism of Salvia miltiorrhiza Bunge in Treating Cerebral Infarction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5992394. [PMID: 35392650 PMCID: PMC8983215 DOI: 10.1155/2022/5992394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 12/22/2021] [Indexed: 11/18/2022]
Abstract
Background Cerebral infarction (CI) is a common brain disease in clinical practice, which is mainly due to the pathological environment of ischemia and hypoxia caused by difficult cerebral circulation perfusion function, resulting in ischemic necrosis of local brain tissue and neurological impairment. In traditional Chinese medicine (TCM) theory, CI is mainly due to blood stasis in the brain. Therefore, blood-activating and stasis-dissipating drugs are often used to treat CI in clinical practice. Salvia miltiorrhiza Bunge (SMB) is a kind of traditional Chinese medicine with good efficacy in promoting blood circulation and removing blood stasis, and treatment of CI with it is a feasible strategy. Based on the above analysis, we chose network pharmacology to investigate the feasibility of SMB in the treatment of CI and to study the possible molecular mechanisms by providing some reference for the treatment of CI with TCM. Methods The active ingredients and related targets of SMB were obtained through the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, and CI-related targets were obtained from the GeneCards and DisGeNET databases. The target of SMB for the treatment of CI was obtained using Cytoscape software and visualized. GO and KEGG enrichment analysis was performed based on “clusterProfiler” within R, and the prediction results were validated by molecular docking technique. Results By constructing a compound-target (C-T) network, it was found that the active components in SMB mainly treated CI by regulating key proteins such as AKT1, IL-6, and EGFR. These key proteins mainly involve in pathways such as immune regulation, cancer and lipid metabolism, such as lipid and atherosclerosis, chemical carcinogenesis-receptor activation pathways, and IL-17 signaling pathway. In the GO term, it mainly regulates the response to steroid hormones, membrane rafts, and G protein-amine receptor coupled activity. Eventually, we verified that the luteolin and tanshinone IIA components in SMB have a good possibility of action with AKT1 and IL-6 by in silico techniques, indicating that SMB has some scientificity in the treatment of CI. Conclusion SMB mainly treats CI by regulating 94 proteins involved in lipid and atherosclerosis, chemical carcinogenesis-receptor activation, and IL-17 signaling pathway. Our research strategy provided a template for the drug development of TCM for the treatment of CI.
Collapse
|
15
|
Abstract
BACKGROUND The decrease of wild reserves and the sharp increase of market demand have led to resource substitution, but it is still not clear how to discover medicinal alternative resources. Here we reveal the biology of medicinal resource substitution in the case of Salvia. METHODS A hypothesis was put forward that phylogeny and ecology were the main factors which determined alternative species selection. Phylogenetic analysis was performed based on chloroplast genomes. Spatial climatic pattern was assessed through three mathematical models. RESULTS Salvia miltiorrhiza and alternative species were mainly located in Clade 3 in topology, and their growth environment was clustered into an independent group 3 inferred from principal component analysis. Correlation and Maxent major climate factor analyses showed that the ecological variations within each lineage were significantly smaller than the overall divergent between any two lineages. Mantel test reconfirmed the inalienability between phylogeny and ecology (P = 0.002). Only the species that are genetically and ecologically related to S. miltiorrhiza can form a cluster with it. CONCLUSIONS Phylogenetic relationship and geographical climate work together to determine which species has the potential to be selected as substitutes. Other medicinal plants can learn from this biology towards developing alternative resources.
Collapse
|