1
|
Pal C. Redox modulating small molecules having antimalarial efficacy. Biochem Pharmacol 2023; 218:115927. [PMID: 37992998 DOI: 10.1016/j.bcp.2023.115927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
The search for effective antimalarial agents remains a critical priority because malaria is widely spread and drug-resistant strains are becoming more prevalent. In this review, a variety of small molecules capable of modulating redox processes were showcased for their potential as antimalarial agents. The compounds were designed to target the redox balance of Plasmodium parasites, which has a pivotal function in their ability to survive and multiply within the host organism. A thorough screening method was utilized to assess the effectiveness of these compounds against both drug-sensitive and drug-resistant strains of Plasmodium falciparum, the malaria-causing parasite. The results revealed that several of the tested compounds exhibited significant effectiveness against malaria, displaying IC50 values at a low micromolar range. Furthermore, these compounds displayed promising selectivity for the parasite, as they exhibited low cytotoxicity towards mammalian cells. Thorough mechanistic studies were undertaken to clarify how the active compounds exert their mode of action. The findings revealed that these compounds disrupted the parasites' redox balance, causing oxidative stress and interfering with essential cellular functions. Additionally, the compounds showed synergistic effects when combined with existing antimalarial drugs, suggesting their potential for combination therapies to combat drug resistance. Overall, this study highlights the potential of redox-modulating small molecules as effective antimalarial agents. The identified compounds demonstrate promising antimalarial activity, and their mechanism of action offers insights into targeting the redox balance of Plasmodium parasites. Further optimization and preclinical studies are warranted to determine their efficacy, safety, and potential for clinical development as novel antimalarial therapeutics.
Collapse
Affiliation(s)
- Chinmay Pal
- Department of Chemistry, Gobardanga Hindu College, North 24 Parganas, West Bengal 743273, India.
| |
Collapse
|
2
|
Shafi S, Gupta S, Jain R, Shoaib R, Munjal A, Maurya P, Kumar P, Kalam Najmi A, Singh S. Tackling the emerging Artemisinin-resistant malaria parasite by modulation of defensive oxido-reductive mechanism via nitrofurantoin repurposing. Biochem Pharmacol 2023; 215:115756. [PMID: 37598974 DOI: 10.1016/j.bcp.2023.115756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/06/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Oxidative stress-mediated cell death has remained the prime parasiticidal mechanism of front line antimalarial, artemisinin (ART). The emergence of resistant Plasmodium parasites characterized by oxidative stress management due to impaired activation of ART and enhanced reactive oxygen species (ROS) detoxification has decreased its clinical efficacy. This gap can be filled by development of alternative chemotherapeutic agents to combat resistance defense mechanism. Interestingly, repositioning of clinically approved drugs presents an emerging approach for expediting antimalarial drug development and circumventing resistance. Herein, we evaluated the antimalarial potential of nitrofurantoin (NTF), a clinically used antibacterial drug, against intra-erythrocytic stages of ART-sensitive (Pf3D7) and resistant (PfKelch13R539T) strains of P. falciparum, alone and in combination with ART. NTF exhibited growth inhibitory effect at submicro-molar concentration by arresting parasite growth at trophozoite stage. It also inhibited the survival of resistant parasites as revealed by ring survival assay. Concomitantly, in vitro combination assay revealed synergistic association of NTF with ART. NTF was found to enhance the reactive oxygen and nitrogen species, and induced mitochondrial membrane depolarization in parasite. Furthermore, we found that exposure of parasites to NTF disrupted redox balance by impeding Glutathione Reductase activity, which manifests in enhanced oxidative stress, inducing parasite death. In vivo administration of NTF, alone and in combination with ART, in P. berghei ANKA-infected mice blocked parasite multiplication and enhanced mean survival time. Overall, our results indicate NTF as a promising repurposable drug with therapeutic potential against ART-sensitive as well as resistant parasites.
Collapse
Affiliation(s)
- Sadat Shafi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India; Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Sonal Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Ravi Jain
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Rumaisha Shoaib
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Akshay Munjal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Preeti Maurya
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Purnendu Kumar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
3
|
Kumar S, Kapkoti DS, Mina PR, Gupta M, Kumar R, Kumar P, Pathak P, Bhakuni RS, Rout P, Pal A, Darokar MP. Effect of liquiritigenin on chloroquine accumulation in digestive vacuole leading to apoptosis-like death of chloroquine-resistant P. falciparum. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154738. [PMID: 36940579 DOI: 10.1016/j.phymed.2023.154738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Malaria remains one of the major health concerns, especially in tropical countries. Although drugs such as artemisinin-based combinations are efficient for treating Plasmodium falciparum, the growing threat from multi-drug resistance has become a major challenge. Thus, there is a constant need to identify and validate new combinations to sustain current disease control strategies to overcome the challenge of drug resistance in the malaria parasites. To meet this demand, liquiritigenin (LTG) has been found to positively interact in combination with the existing clinically used drug chloroquine (CQ), which has become unfunctional due to acquired drug resistance. PURPOSE To evaluate the best interaction between LTG and CQ against CQ- resistant strain of P. falciparum. Furthermore, the in vivo antimalarial efficacy and possible mechanism of action of the best combination was also assessed. METHODS The in vitro anti-plasmodial potential of LTG against CQ- resistant strain K1 of P. falciparum was tested using Giemsa staining method. The behaviour of the combinations was evaluated using the fix ratio method and evaluated the interaction of LTG and CQ by calculating the fractional inhibitory concentration index (FICI). Oral toxicity study was carried out in a mice model. In vivo antimalarial efficacy of LTG alone and in combination with CQ was evaluated using a four-day suppression test in a mouse model. The effect of LTG on CQ accumulation was measured using HPLC and the rate of alkalinization of the digestive vacuole. Cytosolic Ca2+ level, mitochondrial membrane potential, caspase-like activity, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, and Annexin V Apoptosis assay to assess anti-plasmodial potential. Proteomics analysis was evaluated by LC-MS/MS analysis. RESULTS LTG possesses anti-plasmodial activity on its own and it showed to be an adjuvant of CQ. In in vitro studies, LTG showed synergy with CQ only in the ratio (CQ: LTG-1:4) against CQ-resistant strain (K1) of P. falciparum. Interestingly, in vivo studies, LTG in combination with CQ showed higher chemo-suppression and enhanced mean survival time at much lower concentrations compared to individual doses of LTG and CQ against CQ- resistant strain (N67) of Plasmodium yoelli nigeriensis. LTG was found to increase the CQ accumulation into digestive vacuole, reducing the rate of alkalinization, in turn increasing cytosolic Ca2+ level, loss of mitochondrial potential, caspase-3 activity, DNA damage and externalization of phosphatidylserine of the membrane (in vitro). These observations indicate the involvement of apoptosis-like death of P. falciparum that might be due to the accumulation of CQ. CONCLUSION LTG showed synergy with CQ in the ratio LTG: CQ, 4:1) in vitro and was able to curtail the IC50 of CQ and LTG. Interestingly, in vivo in combination with CQ, LTG showed higher chemo-suppression as well as enhanced mean survival time at a much lower concentrations of both the partners as compared to an individual dose of CQ and LTG. Thus, synergistic drug combination offers the possibility to enhance CQ efficacy in chemotherapy.
Collapse
Affiliation(s)
- Saurabh Kumar
- Bioprospection and Product Development Division, CSIR- Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Deepak Singh Kapkoti
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Pooja Rani Mina
- Bioprospection and Product Development Division, CSIR- Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Madhuri Gupta
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Ravi Kumar
- Bioprospection and Product Development Division, CSIR- Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Parmanand Kumar
- Bioprospection and Product Development Division, CSIR- Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Priyanka Pathak
- Bioprospection and Product Development Division, CSIR- Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - R S Bhakuni
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Prasant Rout
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Anirban Pal
- Bioprospection and Product Development Division, CSIR- Central Institute of Medicinal and Aromatic Plants, Lucknow, India.
| | - Mahendra P Darokar
- Bioprospection and Product Development Division, CSIR- Central Institute of Medicinal and Aromatic Plants, Lucknow, India.
| |
Collapse
|
4
|
Titus EE, Palavesam A, Rajaram SM, Perumal P, Darwin SS, Sanmugapriya NK, Janarthanam G, Muthusamy R. In vitro efficacy of plumbagin and thymol against Theileria annulata. J Parasit Dis 2023; 47:152-160. [PMID: 36910313 PMCID: PMC9998759 DOI: 10.1007/s12639-022-01550-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/14/2022] [Indexed: 11/28/2022] Open
Abstract
Phytochemical compounds, plumbagin and thymol were evaluated for their efficacy against Theileria annulata using MTT cell viability assay. Plumbagin and thymol were found to be effective in preventing the proliferation of Theileria annulata infected bovine lymphocytes. The IC50 values of plumbagin and thymol were 0.019 µM and 0.009 µM, respectively. Plumbagin and thymol were found to be non-cytotoxic to the bovine peripheral blood mononuclear cells. However, both the compounds were found to have inhibitory effect on vero cell proliferation. Plumbagin had primarily anti-theilerial activity but thymol had primarily anti-mitotic activity. The in vitro efficacy and cell toxicity studies indicate the potential application of plumbagin, purified from Plumbago indica as a lead therapeutic molecule against T. annulata infection in cattle. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s12639-022-01550-x.
Collapse
Affiliation(s)
- E. Eben Titus
- Translational Research Platform for Veterinary Biologicals, Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Madhavaram, Chennai, 600 051 India
| | - Azhahianambi Palavesam
- Translational Research Platform for Veterinary Biologicals, Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Madhavaram, Chennai, 600 051 India
| | - Srinivasan Morkonda Rajaram
- Department of Veterinary Pharmacology and Toxicology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, 600 007 India
| | - Pandikumar Perumal
- Xavier Research Foundation, St.Xavier’s College, Palaymkottai, Tirunelveli, Tamil Nadu 627002 India
| | | | - Nagul Kumar Sanmugapriya
- PG and Research Department of Botany, Bharathi Women’s College, George Town, Chennai, 600108 India
| | - Ganesh Janarthanam
- Translational Research Platform for Veterinary Biologicals, Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Madhavaram, Chennai, 600 051 India
| | - Raman Muthusamy
- Translational Research Platform for Veterinary Biologicals, Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Madhavaram, Chennai, 600 051 India
- Department of Microbiology, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077 India
| |
Collapse
|
5
|
Lai JW, Maah MJ, Tan KW, Sarip R, Lim YAL, Ganguly R, Khaw LT, Ng CH. Dinuclear and mononuclear metal(II) polypyridyl complexes against drug-sensitive and drug-resistant Plasmodium falciparum and their mode of action. Malar J 2022; 21:386. [PMID: 36528584 PMCID: PMC9758846 DOI: 10.1186/s12936-022-04406-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Malaria remains one of the most virulent and deadliest parasitic disease in the world, particularly in Africa and Southeast Asia. Widespread occurrence of artemisinin-resistant Plasmodium falciparum strains from the Greater Mekong Subregion is alarming. This hinders the national economies, as well as being a major drawback in the effective control and elimination of malaria worldwide. Clearly, an effective anti-malarial drug is urgently needed. METHODS The dinuclear and mononuclear copper(II) and zinc(II) complexes were synthesized in ethanolic solution and characterized by various physical measurements (FTIR, CHN elemental analysis, solubility, ESI-MS, UV-Visible, conductivity and magnetic moment, and NMR). X-ray crystal structure of the dicopper(II) complex was determined. The in vitro haemolytic activities of these metal complexes were evaluated spectroscopically on B+ blood while the anti-malarial potency was performed in vitro on blood stage drug-sensitive Plasmodium falciparum 3D7 (Pf3D7) and artemisinin-resistant Plasmodium falciparum IPC5202 (Pf5202) with fluorescence dye. Mode of action of metal complexes were conducted to determine the formation of reactive oxygen species using PNDA and DCFH-DA dyes, JC-1 depolarization of mitochondrial membrane potential, malarial 20S proteasome inhibition with parasite lysate, and morphological studies using Giemsa and Hoechst stains. RESULTS Copper(II) complexes showed anti-malarial potency against both Pf3D7 and Pf5202 in sub-micromolar to micromolar range. The zinc(II) complexes were effective against Pf3D7 with excellent therapeutic index but encountered total resistance against Pf5202. Among the four, the dinuclear copper(II) complex was the most potent against both strains. The zinc(II) complexes caused no haemolysis of RBC while copper(II) complexes induced increased haemolysis with increasing concentration. Further mechanistic studies of both copper(II) complexes on both Pf3D7 and Pf5202 strains showed induction of ROS, 20S malarial proteasome inhibition, loss of mitochondrial membrane potential and morphological features indicative of apoptosis. CONCLUSION The dinuclear [Cu(phen)-4,4'-bipy-Cu(phen)](NO3)4 is highly potent and can overcome the total drug-resistance of Pf5202 towards chloroquine and artemisinin. The other three copper(II) and zinc(II) complexes were only effective towards the drug-sensitive Pf3D7, with the latter causing no haemolysis of RBC. Their mode of action involves multiple targets.
Collapse
Affiliation(s)
- Jing Wei Lai
- grid.10347.310000 0001 2308 5949Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mohd Jamil Maah
- grid.10347.310000 0001 2308 5949Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kong Wai Tan
- grid.10347.310000 0001 2308 5949Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Rozie Sarip
- grid.10347.310000 0001 2308 5949Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yvonne Ai Lian Lim
- grid.10347.310000 0001 2308 5949Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Rakesh Ganguly
- grid.410868.30000 0004 1781 342XShiv Nadar University, Greater Noida, India
| | - Loke Tim Khaw
- grid.411729.80000 0000 8946 5787Department of Microbiology and Immunology, School of Medicine, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Chew Hee Ng
- grid.411729.80000 0000 8946 5787Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Rutin ameliorates malaria pathogenesis by modulating inflammatory mechanism: an in vitro and in vivo study. Inflammopharmacology 2022; 30:159-171. [DOI: 10.1007/s10787-021-00920-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/25/2021] [Indexed: 12/19/2022]
|