1
|
Li Y, Hu Z, Xie L, Xiong T, Zhang Y, Bai Y, Ding H, Huang X, Liu X, Deng C. Buyang huanwu decoction inhibits the activation of the RhoA/Rock2 signaling pathway through the phenylalanine metabolism pathway, thereby reducing neuronal apoptosis following cerebral ischemia-reperfusion injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 340:119246. [PMID: 39681201 DOI: 10.1016/j.jep.2024.119246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/07/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Buyang Huanwu Decoction (BYHWD) exerts its anti-cerebral ischemia effects through multiple pathways and targets, although its specific mechanisms remain unclear. AIM OF THE STUDY Ultra-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF-MS) metabolomics and other methods were employed to investigate the role of BYHWD in inhibiting neuronal apoptosis following cerebral ischemia-reperfusion by modulating the RhoA/Rock2 pathway. METHODS A rat model of exhaustion swimming combined with middle cerebral artery occlusion (ES + I/R) was established to evaluate the intervention effects of Buyang Huanwu Decoction on cerebral ischemia-reperfusion. This was assessed using neurological function scores, Qi deficiency and blood stasis syndrome scores, HE staining, Nissl staining and TT staining. Differential metabolites and metabolic pathways associated with cerebral ischemia-reperfusion were identified using UPLC-QTOF-MS metabolomics, with key differential metabolites validated through ELISA. Molecular docking techniques were employed to predict interactions between the key differential metabolite, hippuric acid, and its primary downstream pathways. Finally, the levels of neurocellular apoptosis, as well as key molecules in the RhoA/Rock2 signaling pathway and the mitochondrial apoptosis pathway, were measured. RESULTS The results indicated that the primary differential metabolites associated with BYHWD's protective effects against ischemia-reperfusion injury were hippuric acid, lysophosphatidic acid, and lysophosphatidylethanolamine, with the main metabolic pathway being phenylalanine metabolism. Molecular docking studies demonstrated that malonic acid exhibited a strong affinity for proteins related to the RhoA/Rock2 signaling pathway and the mitochondrial apoptosis pathway.Furthermore, we found that BYHWD treatment significantly decreased the apoptosis rate of cells following cerebral ischemia-reperfusion and inhibited the expression of key molecules in both the RhoA/Rock2 signaling pathway and the mitochondrial apoptosis pathway in brain tissue. CONCLUSION BYHWD ameliorated brain tissue injury after cerebral ischemia/reperfusion in rats with qi deficiency and blood stasis. The underlying mechanism may involve BYHWD's inhibition of the RhoA/Rock2 signaling pathway activation through modulation of the phenylalanine metabolism pathway, thereby reducing neuronal apoptosis mediated by the mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Yanling Li
- Hunan University of Chinese Medicine, Changsha, 410208, China; Hunan Province Key Laboratory of Cerebrovascular Disease Prevention and Treatment of Integrated Chinese Medicine and Western Medicine, Changsha, 410208, China
| | - Zhongji Hu
- Hunan University of Chinese Medicine, Changsha, 410208, China; Hunan Province Key Laboratory of Cerebrovascular Disease Prevention and Treatment of Integrated Chinese Medicine and Western Medicine, Changsha, 410208, China
| | - Linli Xie
- Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Tingting Xiong
- Hunan University of Chinese Medicine, Changsha, 410208, China; Hunan Province Key Laboratory of Cerebrovascular Disease Prevention and Treatment of Integrated Chinese Medicine and Western Medicine, Changsha, 410208, China
| | - Yanyan Zhang
- Hunan University of Chinese Medicine, Changsha, 410208, China; Hunan Province Key Laboratory of Cerebrovascular Disease Prevention and Treatment of Integrated Chinese Medicine and Western Medicine, Changsha, 410208, China
| | - Yang Bai
- Hunan University of Chinese Medicine, Changsha, 410208, China; Hunan Province Key Laboratory of Cerebrovascular Disease Prevention and Treatment of Integrated Chinese Medicine and Western Medicine, Changsha, 410208, China
| | - Huang Ding
- Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xiaoping Huang
- Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Xiaodan Liu
- Hunan University of Chinese Medicine, Changsha, 410208, China; Hunan Province Key Laboratory of Cerebrovascular Disease Prevention and Treatment of Integrated Chinese Medicine and Western Medicine, Changsha, 410208, China.
| | - Changqing Deng
- Hunan University of Chinese Medicine, Changsha, 410208, China; Hunan Province Key Laboratory of Cerebrovascular Disease Prevention and Treatment of Integrated Chinese Medicine and Western Medicine, Changsha, 410208, China.
| |
Collapse
|
2
|
Wang Y, Yu Z, Cheng M, Hu E, Yan Q, Zheng F, Guo X, Zhang W, Li H, Li Z, Zhu W, Wu Y, Tang T, Li T. Buyang huanwu decoction promotes remyelination via miR-760-3p/GPR17 axis after intracerebral hemorrhage. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118126. [PMID: 38556140 DOI: 10.1016/j.jep.2024.118126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/02/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The repairment of myelin sheaths is crucial for mitigating neurological impairments of intracerebral hemorrhage (ICH). However, the current research on remyelination processes in ICH remains limited. A representative traditional Chinese medicine, Buyang Huanwu decoction (BYHWD), shows a promising therapeutic strategy for ICH treatment. AIM OF THE STUDY To investigate the pro-remyelination effects of BYHWD on ICH and explore the underlying mechanisms. MATERIALS AND METHODS The collagenase-induced mice ICH model was created for investigation. BYHWD's protective effects were assessed by behavioral tests and histological staining. Transmission electron microscopy was used for displaying the structure of myelin sheaths. The remyelination and oligodendrocyte differentiation were evaluated by the expressions of myelin proteolipid protein (PLP), myelin basic protein (MBP), MBP/TAU, Olig2/CC1, and PDGFRα/proliferating cell nuclear antigen (PCNA) through RT-qPCR and immunofluorescence. Transcriptomics integrated with disease database analysis and experiments in vivo and in vitro revealed the microRNA-related underlying mechanisms. RESULTS Here, we reported that BYHWD promoted the neurological function of ICH mice and improved remyelination by increasing PLP, MBP, and TAU, as well as restoring myelin structure. Besides, we showed that BYHWD promoted remyelination by boosting the differentiation of PDGFRα+ oligodendrocyte precursor cells into olig2+/CC1+ oligodendrocytes. Additionally, we demonstrated that the remyelination effects of BYHWD worked by inhibiting G protein-coupled receptor 17 (GPR17). miRNA sequencing integrated with miRNA database prediction screened potential miRNAs targeting GPR17. By applying immunofluorescence, RNA in situ hybridization and dual luciferase reporter gene assay, we confirmed that BYHWD suppressed GPR17 and improved remyelination by increasing miR-760-3p. CONCLUSIONS BYHWD improves remyelination and neurological function in ICH mice by targeting miR-760-3p to inhibit GPR17. This study may shed light on the orchestration of remyelination mechanisms after ICH, thus providing novel insights for developing innovative prescriptions with brain-protective properties.
Collapse
Affiliation(s)
- Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang, PR China
| | - Zhe Yu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Menghan Cheng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - En Hu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang, PR China
| | - Qiuju Yan
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Fei Zheng
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Xiaohang Guo
- School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Wei Zhang
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Haigang Li
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, Hunan, PR China
| | - Zhilin Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Wenxin Zhu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Yao Wu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Tao Tang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang, PR China
| | - Teng Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang, PR China.
| |
Collapse
|
3
|
Guo J, Zhang Y, Zhou R, Hao Y, Wu X, Li G, Du Q. Deciphering the molecular mechanism of Bu Yang Huan Wu Decoction in interference with diabetic pulmonary fibrosis via regulating oxidative stress and lipid metabolism disorder. J Pharm Biomed Anal 2024; 243:116061. [PMID: 38430615 DOI: 10.1016/j.jpba.2024.116061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/27/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Diabetes mellitus type 2 and pulmonary fibrosis have been found to be closely related in clinical practice. Diabetic pulmonary fibrosis (DPF) is a complication of diabetes mellitus, but its treatment has yet to be thoroughly investigated. Bu Yang Huan Wu Decoction (BYHWD) is a well-known traditional Chinese prescription that has shown great efficacy in treating pulmonary fibrosis with hypoglycemic and hypolipidemic effects. METHODS The active ingredients of BYHWD and the corresponding targets were retrieved from the Traditional Chinese Medicine Systematic Pharmacology Database (TCMSP) and SymMap2. Disease-related targets were obtained from the GeneCard, OMIM and CTD databases. GO enrichment and KEGG pathway enrichment were carried out using the DAVID database. AutoDock Vina software was employed to perform molecular docking. Molecular dynamics simulations of proteinligand complexes were conducted by Gromacs. Animal experiments were further performed to validate the effects of BYHWD on the selected core targets, markers of oxidative stress, serum lipids, blood glucose and pulmonary fibrosis. RESULTS A total of 84 active ingredients and 830 target genes were screened in BYHWD, among which 56 target genes intersected with DPF-related targets. Network pharmacological analysis revealed that the active ingredients can regulate target genes such as IL-6, TNF-α, VEGFA and CASP3, mainly through AGE-RAGE signaling pathway, HIF-1 signaling pathway and TNF signaling pathway. Molecular docking and molecular dynamics simulations suggested that IL6-astragaloside IV, IL6-baicalein, TNFα-astragaloside IV, and TNFα-baicalein docking complexes could bind stably. Animal experiments showed that BYHWD could reduce the expression of core targets such as VEGFA, CASP3, IL-6 and TNF-α. In addition, BYHWD could reduce blood glucose, lipid, and MDA levels in DPF while increasing the activities of SOD, CAT and GSH-Px. BYHWD attenuated the expression of HYP and collagen I, mitigating pathological damage and collagen deposition within lung tissue. CONCLUSIONS BYHWD modulates lipid metabolism disorders and oxidative stress by targeting the core targets of IL6, TNF-α, VEGFA and CASP3 through the AGE-RAGE signaling pathway, making it a potential therapy for DPF.
Collapse
Affiliation(s)
- Junfeng Guo
- Endocrinology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Yuwei Zhang
- Geriatric Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Rui Zhou
- Geriatric Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Yanwei Hao
- Geriatric Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Xuanyu Wu
- Geriatric Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Ganggang Li
- Geriatric Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Quanyu Du
- Endocrinology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan 610072, China.
| |
Collapse
|
4
|
Jiao K, Lai Z, Cheng Q, Yang Z, Liao W, Liao Y, Long H, Sun R, Lang T, Shao L, Deng C, She Y. Glycosides of Buyang Huanwu decoction inhibits inflammation associated with cerebral ischemia-reperfusion via the PINK1/Parkin mitophagy pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117766. [PMID: 38266949 DOI: 10.1016/j.jep.2024.117766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A classic stroke formula is Buyang Huanwu Decoction (BYHWD), Glycosides are the pharmacological components found in BYHWD, which are utilized for the prevention and management of cerebral ischemia-reperfusion (CIR), as demonstrated in a previous study. Its neuroprotective properties are closely related to its ability to modulate inflammation, but its mechanism is as yet unclear. AIM OF THE STUDY A research was undertaken to investigate the impact of glycosides on the inflammation of CIR through the PTEN-induced putative kinase-1 (PINK1)/Parkin mitophagy pathway. MATERIALS AND METHODS Analyzing glycosides containing serum components was performed with ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS). Glycosides were applied to rat of Middle cerebral artery occlusion/reperfusion (MCAO/R) model and primary neural cell of Oxygen glucose deprivation/reperfusion (OGD/R) model. The neuroprotective effect and the regulation of mitophagy of glycosides were evaluated through neural damage and PINK1/Parkin mitophagy activation. Moreover, the assessment of the relationship between glycosides regulation of mitophagy and its anti-inflammatory effects subsequent to mitophagy blockade was conducted by examining neural damage, PINK1/Parkin mitophagy activation, and levels of pyroptosis. RESULTS (1) It was observed that the administration of glycosides resulted in a decrease in neurological function scores, a reduction in cerebral infarction volume, an increase in mitochondrial autophagosome, and the maintenance of a high expression status of light chain 3 (LC3) II/LC3Ⅰ protein. Additionally, there was a significant inhibition of p62 protein expression and an enhancement of PINK1 and Parkin protein expression. Furthermore, it was found that the effect of glycosides at a dosage of 0.128 g · kg-1 was significantly superior to that of glycosides at a dosage of 0.064 g · kg-1. Notably, the neuroprotective effect and inhibition of pyroptosis protein of glycosides at a dosage of 0.128 g · kg-1 were attenuated when mitochondrial autophagy was blocked. (2) Glycosides repaired cellular morphological damage, enhanced cell survival, and reduced Lactate dehydrogenase (LDH) leakage, with glycosides (2.36 μg·mL-1 and 4.72 μg·mL-1) neuronal protection being the strongest. Glycosides (4.72 μg·mL-1) maintained LC3II/LC3Ⅰ protein high expression state, inhibited p62 protein expression, and promoted PINK1 and Parkin protein expression, which was stronger than glycosides (2.36 μg·mL-1). The blockade of mitophagy resulted in a reduction of neuroprotection and inhibition of pyroptosis protein exerted by glycosides. CONCLUSION Glycosides demonstrate the ability to hinder inflammation through the activation of the PINK1/Parkin mitophagy pathway, thereby leading to subsequent neuroprotective effects on CIR.
Collapse
Affiliation(s)
- Keyan Jiao
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Zili Lai
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qiaochu Cheng
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Zhengyu Yang
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wenxin Liao
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yanhao Liao
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hongping Long
- The First Hospital of Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ruiting Sun
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ting Lang
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Le Shao
- The First Hospital of Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Changqing Deng
- Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Yan She
- Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
5
|
Deng X, Ren J, Chen K, Zhang J, Zhang Q, Zeng J, Li T, Tang Q, Lin J, Zhu J. Mas receptor activation facilitates innate hematoma resolution and neurological recovery after hemorrhagic stroke in mice. J Neuroinflammation 2024; 21:106. [PMID: 38658922 PMCID: PMC11041011 DOI: 10.1186/s12974-024-03105-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is a devastating neurological disease causing severe sensorimotor dysfunction and cognitive decline, yet there is no effective treatment strategy to alleviate outcomes of these patients. The Mas axis-mediated neuroprotection is involved in the pathology of various neurological diseases, however, the role of the Mas receptor in the setting of ICH remains to be elucidated. METHODS C57BL/6 mice were used to establish the ICH model by injection of collagenase into mice striatum. The Mas receptor agonist AVE0991 was administered intranasally (0.9 mg/kg) after ICH. Using a combination of behavioral tests, Western blots, immunofluorescence staining, hematoma volume, brain edema, quantitative-PCR, TUNEL staining, Fluoro-Jade C staining, Nissl staining, and pharmacological methods, we examined the impact of intranasal application of AVE0991 on hematoma absorption and neurological outcomes following ICH and investigated the underlying mechanism. RESULTS Mas receptor was found to be significantly expressed in activated microglia/macrophages, and the peak expression of Mas receptor in microglia/macrophages was observed at approximately 3-5 days, followed by a subsequent decline. Activation of Mas by AVE0991 post-treatment promoted hematoma absorption, reduced brain edema, and improved both short- and long-term neurological functions in ICH mice. Moreover, AVE0991 treatment effectively attenuated neuronal apoptosis, inhibited neutrophil infiltration, and reduced the release of inflammatory cytokines in perihematomal areas after ICH. Mechanistically, AVE0991 post-treatment significantly promoted the transformation of microglia/macrophages towards an anti-inflammatory, phagocytic, and reparative phenotype, and this functional phenotypic transition of microglia/macrophages by Mas activation was abolished by both Mas inhibitor A779 and Nrf2 inhibitor ML385. Furthermore, hematoma clearance and neuroprotective effects of AVE0991 treatment were reversed after microglia depletion in ICH. CONCLUSIONS Mas activation can promote hematoma absorption, ameliorate neurological deficits, alleviate neuron apoptosis, reduced neuroinflammation, and regulate the function and phenotype of microglia/macrophages via Akt/Nrf2 signaling pathway after ICH. Thus, intranasal application of Mas agonist ACE0991 may provide promising strategy for clinical treatment of ICH patients.
Collapse
Affiliation(s)
- Xiangyang Deng
- Department of Neurosurgery, Wenzhou Municipal Key Laboratory of Neurodevelopmental Pathology and Physiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109, Xueyuan Road, Wenzhou, 325027, Zhejiang, China
- Department of Neurosurgery, Huashan Hospital, National Center for Neurological Disorders, National Key Lab. for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Lab. of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Rd, Shanghai, 200040, China
| | - Junwei Ren
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kezhu Chen
- Department of Neurosurgery, Huashan Hospital, National Center for Neurological Disorders, National Key Lab. for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Lab. of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Rd, Shanghai, 200040, China
| | - Jin Zhang
- The First Affiliated Hospital of the Naval Medical University, Shanghai, China
| | - Quan Zhang
- Department of Neurosurgery, Huashan Hospital, National Center for Neurological Disorders, National Key Lab. for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Lab. of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Rd, Shanghai, 200040, China
| | - Jun Zeng
- Department of Neurosurgery, Huashan Hospital, National Center for Neurological Disorders, National Key Lab. for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Lab. of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Rd, Shanghai, 200040, China
| | - Tianwen Li
- Department of Neurosurgery, Huashan Hospital, National Center for Neurological Disorders, National Key Lab. for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Lab. of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Rd, Shanghai, 200040, China
| | - Qisheng Tang
- Department of Neurosurgery, Huashan Hospital, National Center for Neurological Disorders, National Key Lab. for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Lab. of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Rd, Shanghai, 200040, China
| | - Jian Lin
- Department of Neurosurgery, Wenzhou Municipal Key Laboratory of Neurodevelopmental Pathology and Physiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109, Xueyuan Road, Wenzhou, 325027, Zhejiang, China.
| | - Jianhong Zhu
- Department of Neurosurgery, Huashan Hospital, National Center for Neurological Disorders, National Key Lab. for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Lab. of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Rd, Shanghai, 200040, China.
| |
Collapse
|
6
|
Zhang G, Han X, Xu T, Liu M, Chen G, Xie L, Xu H, Hua Y, Pang M, Hu C, Wu Y, Liu B, Zhou Y. Buyang Huanwu Decoction suppresses cardiac inflammation and fibrosis in mice after myocardial infarction through inhibition of the TLR4 signalling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117388. [PMID: 37949329 DOI: 10.1016/j.jep.2023.117388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE It has been reported that cardiac inflammation and fibrosis participate in the development of heart failure (HF) following myocardial infarction (MI). Anti-inflammatory and anti-fibrotic treatments exhibit therapeutic efficacy in MI. Buyang Huanwu Decoction (BYHWD) has cardioprotective properties. However, whether BYHWD regulates cardiac inflammation and fibrosis in HF after MI, and the underlying mechanisms, are still unknown. AIM OF THE STUDY This study aimed to explore the effects and potential mechanisms of BYHWD on cardiac inflammation and fibrosis after MI. MATERIALS AND METHODS An MI model was constructed through ligation of the left anterior descending coronary artery (LAD) in mice. The cardioprotective effects of BYHWD were determined by echocardiography, Masson trichrome staining, wheat germ agglutinin (WGA) staining and haematoxylin and eosin (HE) staining. The effects of BYHWD on inflammation and fibrosis, and on the TLR4 signalling pathway, were explored through immunohistochemistry (IHC), Western blot (WB), enzyme-linked immunosorbent assay (ELISA) and quantitative reverse transcription polymerase chain reaction (qRT-PCR) in vivo. Next, the effects of BYHWD on primary cardiac fibroblasts (CFs) inflammation and collagen synthesis, and on the TLR4 signalling pathway, were detected using WB, immunofluorescence (IF) and qRT-PCR in vitro. In addition, the suppression and overexpression of TLR4 in CFs were further explored. RESULTS BYHWD dose-dependently reduced cardiac inflammation, fibrosis and ventricular dysfunction. The expression levels of collagen Ⅰ/Ⅲ, IL-1β and IL-18, as well as critical proteins in the TLR4 signalling pathway and the NLRP3 inflammasome, were suppressed by BYHWD in the in vivo experiment. BYHWD inhibited CFs inflammation and collagen synthesis, as well as critical proteins in the TLR4 signalling pathway and the NLRP3 inflammasome, in the in vitro experiment. TLR4 suppression mitigated these inhibitory effects of BYHWD while overexpression of TLR4 markedly reversed these inhibitory effects of BYHWD. CONCLUSION BYHWD exerts anti-inflammatory and anti-fibrotic effects in mice after MI, and suppresses CFs inflammation and collagen synthesis through suppression of the TLR4 signalling pathway.
Collapse
Affiliation(s)
- Guoyong Zhang
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xin Han
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Tong Xu
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Min Liu
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Guanghong Chen
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Lingpeng Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Hepatology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Honglin Xu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Department of geratology, Affliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523058, China
| | - Yue Hua
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Mingjie Pang
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Changlei Hu
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yuting Wu
- Binzhou Medical University Hospital, Binzhou, 256603, China.
| | - Bin Liu
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Yingchun Zhou
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
7
|
Cheng M, Li T, Hu E, Yan Q, Li H, Wang Y, Luo J, Tang T. A novel strategy of integrating network pharmacology and transcriptome reveals antiapoptotic mechanisms of Buyang Huanwu Decoction in treating intracerebral hemorrhage. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117123. [PMID: 37673200 DOI: 10.1016/j.jep.2023.117123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Buyang Huanwu Decoction (BYHWD), as a traditional Chinese medical prescription, has been used to treat intracerebral hemorrhage (ICH) for hundreds of years, but the antiapoptotic properties have not yet been studied. AIM OF THE STUDY This study aims to elucidate the antiapoptotic mechanism of BYHWD in ICH. MATERIALS AND METHODS The therapeutic effect of BYHWD on ICH was assessed by modified neurological severity scores (mNSS), foot fault, and histopathological staining. Then, we used a modified comprehensive strategy by integrating transcriptome and network pharmacology to reveal the underlying mechanism. TUNEL assay, qRT-PCR, and western blot were further applied to evaluate the antiapoptotic effect of BYHWD on ICH. Dual-luciferase reporter assay and plasmid transfections were implemented to validate the potential competing endogenous RNAs (ceRNA) mechanism of Sh2b3. RESULTS Network pharmacology analysis indicated that the regulation of the apoptotic process was the highest enriched GO term, and that MAP kinase activity, ERK1, and ERK2 cascade were strongly correlated. Transcriptome analysis screened 180 differentially expressed mRNAs, which were highly enriched in the immune system process and negative regulation of programmed cell death. By checking the literature, we found that Sh2b3 was of great importance to apoptosis by modulating MAPK cascades. TUNEL assay validated the anti-apoptotic effect of BYHWD. Moreover, BYHWD was proven to regulate the Sh2b3-mediated ERK1/2 signaling pathway in ICH mice by qRT-PCR and western blot. We further explored the lncRNA-miRNA-mRNA network underlying the therapeutic effect, among which 4933404O12Rik/miR-185-5p is the upstream regulatory mechanism of Sh2b3. CONCLUSIONS We explored the antiapoptotic mechanism of BYHWD in treating ICH by a novel integrated strategy, which involved the 4933404O12Rik/miR-185-5p/Sh2b3 ceRNAs axis.
Collapse
Affiliation(s)
- Menghan Cheng
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Teng Li
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang, 330006, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - En Hu
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang, 330006, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Qiuju Yan
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Haigang Li
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, Hunan, 410219, PR China
| | - Yang Wang
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang, 330006, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Jiekun Luo
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang, 330006, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Tao Tang
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang, 330006, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| |
Collapse
|
8
|
Hu J, Li P, Zhao H, Ji P, Yang Y, Ma J, Zhao X. Alterations of gut microbiota and its correlation with the liver metabolome in the process of ameliorating Parkinson's disease with Buyang Huanwu decoction. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116893. [PMID: 37423520 DOI: 10.1016/j.jep.2023.116893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Buyang Huanwu decoction (BHD), a famous traditional Chinese medicine (TCM) formula, was first recorded in Qing Dynasty physician Qingren Wang's Yi Lin Gai Cuo. BHD has been widely utilized in the treatment of patients with neurological disorders, including Parkinson's disease (PD). However, the underlying mechanism has not been fully elucidated. In particular, little is known about the role of gut microbiota. AIM OF THE STUDY We aimed to reveal the alterations and functions of gut microbiota and its correlation with the liver metabolome in the process of improving PD with BHD. MATERIALS AND METHODS The cecal contents were collected from PD mice treated with or without BHD. 16S rRNA gene sequencing was performed on an Illumina MiSeq-PE250 platform, and the ecological structure, dominant taxa, co-occurrence patterns, and function prediction of the gut microbial community were analyzed by multivariate statistical methods. The correlation between differential microbial communities in the gut and differentially accumulated metabolites in the liver was analyzed using Spearman's correlation analysis. RESULTS The abundance of Butyricimonas, Christensenellaceae, Coprococcus, Peptococcaceae, Odoribacteraceae, and Roseburia was altered significantly in the model group, which was by BHD. Ten genera, namely Dorea, unclassified_Lachnospiraceae, Oscillospira, unidentified_Ruminococcaceae, unclassified_Clostridiales, unidentified_Clostridiales, Bacteroides, unclassified_Prevotellaceae, unidentified_Rikenellaceae, and unidentified_S24-7, were identified as key bacterial communities. According to the function prediction of differential genera, the mRNA surveillance pathway might be a target of BHD. Integrated analysis of gut microbiota and the liver metabolome revealed that several gut microbiota genera such as Parabacteroides, Ochrobactrum, Acinetobacter, Clostridium, and Halomonas, were positively or negatively correlated with some nervous system-related metabolites, such as L-carnitine, L-pyroglutamic acid, oleic acid, and taurine. CONCLUSIONS Gut microbiota might be a target of BHD in the process of ameliorating PD. Our findings provide novel insight into the mechanisms underlying the effects of BHD on PD and contribute to the development of TCM.
Collapse
Affiliation(s)
- Jianran Hu
- Department of Biological Science and Technology, Jinzhong University, Jinzhong, 030619, China
| | - Ping Li
- Department of Biological Science and Technology, Jinzhong University, Jinzhong, 030619, China.
| | - Hongmei Zhao
- Department of Biological Science and Technology, Jinzhong University, Jinzhong, 030619, China
| | - Pengyu Ji
- Department of Biological Science and Technology, Jinzhong University, Jinzhong, 030619, China
| | - Yanjun Yang
- Department of Biological Science and Technology, Jinzhong University, Jinzhong, 030619, China
| | - Jianhua Ma
- Department of Biological Science and Technology, Jinzhong University, Jinzhong, 030619, China
| | - Xin Zhao
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
9
|
Cai Y, Yu Z, Yang X, Luo W, Hu E, Li T, Zhu W, Wang Y, Tang T, Luo J. Integrative transcriptomic and network pharmacology analysis reveals the neuroprotective role of BYHWD through enhancing autophagy by inhibiting Ctsb in intracerebral hemorrhage mice. Chin Med 2023; 18:150. [PMID: 37957754 PMCID: PMC10642062 DOI: 10.1186/s13020-023-00852-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND In this study, we aimed to combine transcriptomic and network pharmacology to explore the crucial mRNAs and specific regulatory molecules of Buyang Huanwu Decoction (BYHWD) in intracerebral hemorrhage (ICH) treatment. METHODS C57BL/6 mice were randomly divided into three groups: sham, ICH, and BYHWD. BYHWD (43.29 g/kg) was administered once a day for 7 days. An equal volume of double-distilled water was used as a control. Behavioural and histopathological experiments were conducted to confirm the neuroprotective effects of BYHWD. Brain tissues were collected for transcriptomic detection. Bioinformatics analysis were performed to illustrate the target gene functions. Network pharmacology was used to predict potential targets for BYHWD. Next, transcriptomic assays were combined with network pharmacology to identify the potential differentially expressed mRNAs. Immunofluorescence staining, real-time polymerase chain reaction, western blotting, and transmission electron microscopy were performed to elucidate the underlying mechanisms. RESULTS BYHWD intervention in ICH reduced neurological deficits. Network pharmacology analysis identified 203 potential therapeutic targets for ICH, whereas transcriptomic assay revealed 109 differentially expressed mRNAs post-ICH. Among these, cathepsin B, ATP binding cassette subfamily B member 1, toll-like receptor 4, chemokine (C-C motif) ligand 12, and baculoviral IAP repeat-containing 5 were identified as potential target mRNAs through the integration of transcriptomics and network pharmacology approaches. Bioinformatics analysis suggested that the beneficial effects of BYHWD in ICH may be associated with apoptosis, animal autophagy signal pathways, and PI3K-Akt and mTOR biological processes. Furthermore, BYHWD intervention decreased Ctsb expression levels and increased autophagy levels in ICH. CONCLUSIONS Animal experiments in combination with bioinformatics analysis confirmed that BYHWD plays a neuroprotective role in ICH by regulating Ctsb to enhance autophagy.
Collapse
Affiliation(s)
- Yiqing Cai
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Zhe Yu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Xueping Yang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Weikang Luo
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - En Hu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Teng Li
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Wenxin Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Yang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Tao Tang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Jiekun Luo
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Regional Center for Neurological Diseases, Xiangya Hospital, Central South University Jiangxi, Nanchang, 330000, Jiangxi, People's Republic of China.
| |
Collapse
|
10
|
Qi D, Lu J, Fu Z, Lv S, Hou L. Psoralen Promotes Proliferation, Migration, and Invasion of Human Extravillous Trophoblast Derived HTR-8/Svneo Cells in vitro by NF-κB Pathway. Front Pharmacol 2022; 13:804400. [PMID: 35462898 PMCID: PMC9024043 DOI: 10.3389/fphar.2022.804400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/23/2022] [Indexed: 11/25/2022] Open
Abstract
Recurrent spontaneous abortion (RSA) is a kind of pathological pregnancy, and abnormal function of trophoblast cells may be related to a variety of pregnancy complications including RSA. Psoralen is an effective ingredient extracted from Cullen corylifolium (L.) Medik. with multiple bioactivities mainly including anti-osteoporotic, anti-tumor, anti-inflammatory, and estrogen-like effects. However, the exact role of psoralen on trophoblast invasiveness has not been investigated thus far. In the present study, the effects of psoralen on the proliferation, migration, and invasion abilities of HTR-8/SVneo cells were evaluated by the CCK-8 and Transwell assays. The expression patterns of nuclear factor κB (NF-κB)/p65 and metalloproteinases (MMP)-2 and MMP-9 were characterized by further experiments including real-time quantitative polymerase chain reaction and Western blot. Indirect immunofluorescence was applied to track the NF-κB p65 translocation. Herein, we found that cell viability and invasive ability were promoted by psoralen in a concentration-dependent manner. Psoralen concentration-dependently enhanced both MMP-2 and MMP-9 expression and their activity of HTR-8/SVneo cells. Additionally, we observed accelerated nuclear accumulation and enhanced nuclear translocation of p65 in the presence of psoralen. Furthermore, invasiveness enhancement of psoralen on HTR-8/SVneo cells was partly eliminated by a NF-κB pathway inhibitor. Thus, our findings suggest that psoralen may serve as a potential repurpose drug candidate that can be used to induce migration and invasion of trophoblast cells through strengthening the NF-κB pathway.
Collapse
Affiliation(s)
- Dan Qi
- Department of Traditional Chinese Medicine, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Jingyuan Lu
- Department of Radiological Intervention, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Ziyi Fu
- Department of Traditional Chinese Medicine, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Shanshan Lv
- Department of Traditional Chinese Medicine, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Lili Hou
- Department of Traditional Chinese Medicine, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Lili Hou,
| |
Collapse
|
11
|
Yang Z, Li X, Luo W, Wu Y, Tang T, Wang Y. The Involvement of Long Non-coding RNA and Messenger RNA Based Molecular Networks and Pathways in the Subacute Phase of Traumatic Brain Injury in Adult Mice. Front Neuroinform 2022; 16:794342. [PMID: 35311004 PMCID: PMC8931714 DOI: 10.3389/fninf.2022.794342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
Abstract
Traumatic brain injury (TBI) is a complex injury with a multi-faceted recovery process. Long non-coding RNAs (lncRNAs) are demonstrated to be involved in central nervous system (CNS) disorders. However, the roles of lncRNAs in long-term neurological deficits post-TBI are poorly understood. The present study depicted the microarray’s lncRNA and messenger RNA (mRNA) profiles at 14 days in TBI mice hippocampi. LncRNA and mRNA microarray was used to identify differentially expressed genes. Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to validate the microarray results. Bioinformatics analysis [including Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, lncRNA-mRNA co-expression network, and lncRNA-miRNA-mRNA network] were applied to explore the underlying mechanism. A total of 264 differentially expressed lncRNAs and 232 expressed mRNAs were identified (fold change > 1.5 and P-value < 0.05). Altered genes were enriched in inflammation, immune response, blood–brain barrier, glutamatergic neurological effects, and neuroactive ligand-receptor, which may be associated with TBI-induced pathophysiologic changes in the long-term neurological deficits. The lncRNAs-mRNAs co-expression network was generated for 74 lncRNA-mRNA pairs, most of which are positive correlations. The lncRNA-miRNA-mRNA interaction network included 12 lncRNAs, 59 miRNAs, and 25 mRNAs. Numerous significantly altered lncRNAs and mRNAs in mice hippocampi were enriched in inflammation and immune response. Furthermore, these dysregulated lncRNAs and mRNAs may be promising therapeutic targets to overcome obstacles in long-term recovery following TBI.
Collapse
Affiliation(s)
- Zhaoyu Yang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xuexuan Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Weikang Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yao Wu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tao Tang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Tao Tang,
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yang Wang,
| |
Collapse
|