1
|
Khachatryan H, Matevosyan M, Harutyunyan V, Gevorgyan S, Shavina A, Tirosyan I, Gabrielyan Y, Ayvazyan M, Bozdaganyan M, Fakhar Z, Gharaghani S, Zakaryan H. Computational evaluation and benchmark study of 342 crystallographic holo-structures of SARS-CoV-2 Mpro enzyme. Sci Rep 2024; 14:14255. [PMID: 38902397 PMCID: PMC11189913 DOI: 10.1038/s41598-024-65228-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024] Open
Abstract
The coronavirus disease 19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to a global health crisis with millions of confirmed cases and related deaths. The main protease (Mpro) of SARS-CoV-2 is crucial for viral replication and presents an attractive target for drug development. Despite the approval of some drugs, the search for effective treatments continues. In this study, we systematically evaluated 342 holo-crystal structures of Mpro to identify optimal conformations for structure-based virtual screening (SBVS). Our analysis revealed limited structural flexibility among the structures. Three docking programs, AutoDock Vina, rDock, and Glide were employed to assess the efficiency of virtual screening, revealing diverse performances across selected Mpro structures. We found that the structures 5RHE, 7DDC, and 7DPU (PDB Ids) consistently displayed the lowest EF, AUC, and BEDROCK scores. Furthermore, these structures demonstrated the worst pose prediction results in all docking programs. Two structural differences contribute to variations in docking performance: the absence of the S1 subsite in 7DDC and 7DPU, and the presence of a subpocket in the S2 subsite of 7DDC, 7DPU, and 5RHE. These findings underscore the importance of selecting appropriate Mpro conformations for SBVS, providing valuable insights for advancing drug discovery efforts.
Collapse
Affiliation(s)
- Hamlet Khachatryan
- Denovo Sciences Inc, 0060, Yerevan, Armenia.
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Hasratyan 7, 0014, Yerevan, Armenia.
| | - Mher Matevosyan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Hasratyan 7, 0014, Yerevan, Armenia
| | - Vardan Harutyunyan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Hasratyan 7, 0014, Yerevan, Armenia
| | - Smbat Gevorgyan
- Denovo Sciences Inc, 0060, Yerevan, Armenia
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Hasratyan 7, 0014, Yerevan, Armenia
| | - Anastasiya Shavina
- Denovo Sciences Inc, 0060, Yerevan, Armenia
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Hasratyan 7, 0014, Yerevan, Armenia
| | - Irina Tirosyan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Hasratyan 7, 0014, Yerevan, Armenia
| | - Yeva Gabrielyan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Hasratyan 7, 0014, Yerevan, Armenia
| | - Marusya Ayvazyan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Hasratyan 7, 0014, Yerevan, Armenia
| | | | - Zeynab Fakhar
- Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Sajjad Gharaghani
- Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hovakim Zakaryan
- Denovo Sciences Inc, 0060, Yerevan, Armenia.
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Hasratyan 7, 0014, Yerevan, Armenia.
| |
Collapse
|
2
|
Menendez CA, Mohamed A, Perez-Lemus GR, Weiss AM, Rawe BW, Liu G, Crolais AE, Kenna E, Byléhn F, Alvarado W, Mendels D, Rowan SJ, Tay S, de Pablo JJ. Development of Masitinib Derivatives with Enhanced M pro Ligand Efficiency and Reduced Cytotoxicity. Molecules 2023; 28:6643. [PMID: 37764425 PMCID: PMC10536273 DOI: 10.3390/molecules28186643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Recently, a high-throughput screen of 1900 clinically used drugs identified masitinib, an orally bioavailable tyrosine kinase inhibitor, as a potential treatment for COVID-19. Masitinib acts as a broad-spectrum inhibitor for human coronaviruses, including SARS-CoV-2 and several of its variants. In this work, we rely on atomistic molecular dynamics simulations with advanced sampling methods to develop a deeper understanding of masitinib's mechanism of Mpro inhibition. To improve the inhibitory efficiency and to increase the ligand selectivity for the viral target, we determined the minimal portion of the molecule (fragment) that is responsible for most of the interactions that arise within the masitinib-Mpro complex. We found that masitinib forms highly stable and specific H-bond interactions with Mpro through its pyridine and aminothiazole rings. Importantly, the interaction with His163 is a key anchoring point of the inhibitor, and its perturbation leads to ligand unbinding within nanoseconds. Based on these observations, a small library of rationally designed masitinib derivatives (M1-M5) was proposed. Our results show increased inhibitory efficiency and highly reduced cytotoxicity for the M3 and M4 derivatives compared to masitinib.
Collapse
Affiliation(s)
- Cintia A. Menendez
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA (G.R.P.-L.); (B.W.R.); (S.J.R.); (S.T.)
| | - Adil Mohamed
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA (G.R.P.-L.); (B.W.R.); (S.J.R.); (S.T.)
| | - Gustavo R. Perez-Lemus
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA (G.R.P.-L.); (B.W.R.); (S.J.R.); (S.T.)
| | - Adam M. Weiss
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, USA (G.L.); (A.E.C.)
| | - Benjamin W. Rawe
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA (G.R.P.-L.); (B.W.R.); (S.J.R.); (S.T.)
| | - Guancen Liu
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, USA (G.L.); (A.E.C.)
| | - Alex E. Crolais
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, USA (G.L.); (A.E.C.)
| | - Emma Kenna
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA (G.R.P.-L.); (B.W.R.); (S.J.R.); (S.T.)
| | - Fabian Byléhn
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA (G.R.P.-L.); (B.W.R.); (S.J.R.); (S.T.)
| | - Walter Alvarado
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA (G.R.P.-L.); (B.W.R.); (S.J.R.); (S.T.)
| | - Dan Mendels
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA (G.R.P.-L.); (B.W.R.); (S.J.R.); (S.T.)
| | - Stuart J. Rowan
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA (G.R.P.-L.); (B.W.R.); (S.J.R.); (S.T.)
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, USA (G.L.); (A.E.C.)
| | - Savaş Tay
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA (G.R.P.-L.); (B.W.R.); (S.J.R.); (S.T.)
| | - Juan J. de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA (G.R.P.-L.); (B.W.R.); (S.J.R.); (S.T.)
- Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| |
Collapse
|
3
|
Bernal L, Pinzi L, Rastelli G. Identification of Promising Drug Candidates against Prostate Cancer through Computationally-Driven Drug Repurposing. Int J Mol Sci 2023; 24:ijms24043135. [PMID: 36834548 PMCID: PMC9964599 DOI: 10.3390/ijms24043135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Prostate cancer (PC) is one of the most common types of cancer in males. Although early stages of PC are generally associated with favorable outcomes, advanced phases of the disease present a significantly poorer prognosis. Moreover, currently available therapeutic options for the treatment of PC are still limited, being mainly focused on androgen deprivation therapies and being characterized by low efficacy in patients. As a consequence, there is a pressing need to identify alternative and more effective therapeutics. In this study, we performed large-scale 2D and 3D similarity analyses between compounds reported in the DrugBank database and ChEMBL molecules with reported anti-proliferative activity on various PC cell lines. The analyses included also the identification of biological targets of ligands with potent activity on PC cells, as well as investigations on the activity annotations and clinical data associated with the more relevant compounds emerging from the ligand-based similarity results. The results led to the prioritization of a set of drugs and/or clinically tested candidates potentially useful in drug repurposing against PC.
Collapse
Affiliation(s)
- Leonardo Bernal
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Luca Pinzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy
| | - Giulio Rastelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy
- Correspondence: ; Tel.: +39-059-2058564
| |
Collapse
|
4
|
Dhanalakshmi M, Sruthi D, Jinuraj KR, Das K, Dave S, Andal NM, Das J. Mannose: a potential saccharide candidate in disease management. Med Chem Res 2023; 32:391-408. [PMID: 36694836 PMCID: PMC9852811 DOI: 10.1007/s00044-023-03015-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023]
Abstract
There are a plethora of antibiotic resistance cases and humans are marching towards another big survival test of evolution along with drastic climate change and infectious diseases. Ever since the first antibiotic [penicillin], and the myriad of vaccines, we were privileged to escape many infectious disease threats. The survival technique of pathogens seems rapidly changing and sometimes mimicking our own systems in such a perfect manner that we are left unarmed against them. Apart from searching for natural alternatives, repurposing existing drugs more effectively is becoming a familiar approach to new therapeutic opportunities. The ingenious use of revolutionary artificial intelligence-enabled drug discovery techniques is coping with the speed of such alterations. D-Mannose is a great hope as a nutraceutical in drug discovery, against CDG, diabetes, obesity, lung disease, and autoimmune diseases and recent findings of anti-tumor activity make it interesting along with its role in drug delivery enhancing techniques. A very unique work done in the present investigation is the collection of data from the ChEMBL database and presenting the targetable proteins on pathogens as well as on humans. It shows Mannose has 50 targets and the majority of them are on human beings. The structure and conformation of certain monosaccharides have a decisive role in receptor pathogen interactions and here we attempt to review the multifaceted roles of Mannose sugar, its targets associated with different diseases, as a natural molecule having many success stories as a drug and future hope for disease management. Graphical abstract
Collapse
Affiliation(s)
- M. Dhanalakshmi
- Research and Development Centre, Bharathiar University, Coimbatore, 641046 Tamil Nadu India
| | - D. Sruthi
- Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012 India
| | - K. R. Jinuraj
- OSPF-NIAS Drug Discovery Lab, NIAS, IISc Campus, Bengaluru, 560012 India
| | - Kajari Das
- Department of Biotechnology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-3, Odisha India
| | - Sushma Dave
- Department of Applied Sciences, JIET, Jodhpur, Rajasthan India
| | - N. Muthulakshmi Andal
- Department of Chemistry, PSGR Krishnammal College for Women, Coimbatore, 641004 Tamil Nadu India
| | - Jayashankar Das
- Valnizen Healthcare, Vile Parle West, Mumbai, 400056 Maharashtra India
| |
Collapse
|
5
|
Rudrapal M, Paudel KR, Pangeni R. Editorial: Drug repurposing and polypharmacology: A synergistic approach in multi-target based drug discovery. Front Pharmacol 2022; 13:1101007. [PMID: 36605397 PMCID: PMC9808379 DOI: 10.3389/fphar.2022.1101007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Mithun Rudrapal
- Department of Pharmaceutical Chemistry, Rasiklal M. Dhariwal Institute of Pharmaceutical Education & Research, Pune, India,*Correspondence: Mithun Rudrapal,
| | - Keshav Raj Paudel
- Department of Oriental Medicine Resources, Mokpo National University, Muan-gun, South Korea
| | - Rudra Pangeni
- Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
6
|
Parigger L, Krassnigg A, Schopper T, Singh A, Tappler K, Köchl K, Hetmann M, Gruber K, Steinkellner G, Gruber CC. Recent changes in the mutational dynamics of the SARS-CoV-2 main protease substantiate the danger of emerging resistance to antiviral drugs. Front Med (Lausanne) 2022; 9:1061142. [PMID: 36590977 PMCID: PMC9794616 DOI: 10.3389/fmed.2022.1061142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction The current coronavirus pandemic is being combated worldwide by nontherapeutic measures and massive vaccination programs. Nevertheless, therapeutic options such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main-protease (Mpro) inhibitors are essential due to the ongoing evolution toward escape from natural or induced immunity. While antiviral strategies are vulnerable to the effects of viral mutation, the relatively conserved Mpro makes an attractive drug target: Nirmatrelvir, an antiviral targeting its active site, has been authorized for conditional or emergency use in several countries since December 2021, and a number of other inhibitors are under clinical evaluation. We analyzed recent SARS-CoV-2 genomic data, since early detection of potential resistances supports a timely counteraction in drug development and deployment, and discovered accelerated mutational dynamics of Mpro since early December 2021. Methods We performed a comparative analysis of 10.5 million SARS-CoV-2 genome sequences available by June 2022 at GISAID to the NCBI reference genome sequence NC_045512.2. Amino-acid exchanges within high-quality regions in 69,878 unique Mpro sequences were identified and time- and in-depth sequence analyses including a structural representation of mutational dynamics were performed using in-house software. Results The analysis showed a significant recent event of mutational dynamics in Mpro. We report a remarkable increase in mutational variability in an eight-residue long consecutive region (R188-G195) near the active site since December 2021. Discussion The increased mutational variability in close proximity to an antiviral-drug binding site as described herein may suggest the onset of the development of antiviral resistance. This emerging diversity urgently needs to be further monitored and considered in ongoing drug development and lead optimization.
Collapse
Affiliation(s)
- Lena Parigger
- Innophore GmbH, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | | | - Amit Singh
- Innophore GmbH, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Katharina Tappler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Michael Hetmann
- Innophore GmbH, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Austrian Centre of Industrial Biotechnology, Graz, Austria
| | - Karl Gruber
- Innophore GmbH, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Austrian Centre of Industrial Biotechnology, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Georg Steinkellner
- Innophore GmbH, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Christian C. Gruber
- Innophore GmbH, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Austrian Centre of Industrial Biotechnology, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| |
Collapse
|
7
|
Mousavi S, Zare S, Mirzaei M, Feizi A. Novel Drug Design for Treatment of COVID-19: A Systematic Review of Preclinical Studies. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:2044282. [PMID: 36199815 PMCID: PMC9527439 DOI: 10.1155/2022/2044282] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/23/2022] [Accepted: 08/03/2022] [Indexed: 11/27/2022]
Abstract
Background Since the beginning of the novel coronavirus (SARS-CoV-2) disease outbreak, there has been an increasing interest in discovering potential therapeutic agents for this disease. In this regard, we conducted a systematic review through an overview of drug development (in silico, in vitro, and in vivo) for treating COVID-19. Methods A systematic search was carried out in major databases including PubMed, Web of Science, Scopus, EMBASE, and Google Scholar from December 2019 to March 2021. A combination of the following terms was used: coronavirus, COVID-19, SARS-CoV-2, drug design, drug development, In silico, In vitro, and In vivo. A narrative synthesis was performed as a qualitative method for the data synthesis of each outcome measure. Results A total of 2168 articles were identified through searching databases. Finally, 315 studies (266 in silico, 34 in vitro, and 15 in vivo) were included. In studies with in silico approach, 98 article study repurposed drug and 91 studies evaluated herbal medicine on COVID-19. Among 260 drugs repurposed by the computational method, the best results were observed with saquinavir (n = 9), ritonavir (n = 8), and lopinavir (n = 6). Main protease (n = 154) following spike glycoprotein (n = 62) and other nonstructural protein of virus (n = 45) was among the most studied targets. Doxycycline, chlorpromazine, azithromycin, heparin, bepridil, and glycyrrhizic acid showed both in silico and in vitro inhibitory effects against SARS-CoV-2. Conclusion The preclinical studies of novel drug design for COVID-19 focused on main protease and spike glycoprotein as targets for antiviral development. From evaluated structures, saquinavir, ritonavir, eucalyptus, Tinospora cordifolia, aloe, green tea, curcumin, pyrazole, and triazole derivatives in in silico studies and doxycycline, chlorpromazine, and heparin from in vitro and human monoclonal antibodies from in vivo studies showed promised results regarding efficacy. It seems that due to the nature of COVID-19 disease, finding some drugs with multitarget antiviral actions and anti-inflammatory potential is valuable and some herbal medicines have this potential.
Collapse
Affiliation(s)
- Sarah Mousavi
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shima Zare
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmoud Mirzaei
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Awat Feizi
- Department of Epidemiology and Biostatistics, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
8
|
Evaluation of the anti-SARS-CoV-2 properties of essential oils and aromatic extracts. Sci Rep 2022; 12:14230. [PMID: 35987981 PMCID: PMC9392441 DOI: 10.1038/s41598-022-18676-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 08/17/2022] [Indexed: 01/18/2023] Open
Abstract
Essential oils and aromatic extracts (oleoresins, absolutes, concretes, resinoids) are often used as food flavorings and constituents of fragrance compositions. The flavor and fragrance industry observed significant growth in the sales of some natural materials during the COVID-19 outbreak. Some companies worldwide are making false claims regarding the effectiveness of their essential oils or blends (or indirectly point toward this conclusion) against coronaviruses, even though the available data on the activity of plant materials against highly pathogenic human coronaviruses are very scarce. Our exploratory study aimed to develop pioneering knowledge and provide the first experimental results on the inhibitory properties of hundreds of flavor and fragrance materials against SARS-CoV-2 main and papain-like proteases and the antiviral potential of the most active protease inhibitors. As essential oils are volatile products, they could provide an interesting therapeutic strategy for subsidiary inhalation in the long term.
Collapse
|
9
|
Alzyoud L, Ghattas MA, Atatreh N. Allosteric Binding Sites of the SARS-CoV-2 Main Protease: Potential Targets for Broad-Spectrum Anti-Coronavirus Agents. Drug Des Devel Ther 2022; 16:2463-2478. [PMID: 35941927 PMCID: PMC9356625 DOI: 10.2147/dddt.s370574] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/23/2022] [Indexed: 12/23/2022] Open
Abstract
The current pandemic caused by the COVID-19 disease has reached everywhere in the world and has affected every aspect of our lives. As of the current data, the World Health Organization (WHO) has reported more than 300 million confirmed COVID-19 cases worldwide and more than 5 million deaths. Mpro is an enzyme that plays a key role in the life cycle of the SARS-CoV-2 virus, and it is vital for the disease progression. The Mpro enzyme seems to have several allosteric sites that can hinder the enzyme catalytic activity. Furthermore, some of these allosteric sites are located at or nearby the dimerization interface which is essential for the overall Mpro activity. In this review paper, we investigate the potential of the Mpro allosteric site to act as a drug target, especially since they interestingly appear to be resistant to mutation. The work is illustrated through three subsequent sections: First, the two main categories of Mpro allosteric sites have been explained and discussed. Second, a total of six pockets have been studied and evaluated for their druggability and cavity characteristics. Third, the experimental and computational attempts for the discovery of new allosteric inhibitors have been illustrated and discussed. To sum up, this review paper gives a detailed insight into the feasibility of developing new Mpro inhibitors to act as a potential treatment for the COVID-19 disease.
Collapse
Affiliation(s)
- Lara Alzyoud
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Mohammad A Ghattas
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
- Correspondence: Mohammad A Ghattas; Noor Atatreh, Email ;
| | - Noor Atatreh
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
10
|
Gao K, Wang R, Chen J, Cheng L, Frishcosy J, Huzumi Y, Qiu Y, Schluckbier T, Wei X, Wei GW. Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2. Chem Rev 2022; 122:11287-11368. [PMID: 35594413 PMCID: PMC9159519 DOI: 10.1021/acs.chemrev.1c00965] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite tremendous efforts in the past two years, our understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), virus-host interactions, immune response, virulence, transmission, and evolution is still very limited. This limitation calls for further in-depth investigation. Computational studies have become an indispensable component in combating coronavirus disease 2019 (COVID-19) due to their low cost, their efficiency, and the fact that they are free from safety and ethical constraints. Additionally, the mechanism that governs the global evolution and transmission of SARS-CoV-2 cannot be revealed from individual experiments and was discovered by integrating genotyping of massive viral sequences, biophysical modeling of protein-protein interactions, deep mutational data, deep learning, and advanced mathematics. There exists a tsunami of literature on the molecular modeling, simulations, and predictions of SARS-CoV-2 and related developments of drugs, vaccines, antibodies, and diagnostics. To provide readers with a quick update about this literature, we present a comprehensive and systematic methodology-centered review. Aspects such as molecular biophysics, bioinformatics, cheminformatics, machine learning, and mathematics are discussed. This review will be beneficial to researchers who are looking for ways to contribute to SARS-CoV-2 studies and those who are interested in the status of the field.
Collapse
Affiliation(s)
- Kaifu Gao
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rui Wang
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jiahui Chen
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Limei Cheng
- Clinical
Pharmacology and Pharmacometrics, Bristol
Myers Squibb, Princeton, New Jersey 08536, United States
| | - Jaclyn Frishcosy
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuta Huzumi
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuchi Qiu
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Tom Schluckbier
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xiaoqi Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Guo-Wei Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
11
|
Lazniewski M, Dermawan D, Hidayat S, Muchtaridi M, Dawson WK, Plewczynski D. Drug repurposing for identification of potential spike inhibitors for SARS-CoV-2 using molecular docking and molecular dynamics simulations. Methods 2022; 203:498-510. [PMID: 35167916 PMCID: PMC8839799 DOI: 10.1016/j.ymeth.2022.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/04/2022] [Accepted: 02/10/2022] [Indexed: 01/25/2023] Open
Abstract
For the last two years, the COVID-19 pandemic has continued to bring consternation on most of the world. According to recent WHO estimates, there have been more than 5.6 million deaths worldwide. The virus continues to evolve all over the world, thus requiring both vigilance and the necessity to find and develop a variety of therapeutic treatments, including the identification of specific antiviral drugs. Multiple studies have confirmed that SARS-CoV-2 utilizes its membrane-bound spike protein to recognize human angiotensin-converting enzyme 2 (ACE2). Thus, preventing spike-ACE2 interactions is a potentially viable strategy for COVID-19 treatment as it would block the virus from binding and entering into a host cell. This work aims to identify potential drugs using an in silico approach. Molecular docking was carried out on both approved drugs and substances previously tested in vivo. This step was followed by a more detailed analysis of selected ligands by molecular dynamics simulations to identify the best molecules that thwart the ability of the virus to interact with the ACE2 receptor. Because the SARS-CoV-2 virus evolves rapidly due to a plethora of immunocompromised hosts, the compounds were tested against five different known lineages. As a result, we could identify substances that work well on individual lineages and those showing broader efficacy. The most promising candidates among the currently used drugs were zafirlukast and simeprevir with an average binding affinity of -22 kcal/mol for spike proteins originating from various lineages. The first compound is a leukotriene receptor antagonist that is used to treat asthma, while the latter is a protease inhibitor used for hepatitis C treatment. From among the in vivo tested substances that concurrently exhibit promising free energy of binding and ADME parameters (indicating a possible oral administration) we selected the compound BDBM50136234. In conclusion, these molecules are worth exploring further by in vitro and in vivo studies against SARS-CoV-2.
Collapse
Affiliation(s)
- Michal Lazniewski
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Warsaw, Poland,Corresponding authors
| | - Doni Dermawan
- Applied Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland,Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Indonesia
| | - Syahrul Hidayat
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Indonesia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Indonesia
| | - Wayne K. Dawson
- Veritas In Silico, 1-11-1 Nishigotanda, Shinagawa-ku, Tokyo 141-0031, Japan
| | - Dariusz Plewczynski
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland,Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Warsaw, Poland,Corresponding authors
| |
Collapse
|
12
|
Abstract
B-Raf is a protein kinase participating to the regulation of many biological processes in cells. Several studies have demonstrated that this protein is frequently upregulated in human cancers, especially when it bears activating mutations. In the last years, few ATP-competitive inhibitors of B-Raf have been marketed for the treatment of melanoma and are currently under clinical evaluation on a variety of other types of cancer. Although the introduction of drugs targeting B-Raf has provided significant advances in cancer treatment, responses to ATP-competitive inhibitors remain limited, mainly due to selectivity issues, side effects, narrow therapeutic windows, and the insurgence of drug resistance. Impressive research efforts have been made so far towards the identification of novel ATP-competitive modulators with improved efficacy against cancers driven by mutant Raf monomers and dimers, some of them showing good promises. However, several limitations could still be envisioned for these compounds, according to literature data. Besides, increased attentions have arisen around approaches based on the design of allosteric modulators, polypharmacology, proteolysis targeting chimeras (PROTACs) and drug repurposing for the targeting of B-Raf proteins. The design of compounds acting through such innovative mechanisms is rather challenging. However, valuable therapeutic opportunities can be envisioned on these drugs, as they act through innovative mechanisms in which limitations typically observed for approved ATP-competitive B-Raf inhibitors are less prone to emerge. In this article, current approaches adopted for the design of non-ATP competitive inhibitors targeting B-Raf are described, discussing also on the possibilities, ligands acting through such innovative mechanisms could provide for the obtainment of more effective therapies.
Collapse
Affiliation(s)
- Luca Pinzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125, Modena, Italy
| |
Collapse
|
13
|
Jamir E, Sarma H, Priyadarsinee L, Nagamani S, Kiewhuo K, Gaur AS, Rawal RK, Murugan NA, Subramanian V, Sastry GN. Applying polypharmacology approach for drug repurposing for SARS-CoV2. J CHEM SCI 2022; 134:57. [PMID: 35498548 PMCID: PMC9028909 DOI: 10.1007/s12039-022-02046-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023]
Abstract
Exploring the new therapeutic indications of known drugs for treating COVID-19, popularly known as drug repurposing, is emerging as a pragmatic approach especially owing to the mounting pressure to control the pandemic. Targeting multiple targets with a single drug by employing drug repurposing known as the polypharmacology approach may be an optimised strategy for the development of effective therapeutics. In this study, virtual screening has been carried out on seven popular SARS-CoV-2 targets (3CLpro, PLpro, RdRp (NSP12), NSP13, NSP14, NSP15, and NSP16). A total of 4015 approved drugs were screened against these targets. Four drugs namely venetoclax, tirilazad, acetyldigitoxin, and ledipasvir have been selected based on the docking score, ability to interact with four or more targets and having a reasonably good number of interactions with key residues in the targets. The MD simulations and MM-PBSA studies showed reasonable stability of protein-drug complexes and sustainability of key interactions between the drugs with their respective targets throughout the course of MD simulations. The identified four drug molecules were also compared with the known drugs namely elbasvir and nafamostat. While the study has provided a detailed account of the chosen protein-drug complexes, it has explored the nature of seven important targets of SARS-CoV-2 by evaluating the protein-drug complexation process in great detail.
Collapse
Affiliation(s)
- Esther Jamir
- Advanced Computation and Data Sciences Division, CSIR – North East Institute of Science and Technology, Jorhat, Assam 785006 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Himakshi Sarma
- Advanced Computation and Data Sciences Division, CSIR – North East Institute of Science and Technology, Jorhat, Assam 785006 India
| | - Lipsa Priyadarsinee
- Advanced Computation and Data Sciences Division, CSIR – North East Institute of Science and Technology, Jorhat, Assam 785006 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Selvaraman Nagamani
- Advanced Computation and Data Sciences Division, CSIR – North East Institute of Science and Technology, Jorhat, Assam 785006 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kikrusenuo Kiewhuo
- Advanced Computation and Data Sciences Division, CSIR – North East Institute of Science and Technology, Jorhat, Assam 785006 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anamika Singh Gaur
- Advanced Computation and Data Sciences Division, CSIR – North East Institute of Science and Technology, Jorhat, Assam 785006 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ravindra K Rawal
- Advanced Computation and Data Sciences Division, CSIR – North East Institute of Science and Technology, Jorhat, Assam 785006 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Natarajan Arul Murugan
- Department of Computer Science, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Venkatesan Subramanian
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Center for High Computing, CSIR- Central Leather Research Institute (CLRI), Chennai, India
| | - G Narahari Sastry
- Advanced Computation and Data Sciences Division, CSIR – North East Institute of Science and Technology, Jorhat, Assam 785006 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
14
|
Tinivella A, Pinzi L, Gambacorta G, Baxendale I, Rastelli G. Identification of potential biological targets of oxindole scaffolds via in silico repositioning strategies. F1000Res 2022; 11:Chem Inf Sci-217. [PMID: 37767081 PMCID: PMC10521104 DOI: 10.12688/f1000research.109017.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/14/2022] [Indexed: 09/29/2023] Open
Abstract
Background: Drug repurposing is an alternative strategy to traditional drug discovery that aims at predicting new uses for already existing drugs or clinical candidates. Drug repurposing has many advantages over traditional drug development, such as reduced attrition rates, time and costs. This is especially the case considering that most drugs investigated for repurposing have already been assessed for their safety in clinical trials. Repurposing campaigns can also be designed for libraries of already synthesized molecules at different levels of biological experimentation, from null to in vitro and in vivo. Such an extension of the "repurposing" concept is expected to provide significant advantages for the identification of novel drugs, as the synthetic accessibility of the desired compounds is often one of the limiting factors in the traditional drug discovery pipeline. Methods: In this work, we performed a computational repurposing campaign on a library of previously synthesized oxindole-based compounds, in order to identify potential new targets for this versatile scaffold. To this aim, ligand-based approaches were firstly applied to evaluate the similarity degree of the investigated compound library, with respect to ligands extracted from the DrugBank, Protein Data Bank (PDB) and ChEMBL databases. In particular, the 2D fingerprint-based and 3D shape-based similarity profiles were evaluated and compared for the oxindole derivates. Results: The analyses predicted a set of potential candidate targets for repurposing, some of them emerging by consensus of different computational analyses. One of the identified targets, i.e., the vascular endothelial growth factor receptor 2 (VEGFR-2) kinase, was further investigated by means of docking calculations, followed by biological testing of one candidate. Conclusions: While the compound did not show potent inhibitory activity towards VEGFR-2, the study highlighted several other possibilities of therapeutically relevant targets that may be worth of consideration for drug repurposing.
Collapse
Affiliation(s)
- Annachiara Tinivella
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Pinzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Ian Baxendale
- Department of Chemistry, University of Durham, Durham, UK
| | - Giulio Rastelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
15
|
Al-Awwal N, Dweik F, Mahdi S, El-Dweik M, Anderson SH. A Review of SARS-CoV-2 Disease (COVID-19): Pandemic in Our Time. Pathogens 2022; 11:368. [PMID: 35335691 PMCID: PMC8951506 DOI: 10.3390/pathogens11030368] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 12/14/2022] Open
Abstract
Development and deployment of biosensors for the rapid detection of the 2019 novel severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) are of utmost importance and urgency during this recent outbreak of coronavirus pneumonia (COVID-19) caused by SARS-CoV-2 infection, which spread rapidly around the world. Cases now confirmed in February 2022 indicate that more than 170 countries worldwide are affected. Recent evidence indicates over 430 million confirmed cases with over 5.92 million deaths scattered across the globe, with the United States having more than 78 million confirmed cases and over 920,000 deaths. The US now has many more cases than in China where coronavirus cases were first reported in late December 2019. During the initial outbreak in China, many leaders did not anticipate it could reach the whole world, spreading to many countries and posing severe threats to global health. The objective of this review is to summarize the origin of COVID-19, its biological nature, comparison with other coronaviruses, symptoms, prevention, treatment, potential, available methods for SARS-CoV-2 detection, and post-COVID-19 symptoms.
Collapse
Affiliation(s)
- Nasruddeen Al-Awwal
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA;
| | - Ferris Dweik
- Department of Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA;
| | - Samira Mahdi
- Cooperative Research, Lincoln University, Jefferson City, MO 65101, USA;
| | - Majed El-Dweik
- Cooperative Research, Lincoln University, Jefferson City, MO 65101, USA;
| | - Stephen H. Anderson
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA;
| |
Collapse
|
16
|
Marforio TD, Mattioli EJ, Zerbetto F, Calvaresi M. Fullerenes against COVID-19: Repurposing C 60 and C 70 to Clog the Active Site of SARS-CoV-2 Protease. Molecules 2022; 27:1916. [PMID: 35335283 PMCID: PMC8955646 DOI: 10.3390/molecules27061916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 11/28/2022] Open
Abstract
The persistency of COVID-19 in the world and the continuous rise of its variants demand new treatments to complement vaccines. Computational chemistry can assist in the identification of moieties able to lead to new drugs to fight the disease. Fullerenes and carbon nanomaterials can interact with proteins and are considered promising antiviral agents. Here, we propose the possibility to repurpose fullerenes to clog the active site of the SARS-CoV-2 protease, Mpro. Through the use of docking, molecular dynamics, and energy decomposition techniques, it is shown that C60 has a substantial binding energy to the main protease of the SARS-CoV-2 virus, Mpro, higher than masitinib, a known inhibitor of the protein. Furthermore, we suggest the use of C70 as an innovative scaffold for the inhibition of SARS-CoV-2 Mpro. At odds with masitinib, both C60 and C70 interact more strongly with SARS-CoV-2 Mpro when different protonation states of the catalytic dyad are considered. The binding of fullerenes to Mpro is due to shape complementarity, i.e., vdW interactions, and is aspecific. As such, it is not sensitive to mutations that can eliminate or invert the charges of the amino acids composing the binding pocket. Fullerenic cages should therefore be more effective against the SARS-CoV-2 virus than the available inhibitors such as masinitib, where the electrostatic term plays a crucial role in the binding.
Collapse
Affiliation(s)
- Tainah Dorina Marforio
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum-Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy; (E.J.M.); (F.Z.)
| | | | | | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum-Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy; (E.J.M.); (F.Z.)
| |
Collapse
|
17
|
Groza V, Udrescu M, Bozdog A, Udrescu L. Drug Repurposing Using Modularity Clustering in Drug-Drug Similarity Networks Based on Drug-Gene Interactions. Pharmaceutics 2021; 13:2117. [PMID: 34959398 PMCID: PMC8709282 DOI: 10.3390/pharmaceutics13122117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/14/2022] Open
Abstract
Drug repurposing is a valuable alternative to traditional drug design based on the assumption that medicines have multiple functions. Computer-based techniques use ever-growing drug databases to uncover new drug repurposing hints, which require further validation with in vitro and in vivo experiments. Indeed, such a scientific undertaking can be particularly effective in the case of rare diseases (resources for developing new drugs are scarce) and new diseases such as COVID-19 (designing new drugs require too much time). This paper introduces a new, completely automated computational drug repurposing pipeline based on drug-gene interaction data. We obtained drug-gene interaction data from an earlier version of DrugBank, built a drug-gene interaction network, and projected it as a drug-drug similarity network (DDSN). We then clustered DDSN by optimizing modularity resolution, used the ATC codes distribution within each cluster to identify potential drug repurposing candidates, and verified repurposing hints with the latest DrugBank ATC codes. Finally, using the best modularity resolution found with our method, we applied our pipeline to the latest DrugBank drug-gene interaction data to generate a comprehensive drug repurposing hint list.
Collapse
Affiliation(s)
- Vlad Groza
- Department of Computer and Information Technology, University Politehnica of Timişoara, 300223 Timişoara, Romania; (V.G.); (A.B.)
| | - Mihai Udrescu
- Department of Computer and Information Technology, University Politehnica of Timişoara, 300223 Timişoara, Romania; (V.G.); (A.B.)
| | - Alexandru Bozdog
- Department of Computer and Information Technology, University Politehnica of Timişoara, 300223 Timişoara, Romania; (V.G.); (A.B.)
| | - Lucreţia Udrescu
- Department I—Drug Analysis, “Victor Babeş” University of Medicine and Pharmacy Timişoara, 300041 Timişoara, Romania;
| |
Collapse
|
18
|
Imami AS, McCullumsmith RE, O’Donovan SM. Strategies to identify candidate repurposable drugs: COVID-19 treatment as a case example. Transl Psychiatry 2021; 11:591. [PMID: 34785660 PMCID: PMC8594646 DOI: 10.1038/s41398-021-01724-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023] Open
Abstract
Drug repurposing is an invaluable strategy to identify new uses for existing drug therapies that overcome many of the time and financial costs associated with novel drug development. The COVID-19 pandemic has driven an unprecedented surge in the development and use of bioinformatic tools to identify candidate repurposable drugs. Using COVID-19 as a case study, we discuss examples of machine-learning and signature-based approaches that have been adapted to rapidly identify candidate drugs. The Library of Integrated Network-based Signatures (LINCS) and Connectivity Map (CMap) are commonly used repositories and have the advantage of being amenable to use by scientists with limited bioinformatic training. Next, we discuss how these recent advances in bioinformatic drug repurposing approaches might be adapted to identify repurposable drugs for CNS disorders. As the development of novel therapies that successfully target the cause of neuropsychiatric and neurological disorders has stalled, there is a pressing need for innovative strategies to treat these complex brain disorders. Bioinformatic approaches to identify repurposable drugs provide an exciting avenue of research that offer promise for improved treatments for CNS disorders.
Collapse
Affiliation(s)
- Ali S. Imami
- grid.267337.40000 0001 2184 944XDepartment of Neurosciences, University of Toledo, Toledo, OH USA
| | - Robert E. McCullumsmith
- grid.267337.40000 0001 2184 944XDepartment of Neurosciences, University of Toledo, Toledo, OH USA ,grid.422550.40000 0001 2353 4951Neurosciences Institute, Promedica, Toledo, OH USA
| | - Sinead M. O’Donovan
- grid.267337.40000 0001 2184 944XDepartment of Neurosciences, University of Toledo, Toledo, OH USA
| |
Collapse
|
19
|
Coghi P, Yang LJ, Ng JPL, Haynes RK, Memo M, Gianoncelli A, Wong VKW, Ribaudo G. A Drug Repurposing Approach for Antimalarials Interfering with SARS-CoV-2 Spike Protein Receptor Binding Domain (RBD) and Human Angiotensin-Converting Enzyme 2 (ACE2). Pharmaceuticals (Basel) 2021; 14:954. [PMID: 34681178 PMCID: PMC8537658 DOI: 10.3390/ph14100954] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023] Open
Abstract
Host cell invasion by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is mediated by the interaction of the viral spike protein (S) with human angiotensin-converting enzyme 2 (ACE2) through the receptor-binding domain (RBD). In this work, computational and experimental techniques were combined to screen antimalarial compounds from different chemical classes, with the aim of identifying small molecules interfering with the RBD-ACE2 interaction and, consequently, with cell invasion. Docking studies showed that the compounds interfere with the same region of the RBD, but different interaction patterns were noted for ACE2. Virtual screening indicated pyronaridine as the most promising RBD and ACE2 ligand, and molecular dynamics simulations confirmed the stability of the predicted complex with the RBD. Bio-layer interferometry showed that artemisone and methylene blue have a strong binding affinity for RBD (KD = 0.363 and 0.226 μM). Pyronaridine also binds RBD and ACE2 in vitro (KD = 56.8 and 51.3 μM). Overall, these three compounds inhibit the binding of RBD to ACE2 in the μM range, supporting the in silico data.
Collapse
Affiliation(s)
- Paolo Coghi
- School of Pharmacy, Macau University of Science and Technology, Taipa 999078, China;
| | - Li Jun Yang
- Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa 999078, China; (L.J.Y.); (J.P.L.N.)
| | - Jerome P. L. Ng
- Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa 999078, China; (L.J.Y.); (J.P.L.N.)
| | - Richard K. Haynes
- Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University Potchefstroom, Potchefstroom 2531, South Africa;
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (M.M.); (A.G.)
| | - Alessandra Gianoncelli
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (M.M.); (A.G.)
| | - Vincent Kam Wai Wong
- Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa 999078, China; (L.J.Y.); (J.P.L.N.)
| | - Giovanni Ribaudo
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (M.M.); (A.G.)
| |
Collapse
|
20
|
Yan F, Gao F. An overview of potential inhibitors targeting non-structural proteins 3 (PL pro and Mac1) and 5 (3CL pro/M pro) of SARS-CoV-2. Comput Struct Biotechnol J 2021; 19:4868-4883. [PMID: 34457214 PMCID: PMC8382591 DOI: 10.1016/j.csbj.2021.08.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/02/2021] [Accepted: 08/21/2021] [Indexed: 12/11/2022] Open
Abstract
There is an urgent need to develop effective treatments for coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The rapid spread of SARS-CoV-2 has resulted in a global pandemic that has not only affected the daily lives of individuals but also had a significant impact on the global economy and public health. Although extensive research has been conducted to identify inhibitors targeting SARS-CoV-2, there are still no effective treatment strategies to combat COVID-19. SARS-CoV-2 comprises two important proteolytic enzymes, namely, the papain-like proteinase, located within non-structural protein 3 (nsp3), and nsp5, both of which cleave large replicase polypeptides into multiple fragments that are required for viral replication. Moreover, a domain within nsp3, known as the macrodomain (Mac1), also plays an important role in viral replication. Inhibition of their functions should be able to significantly interfere with the replication cycle of the virus, and therefore these key proteins may serve as potential therapeutic targets. The functions of the above viral targets and their corresponding inhibitors have been summarized in the current review. This review provides comprehensive updates of nsp3 and nsp5 inhibitor development and would help advance the discovery of novel anti-viral therapeutics against SARS-CoV-2.
Collapse
Affiliation(s)
- Fangfang Yan
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Feng Gao
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
21
|
Citarella A, Scala A, Piperno A, Micale N. SARS-CoV-2 M pro: A Potential Target for Peptidomimetics and Small-Molecule Inhibitors. Biomolecules 2021; 11:607. [PMID: 33921886 PMCID: PMC8073203 DOI: 10.3390/biom11040607] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
The uncontrolled spread of the COVID-19 pandemic caused by the new coronavirus SARS-CoV-2 during 2020-2021 is one of the most devastating events in the history, with remarkable impacts on the health, economic systems, and habits of the entire world population. While some effective vaccines are nowadays approved and extensively administered, the long-term efficacy and safety of this line of intervention is constantly under debate as coronaviruses rapidly mutate and several SARS-CoV-2 variants have been already identified worldwide. Then, the WHO's main recommendations to prevent severe clinical complications by COVID-19 are still essentially based on social distancing and limitation of human interactions, therefore the identification of new target-based drugs became a priority. Several strategies have been proposed to counteract such viral infection, including the repurposing of FDA already approved for the treatment of HIV, HCV, and EBOLA, inter alia. Among the evaluated compounds, inhibitors of the main protease of the coronavirus (Mpro) are becoming more and more promising candidates. Mpro holds a pivotal role during the onset of the infection and its function is intimately related with the beginning of viral replication. The interruption of its catalytic activity could represent a relevant strategy for the development of anti-coronavirus drugs. SARS-CoV-2 Mpro is a peculiar cysteine protease of the coronavirus family, responsible for the replication and infectivity of the parasite. This review offers a detailed analysis of the repurposed drugs and the newly synthesized molecules developed to date for the treatment of COVID-19 which share the common feature of targeting SARS-CoV-2 Mpro, as well as a brief overview of the main enzymatic and cell-based assays to efficaciously screen such compounds.
Collapse
Affiliation(s)
| | | | | | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.C.); (A.S.); (A.P.)
| |
Collapse
|