1
|
Lyu X, Yi Z, He Y, Zhang C, Zhu P, Liu C. Astragaloside IV induces endothelial progenitor cell angiogenesis in deep venous thrombosis through inactivation of PI3K/AKT signaling. Histol Histopathol 2024; 39:1149-1157. [PMID: 38275076 DOI: 10.14670/hh-18-704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
BACKGROUND Deep vein thrombosis (DVT), referred to as venous thromboembolism, is the third most frequent cardiovascular disease. Endothelial progenitor cells (EPCs) contribute to the recanalization of DVT. Astragaloside IV (AS-IV) has been suggested to have angiogenesis-enhancing effects. Here, we investigate the roles and mechanisms of AS-IV in EPCs and DVT. METHODS The experimental DVT model was established by inferior vena cava stenosis in rats. EPCs were collected from patients with DVT. Transwell assays were performed to detect cell migration. Tube formation was determined using Matrigel basement membrane matrix and ImageJ software. The thrombus weight and length were measured. Pathological changes were examined by hematoxylin-eosin staining. The production of proinflammatory cytokines was estimated by ELISA. The level of PI3K/AKT-related proteins was measured by western blotting. RESULTS AS-IV administration facilitated the migrative and angiogenic functions of human EPCs in vitro. Additionally, AS-IV inhibited thrombosis and repressed the infiltration of leukocytes into the thrombus and the production of proinflammatory cytokines in rats. Mechanistically, AS-IV inactivated PI3K/AKT signaling in rats. CONCLUSION AS-IV prevents thrombus in an experimental DVT model by facilitating EPC angiogenesis and decreasing inflammation through inactivation of PI3K/AKT signaling.
Collapse
Affiliation(s)
- Xiaojiang Lyu
- Department of Pediatrics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Zhigang Yi
- Department of Pediatrics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yun He
- Department of Pediatrics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chunfeng Zhang
- Department of Pediatrics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ping Zhu
- Department of Pediatrics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chonghai Liu
- Department of Pediatrics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
2
|
Liu N, Ji Y, Liu R, Jin X. The state of astragaloside IV research: A bibliometric and visualized analysis. Fundam Clin Pharmacol 2024; 38:208-224. [PMID: 37700611 DOI: 10.1111/fcp.12956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Astragaloside IV has emerged as a pharmaceutical monomer with great medical applications and potential. Astragaloside IV has many effects such as improving myocardial ischemia, cerebral ischemia-reperfusion injury, anti-inflammatory, analgesic, antiviral, promoting lymphocyte proliferation, and antitumor effects. However, there are few bibliometric studies on astragaloside IV. OBJECTIVES We aim to visualize the hotspots and trends in astragaloside IV research through bibliometric analysis to further understand the future development of basic and clinical research. Methods The articles and reviews on astragaloside IV were screened from the Web of Science Core Collection, and knowledge maps were generated using CiteSpace software. Bibliometric analysis was performed on 971 articles published from 1998 to 2022. RESULTS The number of articles on astragaloside IV increased yearly. These publications came from 42 countries/regions, with China being the largest. The primary research institutions were Shanghai University of Traditional Chinese Medicine and Guangzhou University of Traditional Chinese Medicine. Journal of Ethnopharmacology was the most studied journal and co-cited journal. A total of 473 authors were included, among which Hongxin Wang had the highest number of publications and Zhang Wd had the highest total citation frequency. After analysis, the most common keywords are astragaloside IV, expression, and oxidative stress. Cardiovascular disease, cerebral ischemia, cancer, and kidney disease are current and developing research fields. CONCLUSION This study used bibliometrics and visualization methods to analyze the research hotspots and trends of astragaloside IV. Astragaloside IV on ischemia-reperfusion injury, cancer, and tumor may become the focus of future research.
Collapse
Affiliation(s)
- Ning Liu
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yansu Ji
- Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, China
| | - Rui Liu
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin Jin
- Military Medicine Section, Logistics University of Chinese People's Armed Police Force, Tianjin, China
| |
Collapse
|
3
|
Wu H, Chen S, You G, Lei B, Chen L, Wu J, Zheng N, You C. The Mechanism of Astragaloside IV in NOD-like Receptor Family Pyrin Domain Containing 3 Inflammasome-mediated Pyroptosis after Intracerebral Hemorrhage. Curr Neurovasc Res 2024; 21:74-85. [PMID: 38409729 DOI: 10.2174/0115672026295640240212095049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 02/28/2024]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is one of the most common subtypes of stroke. OBJECTIVES This study aimed to investigate the mechanism of Astragaloside IV (AS-IV) on inflammatory injury after ICH. METHODS The ICH model was established by the injection of collagenase and treated with ASIV (20 mg/kg or 40 mg/kg). The neurological function, water content of the bilateral cerebral hemisphere and cerebellum, and pathological changes in brain tissue were assessed. The levels of interleukin-1 beta (IL-1β), IL-18, tumor necrosis factor-alpha, interferon-gamma, and IL-10 were detected by enzyme-linked immunosorbent assay. The levels of Kruppel-like factor 2 (KLF2), NOD-like receptor family pyrin domain containing 3 (NLRP3), GSDMD-N, and cleaved-caspase-1 were detected by reverse transcription-quantitative polymerase chain reaction and Western blot assay. The binding relationship between KLF2 and NLRP3 was verified by chromatin-immunoprecipitation and dual-luciferase assays. KLF2 inhibition or NLRP3 overexpression was achieved in mice to observe pathological changes. RESULTS The decreased neurological function, increased water content, severe pathological damage, and inflammatory response were observed in mice after ICH, with increased levels of NLRP3/GSDMD-N/cleaved-caspase-1/IL-1β/IL-18 and poorly-expressed KLF2 in brain tissue. After AS-IV treatment, the neurological dysfunction, high brain water content, inflammatory response, and pyroptosis were alleviated, while KLF2 expression was increased. KLF2 bonded to the NLRP3 promoter region and inhibited its transcription. Down-regulation of KLF2 or upregulation of NLRP3 reversed the effect of AS-IV on inhibiting pyroptosis and reducing inflammatory injury in mice after ICH. CONCLUSION AS-IV inhibited NLRP3-mediated pyroptosis by promoting KLF2 expression and alleviated inflammatory injury in mice after ICH.
Collapse
Affiliation(s)
- Honggang Wu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Cerebrovascular Disease, The People's Hospital of Leshan, Leshan, 614000, China
| | - Shu Chen
- Department of Cerebrovascular Disease, The People's Hospital of Leshan, Leshan, 614000, China
| | - Guoliang You
- Department of Cerebrovascular Disease, The People's Hospital of Leshan, Leshan, 614000, China
| | - Bo Lei
- Department of Cerebrovascular Disease, The People's Hospital of Leshan, Leshan, 614000, China
| | - Li Chen
- Department of Cerebrovascular Disease, The People's Hospital of Leshan, Leshan, 614000, China
| | - Jiachuan Wu
- Department of Cerebrovascular Disease, The People's Hospital of Leshan, Leshan, 614000, China
| | - Niandong Zheng
- Department of Cerebrovascular Disease, The People's Hospital of Leshan, Leshan, 614000, China
| | - Chao You
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
4
|
Sun J, Fan J, Yang F, Su X, Li X, Tian L, Liu C, Xing Y. Effect and possible mechanisms of saponins in Chinese herbal medicine exerts for the treatment of myocardial ischemia-reperfusion injury in experimental animal: a systematic review and meta-analysis. Front Cardiovasc Med 2023; 10:1147740. [PMID: 37564906 PMCID: PMC10410164 DOI: 10.3389/fcvm.2023.1147740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction Preventing ischemia-reperfusion injury is the main direction of myocardial infarction treatment in the convalescent stage. Some studies have suggested that saponins in Traditional Chinese medicine (TCM) preparations can protect the myocardium by various mechanisms. Our meta-analysis aims to evaluate the efficacy of TCM saponins in treating myocardial ischemia-reperfusion injury (MIRI) and to summarize the potential molecular mechanisms further. Methods We conducted a literature search in six electronic databases [Web of Science, PubMed, Embase, Cochrane Library, Sinomed, China National Knowledge Infrastructure (CNKI)] until October 2022. Results Seventeen eligible studies included 386 animals (254 received saponins and 132 received vehicles). The random effect model is used to calculate the combined effect. The effect size is expressed as the weighted average difference (WMD) and 95% confidence interval (CI). Compared with placebo, saponins preconditioning reduced infarct size after MIRI significantly (WMD: -3.60,95% CI: -4.45 to -2.74, P < 0.01, I2: 84.7%, P < 0.001), and significantly increased EF (WMD: 3.119, 95% CI: 2.165 to 4.082, P < 0.01, I2: 82.9%, P < 0.0 L) and FS (WMD: 3.157, 95% CI: 2.218 to 4.097, P < 0.001, I2: 81.3%, P < 0.001). Discussion The results show that the pre-administration of saponins from TCM has a significant protective effect on MIRI in preclinical studies, which provides an application prospect for developing anti-MIRI drugs with high efficiency and low toxicity.
Collapse
Affiliation(s)
- Jiahao Sun
- Yanqing Hospital of Beijing Chinese Medicine Hospital, Beijing, China
| | - Jiarong Fan
- Clinical Department of Integrative Traditional Chinese and Western Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fan Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin Su
- Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xinye Li
- Clinical Department of Integrative Traditional Chinese and Western Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Li Tian
- Clinical Department of Integrative Traditional Chinese and Western Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Can Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanwei Xing
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Yang C, Pan Q, Ji K, Tian Z, Zhou H, Li S, Luo C, Li J. Review on the protective mechanism of astragaloside IV against cardiovascular diseases. Front Pharmacol 2023; 14:1187910. [PMID: 37251311 PMCID: PMC10213926 DOI: 10.3389/fphar.2023.1187910] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
Cardiovascular disease is a global health problem. Astragaloside IV (AS-IV) is a saponin compound extracted from the roots of the Chinese herb Astragalus. Over the past few decades, AS-IV has been shown to possess various pharmacological properties. It can protect the myocardium through antioxidative stress, anti-inflammatory effects, regulation of calcium homeostasis, improvement of myocardial energy metabolism, anti-apoptosis, anti-cardiomyocyte hypertrophy, anti-myocardial fibrosis, regulation of myocardial autophagy, and improvement of myocardial microcirculation. AS-IV exerts protective effects on blood vessels. For example, it can protect vascular endothelial cells through antioxidative stress and anti-inflammatory pathways, relax blood vessels, stabilize atherosclerotic plaques, and inhibit the proliferation and migration of vascular smooth muscle cells. Thus, the bioavailability of AS-IV is low. Toxicology indicates that AS-IV is safe, but should be used cautiously in pregnant women. In this paper, we review the mechanisms of AS-IV prevention and treatment of cardiovascular diseases in recent years to provide a reference for future research and drug development.
Collapse
Affiliation(s)
- Chunkun Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingquan Pan
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Kui Ji
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Zhuang Tian
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Hongyuan Zhou
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Shuanghong Li
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Chuanchao Luo
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Jun Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Li Q, Zhao P, Wen Y, Zou Z, Qin X, Tan H, Gong J, Wu Q, Zheng C, Zhang K, Huang Q, Maegele M, Gu Z, Li L. POLYDATIN AMELIORATES TRAUMATIC BRAIN INJURY-INDUCED SECONDARY BRAIN INJURY BY INHIBITING NLRP3-INDUCED NEUROINFLAMMATION ASSOCIATED WITH SOD2 ACETYLATION. Shock 2023; 59:460-468. [PMID: 36477654 DOI: 10.1097/shk.0000000000002066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT Traumatic brain injury (TBI) is a kind of disease with high morbidity, mortality, and disability, and its pathogenesis is still unclear. Research shows that nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) activation in neurons and astrocytes is involved in neuroinflammatory cascades after TBI. What is more, polydatin (PD) has been shown to have a protective effect on TBI-induced neuroinflammation, but the mechanisms remain unclear. Here, we speculated that PD could alleviate TBI-induced neuroinflammatory damage through the superoxide dismutase (SOD2)-NLRP3 signal pathway, and SOD2 might regulate NLRP3 inflammasome activation. The model of lateral fluid percussion for in vivo and cell stretching injury for in vitro were established to mimic TBI. NLRP3 chemical inhibitor MCC950, SOD2 inhibitor 2-methoxyestradiol, and PD were administered immediately after TBI. As a result, the expression of SOD2 acetylation (SOD2 Ac-K122), NLRP3, and cleaved caspase-1 were increased after TBI both in vivo and in vitro , and using SOD2 inhibitor 2-methoxyestradiol significantly promoted SOD2 Ac-K122, NLRP3, and cleaved caspase-1 expression, as well as exacerbated mitochondrial ROS (mtROS) accumulation and mitochondrial membrane potential (MMP) collapse in PC12 cells. However, using NLRP3 inhibitor MCC950 significantly inhibited cleaved caspase-1 activation after TBI both in vivo and in vitro ; meanwhile, MCC950 inhibited mtROS accumulation and MMP collapse after TBI. More importantly, PD could inhibit the level of SOD2 Ac-K122, NLRP3, and cleaved caspase-1 and promote the expression of SOD2 after TBI both in vivo and in vitro. Polydatin also inhibited mtROS accumulation and MMP collapse after stretching injury. These results indicated that PD inhibited SOD2 acetylation to alleviate NLRP3 inflammasome activation, thus acting a protective role against TBI neuroinflammation.
Collapse
Affiliation(s)
| | - Peng Zhao
- Center of TCM Preventive Treatment, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu Wen
- Department of Cardiovascular, The First Affiliated Hospital of Guangzhou, University of Chinese Medicine, Guangzhou, Guangdong, China
| | | | | | - Hongping Tan
- Department of Epilepsy Center, Guangdong Sanjiu Brain Hospital, Guangzhou, Guangdong, China
| | - Jian Gong
- Department of Intensive Care Medicine, The Third People's Hospital of Longgang District, Shenzhen, Guangdong, China
| | - Qihua Wu
- Department of Intensive Care Medicine, The Third People's Hospital of Longgang District, Shenzhen, Guangdong, China
| | - Chen Zheng
- Department of Intensive Care Medicine, The Third People's Hospital of Longgang District, Shenzhen, Guangdong, China
| | | | - Qiaobing Huang
- Department of Pathophysiology, Southern Medical University, Guangdong Provincial Key Laboratory of Shock and Microcirculation Research, Guangzhou, Guangdong, China
| | | | | | | |
Collapse
|
7
|
Zhang MX, Huang XY, Song Y, Xu WL, Li YL, Li C. Astragalus propinquus schischkin and Salvia miltiorrhiza bunge promote angiogenesis to treat myocardial ischemia via Ang-1/Tie-2/FAK pathway. Front Pharmacol 2023; 13:1103557. [PMID: 36699092 PMCID: PMC9868545 DOI: 10.3389/fphar.2022.1103557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
Astragalus propinquus Schischkin and Salvia miltiorrhiza Bunge (AS) have been clinically used as adjunctive drugs in the treatment of myocardial ischemia (MI). However, the effect and mechanism of AS on MI have yet to be fully recognized. Here, we explored the cardioprotective effect of their combined use, and the mechanism of promoting angiogenesis through pericyte recruitment. Our data revealed that AS reduced MI and protects cardiac function. AS-treated MI mice exhibited reduced ST-segment displacement and repolarization time, increased ejection fraction, and less BNP and NT-proBNP expression. Pathological studies showed that, AS reduced the area of infarcted myocardium and slowed down the progress of cardiac remodelling and fibrosis. In addition, AS increased the content of platelet-derived growth factor receptors β (PDGFR-β), platelet endothelial cell adhesion molecule-1 (CD31) and angiogenesis-related proteins including vascular endothelial cadherin (VE-cadherin), Vascular Endothelial Growth Factor (VEGF) and transforming growth factor β (TGF-β). Moreover, these botanical drugs upregulated the expression of Angiopoietin-1 (Ang-1), phosphorylated angiopoietin-1 receptor (p-Tie-2), focal adhesion kinase (FAK) and growth factor receptor bound protein 7 (GRB7), indicating that the cardioprotection-related angiogenesis effect was related to pericyte recruitment, which may be through Ang-1/Tie-2/FAK pathway. In summary, AS can treat MI by protecting cardiac function, attenuating cardiac pathological changes, and hindering the progression of heart failure, which is related to angiogenesis after pericyte recruitment. Therefore, AS at a certain dose can be a promising treatment for MI with broad application prospects.
Collapse
Affiliation(s)
- Mu-Xin Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xue-Ying Huang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu Song
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wan-Li Xu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yun-Lun Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chao Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Chao Li,
| |
Collapse
|
8
|
Yang Y, Hong M, Lian WW, Chen Z. Review of the pharmacological effects of astragaloside IV and its autophagic mechanism in association with inflammation. World J Clin Cases 2022; 10:10004-10016. [PMID: 36246793 PMCID: PMC9561601 DOI: 10.12998/wjcc.v10.i28.10004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/23/2022] [Accepted: 08/25/2022] [Indexed: 02/05/2023] Open
Abstract
Astragalus membranaceus Bunge, known as Huangqi, has been used to treat various diseases for a long time. Astragaloside IV (AS-IV) is one of the primary active ingredients of the aqueous Huangqi extract. Many experimental models have shown that AS-IV exerts broad beneficial effects on cardiovascular disease, nervous system diseases, lung disease, diabetes, organ injury, kidney disease, and gynaecological diseases. This review demonstrates and summarizes the structure, solubility, pharmacokinetics, toxicity, pharmacological effects, and autophagic mechanism of AS-IV. The autophagic effects are associated with multiple signalling pathways in experimental models, including the PI3KI/Akt/mTOR, PI3K III/Beclin-1/Bcl-2, PI3K/Akt, AMPK/mTOR, PI3K/Akt/mTOR, SIRT1–NF-κB, PI3K/AKT/AS160, and TGF-β/Smad signalling pathways. Based on this evidence, AS-IV could be used as a replacement therapy for treating the multiple diseases referenced above.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Meng Hong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Wen-Wen Lian
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
9
|
Wang YJ, Liu M, Jiang HY, Yu YW. Downregulation of LRRC19 Is Associated with Poor Prognosis in Colorectal Cancer. JOURNAL OF ONCOLOGY 2022; 2022:5848823. [PMID: 35794979 PMCID: PMC9251150 DOI: 10.1155/2022/5848823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/25/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Colorectal cancer (CRC) is globally one of the most often diagnosed cancers with high mortality rates. This study aimed to explore novel biomarkers for the diagnosis and prognosis of CRC. METHODS We collected 4 datasets about CRC in GEO and sought differentially expressed genes (DEGs) with GEO2R. Leucine-rich repeat-containing protein 19 (LRRC19) expression was assessed through the Oncomine and TIMER database analyses, which was further confirmed by qRT-PCR of CRC samples. We used online survival analysis tools (GEPIA, PrognoScan, and Kaplan-Meier plotter) to examine the prognostic value of LRRC19 in CRC and other malignancies. GO and KEGG enrichment analyses were employed to explore the biological functions of LRRC19. Finally, we conducted network prediction by STRING and further validation on the GEPIA to discover other molecules that might interact with LRRC19. RESULTS A total of 21 upregulated and 46 downregulated DEGs were identified from the 4 datasets. The TIMER and Oncomine online analyses showed lower mRNA of LRRC19 in CRC tissues compared with adjacent normal tissues, which was validated by qRT-PCR in CRC patient samples. The survival analysis through the GEPIA and PrognoScan websites revealed that low LRRC19 expression was significantly correlated with poor prognosis in CRC patients. The Kaplan-Meier plotter survival analysis indicated that low LRRC19 expression was significantly associated with the disease progression of patients with ovarian cancer, gastric cancer, breast cancer, and lung cancer. The enrichment analysis suggested that low expression of LRRC19 could be involved in the retinol metabolism and the zymogen granule membrane. Through STRING and GEPIA, it was found that LRRC19 is clearly associated with ZCCHC10, MOB3B, IMMP2L, and TRMT11. CONCLUSION LRRC19 mRNA was prominently decreased in human CRC tissues and was significantly associated with shorter survival in CRC patients. LRRC19 might serve as a possible target for early diagnosis and prognosis assessment in CRC.
Collapse
Affiliation(s)
- Ya-Juan Wang
- Department of Pathology, Shengzhou People's Hospital, Shengzhou Branch of the First Affiliated Hospital of Zhejiang University, Shengzhou, Zhejiang, China
| | - Man Liu
- Department of Clinical Laboratory, Shengzhou People's Hospital, Shengzhou Branch of the First Affiliated Hospital of Zhejiang University, Shengzhou, Zhejiang, China
| | - Hui-Ying Jiang
- Intensive Care Unit, Shengzhou People's Hospital, Shengzhou Branch of the First Affiliated Hospital of Zhejiang University, Shengzhou, Zhejiang, China
| | - Yong-Wei Yu
- Intensive Care Unit, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Duan H, Li M, Liu J, Sun J, Wu C, Chen Y, Guo X, Liu X. An Integrated Approach Based on Network Analysis Combined With Experimental Verification Reveals PI3K/Akt/Nrf2 Signaling Is an Important Way for the Anti-Myocardial Ischemia Activity of Yi-Qi-Tong-Luo Capsule. Front Pharmacol 2022; 13:794528. [PMID: 35250556 PMCID: PMC8889021 DOI: 10.3389/fphar.2022.794528] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Background: Yiqi-Tongluo Capsule (YTC) is a Chinese traditional patent medicine that has been used in the treatment of myocardial ischemia (MI). However, its molecular mechanisms against MI have not been clear. Methods: Network analysis and experimental verification were used to explore the potential molecular mechanisms of YTC for MI treatment. Firstly, the main components in the capsules and the potential targets of these components were predicted by online databases. The MI related genes were collected from Genecards and Online Mendelian Inheritance in Man (OMIM) databases. The drug targets and disease targets were intersected, and then the protein-protein interaction (PPI) and Drug-Molecular-Target-Disease Network (DMTD) were constructed, and GO enrichment analysis and KEGG pathway enrichment analysis were performed. Based on the H2O2-stimulated H9c2 cells, flow cytometry, western blot (WB) and immunofluorescence experiments were performed to verify the network analysis prediction. Results: A total of 100 active components and 165 targets of YTC were predicted, in which there were 109 targets intersected with the targets of MI. GO and KEGG analysis showed that these potential targets were related to a variety of biological processes and molecular mechanisms, including oxidative stress and PI3K/AKT pathway. Astragaloside IV (AS IV) and paeoniflorin (PAE) might be the main active components in YTC. The results of cell counting kit-8 (CCK-8) showed that YTC alleviated the damage of H2O2 to H9c2 cells. The results of flow cytometry, DAPI staining and JC-1 probe showed that YTC alleviated H2O2 induced apoptosis in H9c2 cells. In addition, YTC reduced the level of intracellular superoxide anion, increased the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px), and reduced the content of malondialdehyde (MDA) in H2O2-induced H9c2 cells. The results of immunofluorescence and WB showed that the phosphorylation of PI3K and Akt were increased, the expression of Bcl-2 was up-regulated and the expression of cleaved caspase-3 and Bax were down-regulated. Besides, the nuclear translocation of Nrf2 were increased. Conclusion: In conclusion, the results of this study showed that YTC might alleviate MI by suppressing apoptosis induced by oxidative stress via the PI3K/Akt/Nrf2 signal pathway.
Collapse
Affiliation(s)
- Huxinyue Duan
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meiyan Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Guangyuan Hospital of Traditional Chinese Medicine, Guangyuan, China.,Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiayi Sun
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunjie Wu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Chen
- Guangyuan Hospital of Traditional Chinese Medicine, Guangyuan, China
| | - Xiaohui Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinglong Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|