1
|
Bhati FK, Bhat MK. An anti-neoplastic tale of metformin through its transport. Life Sci 2024; 357:123060. [PMID: 39278619 DOI: 10.1016/j.lfs.2024.123060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/31/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Metformin is an attractive candidate drug among all the repurposed drugs for cancer. Extensive preclinical and clinical research has evaluated its efficacy in cancer therapy, revealing a mixed outcome in clinical settings. To fully exploit metformin's therapeutic potential, understanding cellular factors relevant to its transport and accumulation in cancer cells needs to be understood. This review highlights the relevance of metformin transporter status towards its anti-cancer potential. Metformin transporters are regulated at pre-transcriptional, transcriptional, and post-translational levels. Moreover, the tumour microenvironment can also influence metformin accumulation in cancer cells. Also, Metformin treatment can regulate its transporters by altering global DNA methylation, protein acetylation, and transcription factors. Importantly, metformin transporters not only influence chemotherapeutic drug toxicity but are also associated with the prognosis and survival of individuals having cancer. Strategic decisions based on the expression and regulation of metformin transporters holds promise for its therapeutic implications and relevance.
Collapse
Affiliation(s)
- Firoz Khan Bhati
- Biotechnology Research and Innovation Council - National Centre for Cell Science (BRIC- NCCS), Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007, India
| | - Manoj Kumar Bhat
- Biotechnology Research and Innovation Council - National Centre for Cell Science (BRIC- NCCS), Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007, India.
| |
Collapse
|
2
|
Wu Z, Yuan J, Li K, Wang X, Zhang Z, Hong M. The Induction of Drug Uptake Transporter Organic Anion Transporting Polypeptide 1A2 by Radiation Is Mediated by the Nonreceptor Tyrosine Kinase v-YES-1 Yamaguchi Sarcoma Viral Oncogene Homolog 1. Drug Metab Dispos 2024; 52:1244-1252. [PMID: 39214663 DOI: 10.1124/dmd.124.001755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Organic anion transporting polypeptides (OATP, gene symbol SLCO) are well-recognized key determinants for the absorption, distribution, and excretion of a wide spectrum of endogenous and exogenous compounds including many antineoplastic agents. It was therefore proposed as a potential drug target for cancer therapy. In our previous study, it was found that low-dose X-ray and carbon ion irradiation both upregulated the expression of OATP family member OATP1A2 and in turn, led to a more dramatic killing effect when cancer cells were cotreated with antitumor drugs such as methotrexate. In the present study, the underlying mechanism of the phenomenon was explored in breast cancer cell line MCF-7. It was found that the nonreceptor tyrosine kinase v-YES-1 Yamaguchi sarcoma viral oncogene homolog 1 (YES-1) was temporally coordinated with the change of OATP1A2 after irradiation. The overexpression of YES-1 significantly increased OATP1A2 both at the mRNA and protein level. The signal transducer and activator of transcription 3 (STAT3) pathway is likely the downstream target of YES-1 because phosphorylation and nuclear accumulation of STAT3 were both enhanced after overexpressing YES-1 in MCF-7 cells. Further investigation revealed that there are two possible binding sites of STAT3 localized at the upstream sequence of SLCO1A2, the encoding gene of OATP1A2. Electrophoretic mobility shift assay and chromatin immunoprecipitation analysis suggested that these two sites bound to STAT3 specifically and the overexpression of YES-1 significantly increased the association of the transcription factor with the putative binding sites. Finally, inhibition or knockdown of YES-1 attenuated the induction effect of radiation on the expression of OATP1A2. SIGNIFICANCE STATEMENT: The present study found that the effect of X-rays on v-YES-1 Yamaguchi sarcoma viral oncogene homolog 1 (YES-1) and organic anion transporting polypeptides (OATP)1A2 was temporally coordinated. YES-1 phosphorylates and increases the nuclear accumulation of signal transducer and activator of transcription 3, which in turn binds to the upstream regulatory sequences of SLCO1A2, the coding gene for OATP1A2. Hence, inhibitors of YES-1 may suppress the radiation induction effect on OATP1A2.
Collapse
Affiliation(s)
- Zicong Wu
- College of Life Sciences, South China Agricultural University, Guangzhou, China (Z.W., J.Y., K.L., X.W., Z.Z., M.H.); and Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, China(M.H.)
| | - Jiajian Yuan
- College of Life Sciences, South China Agricultural University, Guangzhou, China (Z.W., J.Y., K.L., X.W., Z.Z., M.H.); and Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, China(M.H.)
| | - Kui Li
- College of Life Sciences, South China Agricultural University, Guangzhou, China (Z.W., J.Y., K.L., X.W., Z.Z., M.H.); and Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, China(M.H.)
| | - Xuyang Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, China (Z.W., J.Y., K.L., X.W., Z.Z., M.H.); and Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, China(M.H.)
| | - Ziqi Zhang
- College of Life Sciences, South China Agricultural University, Guangzhou, China (Z.W., J.Y., K.L., X.W., Z.Z., M.H.); and Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, China(M.H.)
| | - Mei Hong
- College of Life Sciences, South China Agricultural University, Guangzhou, China (Z.W., J.Y., K.L., X.W., Z.Z., M.H.); and Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, China(M.H.)
| |
Collapse
|
3
|
Saran C, Brouwer KLR. Hepatic Bile Acid Transporters and Drug-induced Hepatotoxicity. Toxicol Pathol 2023; 51:405-413. [PMID: 37982363 PMCID: PMC11014762 DOI: 10.1177/01926233231212255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Drug-induced liver injury (DILI) remains a major concern in drug development from a patient safety perspective because it is the leading cause of acute liver failure. One mechanism of DILI is altered bile acid homeostasis and involves several hepatic bile acid transporters. Functional impairment of some hepatic bile acid transporters by drugs, disease, or genetic mutations may lead to toxic accumulation of bile acids within hepatocytes and increase DILI susceptibility. This review focuses on the role of hepatic bile acid transporters in DILI. Model systems, primarily in vitro and modeling tools, such as DILIsym, used in assessing transporter-mediated DILI are discussed. Due to species differences in bile acid homeostasis and drug-transporter interactions, key aspects and challenges associated with the use of preclinical animal models for DILI assessment are emphasized. Learnings are highlighted from three case studies of hepatotoxic drugs: troglitazone, tolvaptan, and tyrosine kinase inhibitors (dasatinib, pazopanib, and sorafenib). The development of advanced in vitro models and novel biomarkers that can reliably predict DILI is critical and remains an important focus of ongoing investigations to minimize patient risk for liver-related adverse reactions associated with medication use.
Collapse
Affiliation(s)
- Chitra Saran
- Transporter Sciences, Pharmacokinetics, Dynamics, Metabolism, and Bioanalytics (PDMB), Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Kim L. R. Brouwer
- UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
4
|
Tsang YP, López Quiñones AJ, Vieira LS, Wang J. Interaction of ALK Inhibitors with Polyspecific Organic Cation Transporters and the Impact of Substrate-Dependent Inhibition on the Prediction of Drug-Drug Interactions. Pharmaceutics 2023; 15:2312. [PMID: 37765282 PMCID: PMC10534724 DOI: 10.3390/pharmaceutics15092312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Small molecules targeting aberrant anaplastic lymphoma kinase (ALK) are active against ALK-positive non-small-cell lung cancers and neuroblastoma. Several targeted tyrosine kinase inhibitors (TKIs) have been shown to interact with polyspecific organic cation transporters (pOCTs), raising concerns about potential drug-drug interactions (DDIs). The purpose of this study was to assess the interaction of ALK inhibitors with pOCTs and the impact of substrate-dependent inhibition on the prediction of DDIs. Inhibition assays were conducted in transporter-overexpressing cells using meta-iodobenzylguanidine (mIBG), metformin, or 1-methyl-4-phenylpyridinium (MPP+) as the substrate. The half-maximal inhibitory concentrations (IC50) of brigatinib and crizotinib for the substrates tested were used to predict their potential for in vivo transporter mediated DDIs. Here, we show that the inhibition potencies of brigatinib and crizotinib on pOCTs are isoform- and substrate-dependent. Human OCT3 (hOCT3) and multidrug and toxin extrusion protein 1 (hMATE1) were highly sensitive to inhibition by brigatinib and crizotinib for all three tested substrates. Apart from hMATE1, substrate-dependent inhibition was observed for all other transporters with varying degrees of dependency; hOCT1 inhibition showed the greatest substrate dependency, with differences in IC50 values of up to 22-fold across the tested substrates, followed by hOCT2 and hMATE2-K, with differences in IC50 values of up to 16- and 12-fold, respectively. Conversely, hOCT3 inhibition only showed a moderate substrate dependency (IC50 variance < 4.8). Among the substrates used, metformin was consistently shown to be the most sensitive substrate, followed by mIBG and MPP+. Pre-incubation of ALK inhibitors had little impact on their potencies toward hOCT2 and hMATE1. Our results underscore the complexity of the interactions between substrates and the inhibitors of pOCTs and have important implications for the clinical use of ALK inhibitors and their DDI predictions.
Collapse
Affiliation(s)
| | | | | | - Joanne Wang
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA; (Y.P.T.); (A.J.L.Q.); (L.S.V.)
| |
Collapse
|
5
|
Li JH, Perry JA, Jablonski KA, Srinivasan S, Chen L, Todd JN, Harden M, Mercader JM, Pan Q, Dawed AY, Yee SW, Pearson ER, Giacomini KM, Giri A, Hung AM, Xiao S, Williams LK, Franks PW, Hanson RL, Kahn SE, Knowler WC, Pollin TI, Florez JC. Identification of Genetic Variation Influencing Metformin Response in a Multiancestry Genome-Wide Association Study in the Diabetes Prevention Program (DPP). Diabetes 2023; 72:1161-1172. [PMID: 36525397 PMCID: PMC10382652 DOI: 10.2337/db22-0702] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Genome-wide significant loci for metformin response in type 2 diabetes reported elsewhere have not been replicated in the Diabetes Prevention Program (DPP). To assess pharmacogenetic interactions in prediabetes, we conducted a genome-wide association study (GWAS) in the DPP. Cox proportional hazards models tested associations with diabetes incidence in the metformin (MET; n = 876) and placebo (PBO; n = 887) arms. Multiple linear regression assessed association with 1-year change in metformin-related quantitative traits, adjusted for baseline trait, age, sex, and 10 ancestry principal components. We tested for gene-by-treatment interaction. No significant associations emerged for diabetes incidence. We identified four genome-wide significant variants after correcting for correlated traits (P < 9 × 10-9). In the MET arm, rs144322333 near ENOSF1 (minor allele frequency [MAF]AFR = 0.07; MAFEUR = 0.002) was associated with an increase in percentage of glycated hemoglobin (per minor allele, β = 0.39 [95% CI 0.28, 0.50]; P = 2.8 × 10-12). rs145591055 near OMSR (MAF = 0.10 in American Indians) was associated with weight loss (kilograms) (per G allele, β = -7.55 [95% CI -9.88, -5.22]; P = 3.2 × 10-10) in the MET arm. Neither variant was significant in PBO; gene-by-treatment interaction was significant for both variants [P(G×T) < 1.0 × 10-4]. Replication in individuals with diabetes did not yield significant findings. A GWAS for metformin response in prediabetes revealed novel ethnic-specific associations that require further investigation but may have implications for tailored therapy.
Collapse
Affiliation(s)
- Josephine H. Li
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - James A. Perry
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Kathleen A. Jablonski
- Department of Epidemiology and Biostatistics, George Washington University Biostatistics Center, Washington, DC
| | - Shylaja Srinivasan
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of California, San Francisco, San Francisco, CA
| | - Ling Chen
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
| | - Jennifer N. Todd
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
- Division of Endocrinology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA
| | - Maegan Harden
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
| | - Josep M. Mercader
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Qing Pan
- Department of Epidemiology and Biostatistics, George Washington University Biostatistics Center, Washington, DC
| | - Adem Y. Dawed
- Division of Population Health and Genomics, Ninewells Hospital and School of Medicine, University of Dundee, Dundee, U.K
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA
| | - Ewan R. Pearson
- Division of Population Health and Genomics, Ninewells Hospital and School of Medicine, University of Dundee, Dundee, U.K
| | - Kathleen M. Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA
| | - Ayush Giri
- Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN
| | - Adriana M. Hung
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Shujie Xiao
- Center for Individualized and Genomic Medicine Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI
| | - L. Keoki Williams
- Center for Individualized and Genomic Medicine Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI
| | - Paul W. Franks
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Robert L. Hanson
- Diabetes Epidemiology and Clinical Research Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ
| | - Steven E. Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle
| | - William C. Knowler
- Diabetes Epidemiology and Clinical Research Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ
| | - Toni I. Pollin
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Jose C. Florez
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
6
|
Kundu S, Lin C, Jaiswal M, Mullapudi VB, Craig KC, Chen S, Guo Z. Profiling Glycosylphosphatidylinositol (GPI)-Interacting Proteins in the Cell Membrane Using a Bifunctional GPI Analogue as the Probe. J Proteome Res 2023; 22:919-930. [PMID: 36700487 PMCID: PMC9992086 DOI: 10.1021/acs.jproteome.2c00728] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Glycosylphosphatidylinositol (GPI) anchorage of cell surface proteins to the membrane is biologically important and ubiquitous in eukaryotes. However, GPIs do not contain long enough lipids to span the entire membrane bilayer. To transduce binding signals, GPIs must interact with other membrane components, but such interactions are difficult to define. Here, a new method was developed to explore GPI-interacting membrane proteins in live cell with a bifunctional analogue of the glucosaminylphosphatidylinositol motif conserved in all GPIs as a probe. This probe contained a diazirine functionality in the lipid and an alkynyl group on the glucosamine residue to respectively facilitate the cross-linkage of GPI-binding membrane proteins with the probe upon photoactivation and then the installation of biotin to the cross-linked proteins via a click reaction for affinity-based protein isolation and analysis. Profiling the proteins pulled down from the Hela cells revealed 94 unique and 18 overrepresented proteins compared to the control, and most of them are membrane proteins and many are GPI-related. The results have proved not only the concept of using the new bifunctional GPI probe to investigate GPI-binding membrane proteins but also the important role of inositol in the biological functions of GPI anchors and GPI-anchored proteins.
Collapse
Affiliation(s)
- Sayan Kundu
- Department of Chemistry, University of Florida, Gainesville, Florida32611, United States
| | - Chuwei Lin
- Department of Biology, Genetics Institute, University of Florida, Gainesville, Florida32611, United States
| | - Mohit Jaiswal
- Department of Chemistry, University of Florida, Gainesville, Florida32611, United States
| | | | - Kendall C Craig
- Department of Chemistry, University of Florida, Gainesville, Florida32611, United States
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of Florida, Gainesville, Florida32611, United States
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, Florida32611, United States
| |
Collapse
|
7
|
The Role of Organic Cation Transporters in the Pharmacokinetics, Pharmacodynamics and Drug-Drug Interactions of Tyrosine Kinase Inhibitors. Int J Mol Sci 2023; 24:ijms24032101. [PMID: 36768423 PMCID: PMC9917293 DOI: 10.3390/ijms24032101] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) decisively contributed in revolutionizing the therapeutic approach to cancer, offering non-invasive, tolerable therapies for a better quality of life. Nonetheless, degree and duration of the response to TKI therapy vary depending on cancer molecular features, the ability of developing resistance to the drug, on pharmacokinetic alterations caused by germline variants and unwanted drug-drug interactions at the level of membrane transporters and metabolizing enzymes. A great deal of approved TKIs are inhibitors of the organic cation transporters (OCTs). A handful are also substrates of them. These transporters are polyspecific and highly expressed in normal epithelia, particularly the intestine, liver and kidney, and are, hence, arguably relevant sites of TKI interactions with other OCT substrates. Moreover, OCTs are often repressed in cancer cells and might contribute to the resistance of cancer cells to TKIs. This article reviews the OCT interactions with approved and in-development TKIs reported in vitro and in vivo and critically discusses the potential clinical ramifications thereof.
Collapse
|
8
|
Garrison DA, Jin Y, Talebi Z, Hu S, Sparreboom A, Baker SD, Eisenmann ED. Itraconazole-Induced Increases in Gilteritinib Exposure Are Mediated by CYP3A and OATP1B. Molecules 2022; 27:molecules27206815. [PMID: 36296409 PMCID: PMC9610999 DOI: 10.3390/molecules27206815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/25/2022] Open
Abstract
Gilteritinib, an FDA-approved tyrosine kinase inhibitor approved for the treatment of relapsed/refractory FLT3-mutated acute myeloid leukemia, is primarily eliminated via CYP3A4-mediated metabolism, a pathway that is sensitive to the co-administration of known CYP3A4 inhibitors, such as itraconazole. However, the precise mechanism by which itraconazole and other CYP3A-modulating drugs affect the absorption and disposition of gilteritinib remains unclear. In the present investigation, we demonstrate that pretreatment with itraconazole is associated with a significant increase in the systemic exposure to gilteritinib in mice, recapitulating the observed clinical drug–drug interaction. However, the plasma levels of gilteritinib were only modestly increased in CYP3A-deficient mice and not further influenced by itraconazole. Ensuing in vitro and in vivo studies revealed that gilteritinib is a transported substrate of OATP1B-type transporters, that gilteritinib exposure is increased in mice with OATP1B2 deficiency, and that the ability of itraconazole to inhibit OATP1B-type transport in vivo is contingent on its metabolism by CYP3A isoforms. These findings provide new insight into the pharmacokinetic properties of gilteritinib and into the molecular mechanisms underlying drug–drug interactions with itraconazole.
Collapse
Affiliation(s)
- Dominique A. Garrison
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Yan Jin
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Zahra Talebi
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Shuiying Hu
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
- Division of Outcomes and Translational Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Sharyn D. Baker
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Eric D. Eisenmann
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
- Correspondence:
| |
Collapse
|
9
|
Nies AT, Schaeffeler E, Schwab M. Hepatic solute carrier transporters and drug therapy: Regulation of expression and impact of genetic variation. Pharmacol Ther 2022; 238:108268. [DOI: 10.1016/j.pharmthera.2022.108268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/25/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
|
10
|
Uddin ME, Eisenmann ED, Li Y, Huang KM, Garrison DA, Talebi Z, Gibson AA, Jin Y, Nepal M, Bonilla IM, Fu Q, Sun X, Millar A, Tarasov M, Jay CE, Cui X, Einolf HJ, Pelis RM, Smith SA, Radwański PB, Sweet DH, König J, Fromm MF, Carnes CA, Hu S, Sparreboom A. MATE1 Deficiency Exacerbates Dofetilide-Induced Proarrhythmia. Int J Mol Sci 2022; 23:8607. [PMID: 35955741 PMCID: PMC9369325 DOI: 10.3390/ijms23158607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 07/30/2022] [Accepted: 07/30/2022] [Indexed: 02/04/2023] Open
Abstract
Dofetilide is a rapid delayed rectifier potassium current inhibitor widely used to prevent the recurrence of atrial fibrillation and flutter. The clinical use of this drug is associated with increases in QTc interval, which predispose patients to ventricular cardiac arrhythmias. The mechanisms involved in the disposition of dofetilide, including its movement in and out of cardiomyocytes, remain unknown. Using a xenobiotic transporter screen, we identified MATE1 (SLC47A1) as a transporter of dofetilide and found that genetic knockout or pharmacological inhibition of MATE1 in mice was associated with enhanced retention of dofetilide in cardiomyocytes and increased QTc prolongation. The urinary excretion of dofetilide was also dependent on the MATE1 genotype, and we found that this transport mechanism provides a mechanistic basis for previously recorded drug-drug interactions of dofetilide with various contraindicated drugs, including bictegravir, cimetidine, ketoconazole, and verapamil. The translational significance of these observations was examined with a physiologically-based pharmacokinetic model that adequately predicted the drug-drug interaction liabilities in humans. These findings support the thesis that MATE1 serves a conserved cardioprotective role by restricting excessive cellular accumulation and warrant caution against the concurrent administration of potent MATE1 inhibitors and cardiotoxic substrates with a narrow therapeutic window.
Collapse
Affiliation(s)
- Muhammad Erfan Uddin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (M.E.U.); (E.D.E.); (Y.L.); (K.M.H.); (D.A.G.); (Z.T.); (A.A.G.); (Y.J.); (M.N.); (Q.F.); (X.S.)
| | - Eric D. Eisenmann
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (M.E.U.); (E.D.E.); (Y.L.); (K.M.H.); (D.A.G.); (Z.T.); (A.A.G.); (Y.J.); (M.N.); (Q.F.); (X.S.)
| | - Yang Li
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (M.E.U.); (E.D.E.); (Y.L.); (K.M.H.); (D.A.G.); (Z.T.); (A.A.G.); (Y.J.); (M.N.); (Q.F.); (X.S.)
| | - Kevin M. Huang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (M.E.U.); (E.D.E.); (Y.L.); (K.M.H.); (D.A.G.); (Z.T.); (A.A.G.); (Y.J.); (M.N.); (Q.F.); (X.S.)
| | - Dominique A. Garrison
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (M.E.U.); (E.D.E.); (Y.L.); (K.M.H.); (D.A.G.); (Z.T.); (A.A.G.); (Y.J.); (M.N.); (Q.F.); (X.S.)
| | - Zahra Talebi
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (M.E.U.); (E.D.E.); (Y.L.); (K.M.H.); (D.A.G.); (Z.T.); (A.A.G.); (Y.J.); (M.N.); (Q.F.); (X.S.)
| | - Alice A. Gibson
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (M.E.U.); (E.D.E.); (Y.L.); (K.M.H.); (D.A.G.); (Z.T.); (A.A.G.); (Y.J.); (M.N.); (Q.F.); (X.S.)
| | - Yan Jin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (M.E.U.); (E.D.E.); (Y.L.); (K.M.H.); (D.A.G.); (Z.T.); (A.A.G.); (Y.J.); (M.N.); (Q.F.); (X.S.)
| | - Mahesh Nepal
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (M.E.U.); (E.D.E.); (Y.L.); (K.M.H.); (D.A.G.); (Z.T.); (A.A.G.); (Y.J.); (M.N.); (Q.F.); (X.S.)
| | - Ingrid M. Bonilla
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Qiang Fu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (M.E.U.); (E.D.E.); (Y.L.); (K.M.H.); (D.A.G.); (Z.T.); (A.A.G.); (Y.J.); (M.N.); (Q.F.); (X.S.)
| | - Xinxin Sun
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (M.E.U.); (E.D.E.); (Y.L.); (K.M.H.); (D.A.G.); (Z.T.); (A.A.G.); (Y.J.); (M.N.); (Q.F.); (X.S.)
| | - Alec Millar
- Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (A.M.); (M.T.); (P.B.R.); (C.A.C.); (S.H.)
| | - Mikhail Tarasov
- Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (A.M.); (M.T.); (P.B.R.); (C.A.C.); (S.H.)
| | - Christopher E. Jay
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; (C.E.J.); (D.H.S.)
| | - Xiaoming Cui
- Novartis Institute for Biomedical Research, East Hanover, NJ 07936, USA; (X.C.); (H.J.E.); (R.M.P.)
| | - Heidi J. Einolf
- Novartis Institute for Biomedical Research, East Hanover, NJ 07936, USA; (X.C.); (H.J.E.); (R.M.P.)
| | - Ryan M. Pelis
- Novartis Institute for Biomedical Research, East Hanover, NJ 07936, USA; (X.C.); (H.J.E.); (R.M.P.)
| | - Sakima A. Smith
- OSU Wexner Medical Center, Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210, USA;
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Przemysław B. Radwański
- Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (A.M.); (M.T.); (P.B.R.); (C.A.C.); (S.H.)
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Douglas H. Sweet
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; (C.E.J.); (D.H.S.)
| | - Jörg König
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (J.K.); (M.F.F.)
| | - Martin F. Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (J.K.); (M.F.F.)
| | - Cynthia A. Carnes
- Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (A.M.); (M.T.); (P.B.R.); (C.A.C.); (S.H.)
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Shuiying Hu
- Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (A.M.); (M.T.); (P.B.R.); (C.A.C.); (S.H.)
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (M.E.U.); (E.D.E.); (Y.L.); (K.M.H.); (D.A.G.); (Z.T.); (A.A.G.); (Y.J.); (M.N.); (Q.F.); (X.S.)
| |
Collapse
|
11
|
Garmendia I, Redin E, Montuenga LM, Calvo A. YES1: a novel therapeutic target and biomarker in cancer. Mol Cancer Ther 2022; 21:1371-1380. [PMID: 35732509 DOI: 10.1158/1535-7163.mct-21-0958] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/09/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
YES1 is a non-receptor tyrosine kinase that belongs to the SRC family of kinases (SFKs) and controls multiple cancer signaling pathways. YES1 is amplified and overexpressed in many tumor types, where it promotes cell proliferation, survival and invasiveness. Therefore, YES1 has been proposed as an emerging target in solid tumors. In addition, studies have shown that YES1 is a prognostic biomarker and a predictor of dasatinib activity. Several SFKs-targeting drugs have been developed and some of them have reached clinical trials. However, these drugs have encountered challenges to their utilization in the clinical practice in unselected patients due to toxicity and lack of efficacy. In the case of YES1, novel specific inhibitors have been developed and tested in preclinical models, with impressive antitumor effects. In this review, we summarize the structure and activation of YES1 and describe its role in cancer as a target and prognostic and companion biomarker. We also address the efficacy of SFKs inhibitors that are currently in clinical trials, highlighting the main hindrances for their clinical use. Current available information strongly suggests that inhibiting YES1 in tumors with high expression of this protein is a promising strategy against cancer.
Collapse
Affiliation(s)
- Irati Garmendia
- INSERM UMRS1138. Centre de Recherche des Cordeliers, Paris, France
| | | | - Luis M Montuenga
- CIMA and Clinica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Alfonso Calvo
- Center for Applied Medical Research (CIMA), Pamplona, Spain
| |
Collapse
|
12
|
Brouwer KLR, Evers R, Hayden E, Hu S, Li CY, Meyer Zu Schwabedissen HE, Neuhoff S, Oswald S, Piquette-Miller M, Saran C, Sjöstedt N, Sprowl JA, Stahl SH, Yue W. Regulation of Drug Transport Proteins-From Mechanisms to Clinical Impact: A White Paper on Behalf of the International Transporter Consortium. Clin Pharmacol Ther 2022; 112:461-484. [PMID: 35390174 PMCID: PMC9398928 DOI: 10.1002/cpt.2605] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/20/2022] [Indexed: 12/14/2022]
Abstract
Membrane transport proteins are involved in the absorption, disposition, efficacy, and/or toxicity of many drugs. Numerous mechanisms (e.g., nuclear receptors, epigenetic gene regulation, microRNAs, alternative splicing, post‐translational modifications, and trafficking) regulate transport protein levels, localization, and function. Various factors associated with disease, medications, and dietary constituents, for example, may alter the regulation and activity of transport proteins in the intestine, liver, kidneys, brain, lungs, placenta, and other important sites, such as tumor tissue. This white paper reviews key mechanisms and regulatory factors that alter the function of clinically relevant transport proteins involved in drug disposition. Current considerations with in vitro and in vivo models that are used to investigate transporter regulation are discussed, including strengths, limitations, and the inherent challenges in predicting the impact of changes due to regulation of one transporter on compensatory pathways and overall drug disposition. In addition, translation and scaling of in vitro observations to in vivo outcomes are considered. The importance of incorporating altered transporter regulation in modeling and simulation approaches to predict the clinical impact on drug disposition is also discussed. Regulation of transporters is highly complex and, therefore, identification of knowledge gaps will aid in directing future research to expand our understanding of clinically relevant molecular mechanisms of transporter regulation. This information is critical to the development of tools and approaches to improve therapeutic outcomes by predicting more accurately the impact of regulation‐mediated changes in transporter function on drug disposition and response.
Collapse
Affiliation(s)
- Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Raymond Evers
- Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, Pennsylvania, USA
| | - Elizabeth Hayden
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Shuiying Hu
- College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | | | | | | | - Stefan Oswald
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | | | - Chitra Saran
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Noora Sjöstedt
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jason A Sprowl
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Simone H Stahl
- CVRM Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Wei Yue
- College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
13
|
Uddin ME, Talebi Z, Chen S, Jin Y, Gibson AA, Noonan AM, Cheng X, Hu S, Sparreboom A. In Vitro and In Vivo Inhibition of MATE1 by Tyrosine Kinase Inhibitors. Pharmaceutics 2021; 13:pharmaceutics13122004. [PMID: 34959286 PMCID: PMC8707461 DOI: 10.3390/pharmaceutics13122004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/16/2022] Open
Abstract
The membrane transport of many cationic prescription drugs depends on facilitated transport by organic cation transporters of which several members, including OCT2 (SLC22A2), are sensitive to inhibition by select tyrosine kinase inhibitors (TKIs). We hypothesized that TKIs may differentially interact with the renal transporter MATE1 (SLC47A1) and influence the elimination and toxicity of the MATE1 substrate oxaliplatin. Interactions with FDA-approved TKIs were evaluated in transfected HEK293 cells, and in vivo pharmacokinetic studies were performed in wild-type, MATE1-deficient, and OCT2/MATE1-deficient mice. Of 57 TKIs evaluated, 37 potently inhibited MATE1 function by >80% through a non-competitive, reversible, substrate-independent mechanism. The urinary excretion of oxaliplatin was reduced by about 2-fold in mice with a deficiency of MATE1 or both OCT2 and MATE1 (p < 0.05), without impacting markers of acute renal injury. In addition, genetic or pharmacological inhibition of MATE1 did not significantly alter plasma levels of oxaliplatin, suggesting that MATE1 inhibitors are unlikely to influence the safety or drug-drug interaction liability of oxaliplatin-based chemotherapy.
Collapse
Affiliation(s)
- Muhammad Erfan Uddin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (M.E.U.); (Z.T.); (Y.J.); (A.A.G.)
| | - Zahra Talebi
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (M.E.U.); (Z.T.); (Y.J.); (A.A.G.)
| | - Sijie Chen
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (S.C.); (X.C.)
| | - Yan Jin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (M.E.U.); (Z.T.); (Y.J.); (A.A.G.)
| | - Alice A. Gibson
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (M.E.U.); (Z.T.); (Y.J.); (A.A.G.)
| | - Anne M. Noonan
- Department of Internal Medicine, Division of Medical Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Xiaolin Cheng
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (S.C.); (X.C.)
| | - Shuiying Hu
- Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (M.E.U.); (Z.T.); (Y.J.); (A.A.G.)
- Correspondence:
| |
Collapse
|
14
|
Garrison DA, Jin Y, Uddin ME, Sparreboom A, Baker SD. Development, validation, and application of an LC-MS/MS method for the determination of the AXL/FLT3 inhibitor gilteritinib in mouse plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1179:122882. [PMID: 34365291 DOI: 10.1016/j.jchromb.2021.122882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022]
Abstract
A simple, fast and precise LC-MS/MS method for the quantitation of the tyrosine kinase inhibitor gilteritinib was developed and validated for micro-volumes of mouse plasma. The assay procedure involved a one-step extraction of gilteritinib and the internal standard [2H5]-gilteritinib with acetonitrile. An Accucore aQ column was used to separate analytes using a gradient elution delivered at a flow rate of 0.4 mL/min, and a total run time of 2.5 min. Validation studies with quality control samples processed on consecutive days revealed that values for intra-day and inter-day precision were <7.04%, with an accuracy of 101-108%. Linear responses were observed over the entire calibration curve range (up to 500 ng/mL), and the lower limit of quantification was 5 ng/mL. The developed method was successfully used to examine the pharmacokinetics of oral gilteritinib in wild-type mice and mice lacking the organic cation transporters OCT1, OCT2, and MATE1 to further understand mechanisms contributing to drug-drug interactions and causes of inter-individual pharmacokinetic variability.
Collapse
Affiliation(s)
- Dominique A Garrison
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Yan Jin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Muhammad Erfan Uddin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Sharyn D Baker
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
15
|
Jouan E, Moreau A, Bruyere A, Alim K, Denizot C, Parmentier Y, Fardel O. Differential Inhibition of Equilibrative Nucleoside Transporter 1 (ENT1) Activity by Tyrosine Kinase Inhibitors. Eur J Drug Metab Pharmacokinet 2021; 46:625-635. [PMID: 34275128 PMCID: PMC8286641 DOI: 10.1007/s13318-021-00703-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2021] [Indexed: 12/30/2022]
Abstract
Background and Objectives Equilibrative nucleoside transporter (ENT) 1 is a widely-expressed drug transporter, handling nucleoside analogues as well as endogenous nucleosides. ENT1 has been postulated to be inhibited by some marketed tyrosine kinase inhibitors (TKIs). To obtain insights into this point, the interactions of 24 TKIs with ENT1 activity have been analyzed. Methods Inhibition of ENT1 activity was investigated in vitro through quantifying the decrease of [3H]-uridine uptake caused by TKIs in HAP1 ENT2-knockout cells, exhibiting selective ENT1 expression. TKI effects towards ENT1-mediated transport were additionally characterized in terms of their in vivo relevance and of their relationship to TKI molecular descriptors. Putative transport of the TKI lorlatinib by ENT1/ENT2 was analyzed by LC-MS/MS. Results Of 24 TKIs, 12 of them, each used at 10 µM, were found to behave as moderate or strong inhibitors of ENT1, i.e., they decreased ENT1 activity by at least 35%. This inhibition was concentration-dependent for at least the strongest ones (IC50 less than 10 µM) and was correlated with some molecular descriptors, especially with atom-type E-state indices. Lorlatinib was notably a potent in vitro inhibitor of ENT1/ENT2 (IC50 values around 1.0–2.5 µM) and was predicted to inhibit these nucleoside transporters at relevant clinical concentrations, without, however, being a substrate for them. Conclusion Our data unambiguously add ENT1 to the list of drug transporters inhibited by TKIs, especially by lorlatinib. This point likely merits attention in terms of possible drug–drug interactions, notably for nucleoside analogues, whose ENT1-mediated uptake into their target cells may be hampered by co-administrated TKIs such as lorlatinib.
Collapse
Affiliation(s)
- Elodie Jouan
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, 35000, Rennes, France
| | - Amélie Moreau
- Centre de Pharmacocinétique, Technologie Servier, 45000, Orléans, France
| | - Arnaud Bruyere
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, 35000, Rennes, France
| | - Karima Alim
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, 35000, Rennes, France
| | - Claire Denizot
- Centre de Pharmacocinétique, Technologie Servier, 45000, Orléans, France
| | - Yannick Parmentier
- Centre de Pharmacocinétique, Technologie Servier, 45000, Orléans, France
| | - Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, 35000, Rennes, France.
| |
Collapse
|