1
|
Thach T, Dhanabalan K, Nandekar PP, Stauffer S, Heisler I, Alvarado S, Snyder J, Subramanian R. Mechanistic insights into the selective targeting of P2X3 receptor by camlipixant antagonist. J Biol Chem 2024:108109. [PMID: 39706278 DOI: 10.1016/j.jbc.2024.108109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024] Open
Abstract
ATP-activated P2X3 receptors play a pivotal role in chronic cough, affecting more than 10% of the population. Despite the challenges posed by the highly conserved structure of P2X receptors, efforts to develop selective drugs targeting P2X3 have led to the development of camlipixant, a potent, selective P2X3 antagonist. However, the mechanisms of receptor desensitization, ion permeation, and structural basis of camlipixant binding to P2X3 remain unclear. Here, we report a cryo-EM structure of camlipixant-bound P2X3, revealing a previously undiscovered selective drug-binding site in the receptor. Our findings also demonstrate that conformational changes in the upper-body domain, including the turret and camlipixant-binding pocket, play a critical role: turret opening facilitates P2X3 channel closure to a radius of 0.7 Å, hindering cation transfer, while turret closure leads to channel opening. Structural and functional studies combined with molecular dynamics simulations provide a comprehensive understanding of camlipixant's selective inhibition of P2X3, offering a foundation for future drug development targeting this receptor.
Collapse
Affiliation(s)
- Trung Thach
- Department of Biological Sciences, Purdue University, West Lafayette, IN-47907, USA.
| | | | | | - Seth Stauffer
- Elanco Animal Health, 2500 Innovation Way, Greenfield, IN-46140, USA
| | - Iring Heisler
- Elanco Animal Health, 2500 Innovation Way, Greenfield, IN-46140, USA
| | - Sarah Alvarado
- Elanco Animal Health, 2500 Innovation Way, Greenfield, IN-46140, USA
| | - Jonathan Snyder
- Elanco Animal Health, 2500 Innovation Way, Greenfield, IN-46140, USA
| | - Ramaswamy Subramanian
- Department of Biological Sciences, Purdue University, West Lafayette, IN-47907, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN-47907, USA.
| |
Collapse
|
2
|
Matera MG, Rogliani P, Page CP, Calzetta L, Cazzola M. The discovery and development of gefapixant as a novel antitussive therapy. Expert Opin Drug Discov 2024; 19:1159-1172. [PMID: 39138872 DOI: 10.1080/17460441.2024.2391902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
INTRODUCTION Gefapixant, a P2X 3 receptor antagonist, shows considerable potential in managing refractory or unexplained chronic cough. Clinical trials have consistently demonstrated its efficacy in significantly reducing cough frequency and alleviating associated symptoms. However, its adverse effect profile, particularly taste disturbances such as dysgeusia and hypogeusia, the incidence of which is dose-dependent, poses a significant challenge to patient compliance and overall treatment satisfaction. AREAS COVERED The authors review the mechanism of action of gefapixant, the dose-dependent nature of its adverse effects and the findings from various clinical trials, including Phase 1, Phase 2, and Phase 3 studies. The authors also cover its regulatory status, post-marketing data, and its main competitors. EXPERT OPINION Gefapixant represents a significant advancement in treating chronic cough. However, balancing efficacy and tolerability is crucial. Lower effective doses and potential combination therapies may mitigate taste disturbances. Patient education and close monitoring during treatment are also important for optimal outcomes. Further research is needed to refine dosing strategies to minimize side effects while maintaining therapeutic efficacy. This research and personalized treatment approaches are key to optimizing gefapixant therapy, ensuring improved management of chronic cough while reducing adverse effects. However, pharmaceutical trials and proposals must be adapted to align with each regulatory body's specific requirements and concerns.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Clive P Page
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Luigino Calzetta
- Unit of Respiratory Disease and Lung Function, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
3
|
Cabral-García GA, Cruz-Muñoz JR, Valdez-Morales EE, Barajas-Espinosa A, Liñán-Rico A, Guerrero-Alba R. Pharmacology of P2X Receptors and Their Possible Therapeutic Potential in Obesity and Diabetes. Pharmaceuticals (Basel) 2024; 17:1291. [PMID: 39458933 PMCID: PMC11509955 DOI: 10.3390/ph17101291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
The role of P2X ionotropic receptors in the behavior of purinergic signaling on pathophysiological processes has been widely studied. In recent years, the important participation of P2X receptors in physiological and pathological processes, such as energy metabolism, characteristic inflammatory responses of the immune system, and nociceptive activity in response to pain stimuli, has been noted. Here, we explore the molecular characteristics of the P2X receptors and the use of the different agonist and antagonist agents recently described, focusing on their potential as new therapeutic targets in the treatment of diseases with emphasis on obesity, diabetes, and some of the complications derived from these pathologies.
Collapse
Affiliation(s)
- Guillermo A. Cabral-García
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (G.A.C.-G.); (J.R.C.-M.); (E.E.V.-M.)
| | - José R. Cruz-Muñoz
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (G.A.C.-G.); (J.R.C.-M.); (E.E.V.-M.)
| | - Eduardo E. Valdez-Morales
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (G.A.C.-G.); (J.R.C.-M.); (E.E.V.-M.)
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCyT), Ciudad de México 03940, Mexico;
| | - Alma Barajas-Espinosa
- Escuela Superior de Huejutla, Universidad Autónoma del Estado de Hidalgo, Huejutla de Reyes 43000, Hidalgo, Mexico;
| | - Andrómeda Liñán-Rico
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCyT), Ciudad de México 03940, Mexico;
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Mexico
| | - Raquel Guerrero-Alba
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (G.A.C.-G.); (J.R.C.-M.); (E.E.V.-M.)
| |
Collapse
|
4
|
Thach T, Dhanabalan K, Nandekar PP, Stauffer S, Heisler I, Alvarado S, Snyder J, Subramanian R. A Second Drug Binding Site in P2X3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598171. [PMID: 38915546 PMCID: PMC11195084 DOI: 10.1101/2024.06.10.598171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Purinergic P2X3 receptors form trimeric cation-gated channels, which are activated by extracellular ATP. P2X3 plays a crucial role in chronic cough and affects over 10% of the population. Despite considerable efforts to develop drugs targeting P2X3, the highly conserved structure within the P2X receptor family presents obstacles for achieving selectivity. Camlipixant, a potent and selective P2X3 antagonist, is currently in phase III clinical trials. However, the mechanisms underlying receptor desensitization, ion permeation, principles governing antagonism, and the structure of P2X3 when bound to camlipixant remain elusive. In this study, we established a stable cell line expressing homotrimeric P2X3 and utilized a peptide scaffold to purify the complex and determine its structure using cryo-electron microscopy (cryo-EM). P2X3 binds to camlipixant at a previously unidentified drug-binding site and functions as an allosteric inhibitor. Structure-activity studies combined with modeling and simulations have shed light on the mechanisms underlying the selective targeting and inhibition of P2X3 by camlipixant, distinguishing it from other members of the P2X receptor family.
Collapse
Affiliation(s)
- Trung Thach
- Department of Biological Sciences, Purdue University, West Lafayette, IN-47907, USA
| | | | | | - Seth Stauffer
- Elanco Animal Health, 2500 Innovation Way, Greenfield, IN-46140, USA
| | - Iring Heisler
- Elanco Animal Health, 2500 Innovation Way, Greenfield, IN-46140, USA
| | - Sarah Alvarado
- Elanco Animal Health, 2500 Innovation Way, Greenfield, IN-46140, USA
| | - Jonathan Snyder
- Elanco Animal Health, 2500 Innovation Way, Greenfield, IN-46140, USA
| | - Ramaswamy Subramanian
- Department of Biological Sciences, Purdue University, West Lafayette, IN-47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN-47907, USA
| |
Collapse
|
5
|
Yeh TY, Chang MF, Kan YY, Chiang H, Hsieh ST. HSP27 Modulates Neuropathic Pain by Inhibiting P2X3 Degradation. Mol Neurobiol 2024; 61:707-724. [PMID: 37656312 DOI: 10.1007/s12035-023-03582-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
The role of heat shock protein 27 (HSP27), a chaperone, in neuropathic pain after nerve injury has not been systematically surveyed despite its neuroprotective and regeneration-promoting effects. In this study, we found that HSP27 expression in sensory neurons of the dorsal root ganglia (DRG) mediated nerve injury-induced neuropathic pain. Neuropathic pain behaviors were alleviated by silencing HSP27 in the DRG of a rat spinal nerve ligation (SNL) model. Local injection of an HSP27-overexpression construct into the DRG of naïve rats elicited neuropathic pain behaviors. HSP27 interacted with a purinergic receptor, P2X3, and their expression patterns corroborated the induction and reversal of neuropathic pain according to two lines of evidence: colocalization immunohistochemically and immunoprecipitation biochemically. In a cell model cotransfected with HSP27 and P2X3, the degradation rate of P2X3 was reduced in the presence of HSP27. Such an alteration was mediated by reducing P2X3 ubiquitination in SNL rats and was reversed after silencing HSP27 in the DRGs of SNL rats. In summary, the interaction of HSP27 with P2X3 provides a new mechanism of injury-induced neuropathic pain that could serve as an alternative therapeutic target.
Collapse
Affiliation(s)
- Ti-Yen Yeh
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Ming-Fong Chang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Yu-Yu Kan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | | | - Sung-Tsang Hsieh
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan.
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan.
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan.
- Department of Neurology, National Taiwan University Hospital, Taipei, 10002, Taiwan.
| |
Collapse
|
6
|
Grohs L, Cheng L, Cönen S, Haddad BG, Bülow A, Toklucu I, Ernst L, Körner J, Schmalzing G, Lampert A, Machtens JP, Hausmann R. Diclofenac and other non-steroidal anti-inflammatory drugs (NSAIDs) are competitive antagonists of the human P2X3 receptor. Front Pharmacol 2023; 14:1120360. [PMID: 37007008 PMCID: PMC10060569 DOI: 10.3389/fphar.2023.1120360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
Introduction: The P2X3 receptor (P2X3R), an ATP-gated non-selective cation channel of the P2X receptor family, is expressed in sensory neurons and involved in nociception. P2X3R inhibition was shown to reduce chronic and neuropathic pain. In a previous screening of 2000 approved drugs, natural products, and bioactive substances, various non-steroidal anti-inflammatory drugs (NSAIDs) were found to inhibit P2X3R-mediated currents.Methods: To investigate whether the inhibition of P2X receptors contributes to the analgesic effect of NSAIDs, we characterized the potency and selectivity of various NSAIDs at P2X3R and other P2XR subtypes using two-electrode voltage clamp electrophysiology.Results: We identified diclofenac as a hP2X3R and hP2X2/3R antagonist with micromolar potency (with IC50 values of 138.2 and 76.7 µM, respectively). A weaker inhibition of hP2X1R, hP2X4R, and hP2X7R by diclofenac was determined. Flufenamic acid (FFA) inhibited hP2X3R, rP2X3R, and hP2X7R (IC50 values of 221 µM, 264.1 µM, and ∼900 µM, respectively), calling into question its use as a non-selective ion channel blocker, when P2XR-mediated currents are under study. Inhibition of hP2X3R or hP2X2/3R by diclofenac could be overcome by prolonged ATP application or increasing concentrations of the agonist α,β-meATP, respectively, indicating competition of diclofenac and the agonists. Molecular dynamics simulation showed that diclofenac largely overlaps with ATP bound to the open state of the hP2X3R. Our results suggest a competitive antagonism through which diclofenac, by interacting with residues of the ATP-binding site, left flipper, and dorsal fin domains, inhibits the gating of P2X3R by conformational fixation of the left flipper and dorsal fin domains. In summary, we demonstrate the inhibition of the human P2X3 receptor by various NSAIDs. Diclofenac proved to be the most effective antagonist with a strong inhibition of hP2X3R and hP2X2/3R and a weaker inhibition of hP2X1R, hP2X4R, and hP2X7R.Discussion: Considering their involvement in nociception, inhibition of hP2X3R and hP2X2/3R by micromolar concentrations of diclofenac, which are rarely reached in the therapeutic range, may play a minor role in analgesia compared to the high-potency cyclooxygenase inhibition but may explain the known side effect of taste disturbances caused by diclofenac.
Collapse
Affiliation(s)
- Laura Grohs
- Institute of Clinical Pharmacology, RWTH Aachen University, Aachen, Germany
- Department of Neurology, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Linhan Cheng
- Institute of Clinical Pharmacology, RWTH Aachen University, Aachen, Germany
| | - Saskia Cönen
- Institute of Clinical Pharmacology, RWTH Aachen University, Aachen, Germany
- Molecular and Cellular Physiology (IBI-1), Institute of Biological Information Processing (IBI), Forschungszentrum Jülich, Jülich, Germany
| | - Bassam G. Haddad
- Molecular and Cellular Physiology (IBI-1), Institute of Biological Information Processing (IBI), Forschungszentrum Jülich, Jülich, Germany
| | - Astrid Bülow
- Institute of Clinical Pharmacology, RWTH Aachen University, Aachen, Germany
- Department of Plastic Surgery, Hand Surgery—Burn Center, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Idil Toklucu
- Institute of Physiology (Neurophysiology), RWTH Aachen University, Aachen, Germany
| | - Lisa Ernst
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH Aachen University, Aachen, Germany
| | - Jannis Körner
- Institute of Physiology (Neurophysiology), RWTH Aachen University, Aachen, Germany
- Department of Anesthesiology, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Günther Schmalzing
- Institute of Clinical Pharmacology, RWTH Aachen University, Aachen, Germany
| | - Angelika Lampert
- Institute of Physiology (Neurophysiology), RWTH Aachen University, Aachen, Germany
| | - Jan-Philipp Machtens
- Institute of Clinical Pharmacology, RWTH Aachen University, Aachen, Germany
- Molecular and Cellular Physiology (IBI-1), Institute of Biological Information Processing (IBI), Forschungszentrum Jülich, Jülich, Germany
| | - Ralf Hausmann
- Institute of Clinical Pharmacology, RWTH Aachen University, Aachen, Germany
- *Correspondence: Ralf Hausmann,
| |
Collapse
|
7
|
Sykes DL, Zhang M, Morice AH. Treatment of chronic cough: P2X3 receptor antagonists and beyond. Pharmacol Ther 2022; 237:108166. [DOI: 10.1016/j.pharmthera.2022.108166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/22/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
|
8
|
Zhang M, Sykes DL, Sadofsky LR, Morice AH. ATP, an attractive target for the treatment of refractory chronic cough. Purinergic Signal 2022; 18:289-305. [PMID: 35727480 PMCID: PMC9209634 DOI: 10.1007/s11302-022-09877-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022] Open
Abstract
Chronic cough is the most common complaint in respiratory clinics. Most of them have identifiable causes and some may respond to common disease-modifying therapies. However, there are many patients whose cough lacks effective aetiologically targeted treatments or remains unexplained after thorough assessments, which have been described as refractory chronic cough. Current treatments for refractory chronic cough are limited and often accompanied by intolerable side effects such as sedation. In recent years, various in-depth researches into the pathogenesis of chronic cough have led to an explosion in the development of drugs for the treatment of refractory chronic cough. There has been considerable progress in the underlying mechanisms of chronic cough targeting ATP, and ongoing or completed clinical studies have confirmed the promising antitussive efficacy of P2X3 antagonists for refractory cough. Herein, we review the foundation on which ATP target was developed as potential antitussive medications and provide an update on current clinical progresses.
Collapse
Affiliation(s)
- Mengru Zhang
- Respiratory Research Group, Hull York Medical School, Cottingham, UK.,Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dominic L Sykes
- Respiratory Research Group, Hull York Medical School, Cottingham, UK
| | - Laura R Sadofsky
- Respiratory Research Group, Hull York Medical School, Cottingham, UK
| | - Alyn H Morice
- Respiratory Research Group, Hull York Medical School, Cottingham, UK.
| |
Collapse
|
9
|
Dane C, Stokes L, Jorgensen WT. P2X Receptor Antagonists and their Potential as Therapeutics: a patent review (2010 - 2021). Expert Opin Ther Pat 2022; 32:769-790. [PMID: 35443137 DOI: 10.1080/13543776.2022.2069010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Purinergic receptors play a critical role in neurotransmission, and modulation of complex physiological functions. As such, they have been implicated in numerous disease states including chronic pain, inflammation, autoimmune disease, and cancer. The past decade has seen substantial progress in the design of novel chemical compounds that act on the P2X class of receptors and warrants an updated review of this field. AREAS COVERED : This review provides a summary of the patent literature describing the discovery and clinical uses of P2X receptor antagonists published between 2010 and September 2021. The reader will gain information on structural claims, representative structures, and biological data of recently reported antagonists for seven P2X receptor subtypes. EXPERT OPINION : The potential for therapeutic intervention through the design and use of purinergic receptor inhibitors is pharmacologically well defined. Despite continual advancement in both crystallography and chemical biology strengthening our understanding of purinergic signalling and their roles in pathophysiology, there remains a vast absence of clinically approved chemical modalities. A testament to both the therapeutic potential and academic perseverance in purinergic research is the multitude of research initiatives and pharmaceutical campaigns that maintain active P2X receptor programs that have spanned decades. Very recently, the FDA declined Merck Pharmaceuticals application for Gefapixant, a P2X3 selective inhibitor as a treatment for chronic cough, requesting additional data. This unfortunate setback within the field will ultimately be insignificant considering the long history of P2X investigation and the preclinical and clinical development that would undoubtedly occur over the next decade.
Collapse
Affiliation(s)
- Chianna Dane
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Leanne Stokes
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR47TJ
| | | |
Collapse
|
10
|
James CF, Tripathi S, Karampatou K, Gladston DV, Pappachan JM. Pharmacotherapy of Painful Diabetic Neuropathy: A Clinical Update. SISLI ETFAL HASTANESI TIP BULTENI 2022; 56:1-20. [PMID: 35515975 PMCID: PMC9040305 DOI: 10.14744/semb.2021.54670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 02/08/2023]
Abstract
The rising prevalence of diabetes mellitus (DM) leads on to an increase in chronic diabetic complications. Diabetic peripheral neuropathies (DPNs) are common chronic complications of diabetes. Distal symmetric polyneuropathy is the most prevalent form. Most patients with DPN will remain pain-free; however, painful DPN (PDPN) occurs in 6-34% of all DM patients and is associated with reduced health-related-quality-of-life and substantial economic burden. Symptomatic treatment of PDPN and diabetic autonomic neuropathy is the key treatment goals. Using certain patient related characteristics, subjects with PDPN can be stratified and assigned targeted therapies to produce better pain outcomes. The aim of this review is to discuss the various pathogenetic mechanisms of DPN with special reference to the mechanisms leading to PDPN and the various pharmacological and non-pharmacological therapies available for its management. Recommended pharmacological therapies include anticonvulsants, antidepressants, opioid analgesics, and topical medications.
Collapse
Affiliation(s)
- Cornelius Fernandez James
- Department of Endocrinology & Metabolism, Pilgrim Hospital, United Lincolnshire Hospitals NHS Trust, United Kingdom
| | - Shiva Tripathi
- Department of Anaesthesia & Pain Management, Lancashire Teaching Hospitals NHS Trust, United Kingdom
| | - Kyriaki Karampatou
- Department of Endocrinology & Metabolism, Lancashire Teaching Hospitals NHS Trust, United Kingdom
| | - Divya V Gladston
- Department of Anaesthesiology, Regional Cancer Centre, Thiruvananthapuram, India
| | - Joseph M Pappachan
- Department of Endocrinology & Metabolism, Lancashire Teaching Hospitals NHS Trust, United Kingdom; The University of Manchester, Manchester, UK; Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
11
|
Ingrasci G, Lipman ZM, Yosipovitch G. When topical therapy of atopic dermatitis fails: a guide for the clinician. Expert Rev Clin Immunol 2021; 17:1245-1256. [PMID: 34720031 DOI: 10.1080/1744666x.2021.2000390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION While topical medications are the first line of treatment for mild-to-moderate atopic dermatitis, they are ineffective in individuals with diffuse disease and moderate-to-severe atopic itch. For these individuals, as well as those who do not respond to topical treatments, systemic medicines are typically essential and helpful. AREAS COVERED We conducted a review of the literature to identify established systemic therapies, novel biologic agents, and recent advances in the pathophysiology of atopic dermatitis. The review discusses these data, which show that the majority of atopic itch medications now in development target the type 2 immune axis and brain sensitization, two main etiologies of atopic itch. We emphasize the evidence, efficacy, and side effect profiles of currently available systemic medications for atopic itch, as well as future potential for tailored therapy. EXPERT OPINION We give our professional opinion on the current state of knowledge about atopic eczema pathogenesis and the innovative targets and therapies for atopic itch that include MRGPRX2, periostin, gabaergic medicines, and JAK/STAT inhibitors. Additionally, we discuss patient populations that stand to benefit the most from targeting these molecules or utilizing these drugs, as well as those who may face a disproportionate weight of adverse effects.
Collapse
Affiliation(s)
- Giuseppe Ingrasci
- Department of Dermatology and Cutaneous Surgery Miami, University of Miami, Miami, FL, USA
| | - Zoe M Lipman
- Department of Dermatology and Cutaneous Surgery Miami, University of Miami, Miami, FL, USA
| | - Gil Yosipovitch
- Department of Dermatology and Cutaneous Surgery Miami, University of Miami, Miami, FL, USA
| |
Collapse
|
12
|
Müller CE, Namasivayam V. Recommended tool compounds and drugs for blocking P2X and P2Y receptors. Purinergic Signal 2021; 17:633-648. [PMID: 34476721 PMCID: PMC8677864 DOI: 10.1007/s11302-021-09813-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/15/2021] [Indexed: 12/21/2022] Open
Abstract
This review article presents a collection of tool compounds that selectively block and are recommended for studying P2Y and P2X receptor subtypes, investigating their roles in physiology and validating them as future drug targets. Moreover, drug candidates and approved drugs for P2 receptors will be discussed.
Collapse
Affiliation(s)
- Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany.
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| |
Collapse
|
13
|
Lipman ZM, Labib A, Yosipovitch G. Current Clinical Options for the Management of Itch in Atopic Dermatitis. Clin Cosmet Investig Dermatol 2021; 14:959-969. [PMID: 34377004 PMCID: PMC8349193 DOI: 10.2147/ccid.s289716] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/13/2021] [Indexed: 12/16/2022]
Abstract
Pruritus is the most burdensome and prevalent symptom in patients suffering from atopic dermatitis. Treating atopic itch has historically been a challenge due to multiple underlying mechanisms within its pathogenesis and an incomplete understanding of them. In recent years, our understanding of these mechanisms have increased tremendously and subsequently, new treatments have reached the market that target the pathophysiology of atopic itch from different angles. In addition, there are several promising new treatments currently in development and trials. In the current article, we discuss these currently available treatment options, their available evidence and efficacy, and highlight some of the more recent advancements in the field.
Collapse
Affiliation(s)
- Zoe M Lipman
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Angelina Labib
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Gil Yosipovitch
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|