1
|
Han X, Shi Q, Tu Y, Zhang J, Wang M, Li W, Liu Y, Zheng R, Wei J, Ye S, Zhang Y, Ye B, Wang Y, Ying H, Liang G. Cardiomyocyte PRL2 Promotes Cardiac Hypertrophy via Directly Dephosphorylating AMPKα2. Circ Res 2025; 136:645-663. [PMID: 39950300 DOI: 10.1161/circresaha.124.325262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 01/18/2025] [Accepted: 01/31/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Pathological cardiac hypertrophy can result in heart failure. Protein dephosphorylation plays a primary role in the mediation of various cellular processes in cardiomyocytes. Here, we investigated the effects of a protein tyrosine phosphatase, PRL2 (phosphatase of regenerative liver 2), on pathological cardiac hypertrophy. METHODS The PRL2 knockout mice were subjected to angiotensin II infusion or transverse aortic constriction to induce myocardial hypertrophy and cardiac dysfunction. RNA-sequencing analysis was performed to explore the underlying mechanisms. Mass spectrometry and bio-layer interferometry assays were used to identify AMPKα2 (AMP-activated protein kinase α2) as an interacting protein of PRL2. Mutant plasmids of AMPKα2 were used to clarify how PRL2 interacts and dephosphorylates AMPKα2. RESULTS A significant upregulation of PRL2 was observed in hypertrophic myocardium tissues in mice and patients with heart failure. PRL2 deficiency alleviated cardiac hypertrophy, fibrosis, and dysfunction in mice challenged with angiotensin II infusion or transverse aortic constriction. Transcriptomic and biochemical analyses showed that PRL2 knockout or silence maintained AMPKT172 phosphorylation and subsequent mitochondrial integrity in angiotensin II-challenged heart tissues or cardiomyocytes. Mass spectrometry-based interactome assay indicated AMPKα2 subunit as the substrate of PRL2. Mechanistically, PRL2 binds to the C-terminal domain of AMPKα2 and then dephosphorylates AMPKα2T172 via its active site C46. Adeno-associated virus 9-mediated deficiency of cardiomyocyte PRL2 also protected cardiac mitochondrial function and showed cardioprotective effects in angiotensin II-challenged mice, but these benefits were not observed in AMPKα2-/- mice. CONCLUSIONS This study reveals that PRL2, as a novel AMPK-regulating phosphatase, promotes mitochondrial instability and hypertrophic injury in cardiomyocytes and provides PLR2 as a potential target for future drug development treating heart failure.
Collapse
Affiliation(s)
- Xue Han
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital (X.H., Y.Z., Y.W., G.L.), Hangzhou Medical College, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research (X.H., Q.S., Y.T., J.Z., W.L., Y.L., R.Z., J.W., H.Y.), Hangzhou Medical College, Zhejiang, China
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China (X.H., S.Y., B.Y., G.L.)
| | - Qiaojuan Shi
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research (X.H., Q.S., Y.T., J.Z., W.L., Y.L., R.Z., J.W., H.Y.), Hangzhou Medical College, Zhejiang, China
| | - Yu Tu
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research (X.H., Q.S., Y.T., J.Z., W.L., Y.L., R.Z., J.W., H.Y.), Hangzhou Medical College, Zhejiang, China
| | - Jiajia Zhang
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research (X.H., Q.S., Y.T., J.Z., W.L., Y.L., R.Z., J.W., H.Y.), Hangzhou Medical College, Zhejiang, China
| | - Mengyang Wang
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China (M.W.)
| | - Weiqi Li
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research (X.H., Q.S., Y.T., J.Z., W.L., Y.L., R.Z., J.W., H.Y.), Hangzhou Medical College, Zhejiang, China
| | - Yanan Liu
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research (X.H., Q.S., Y.T., J.Z., W.L., Y.L., R.Z., J.W., H.Y.), Hangzhou Medical College, Zhejiang, China
| | - Ruyi Zheng
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research (X.H., Q.S., Y.T., J.Z., W.L., Y.L., R.Z., J.W., H.Y.), Hangzhou Medical College, Zhejiang, China
| | - Jiajia Wei
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research (X.H., Q.S., Y.T., J.Z., W.L., Y.L., R.Z., J.W., H.Y.), Hangzhou Medical College, Zhejiang, China
| | - Shiju Ye
- School of Pharmaceutical Sciences (S.Y., Y.Z., G.L.), Hangzhou Medical College, Zhejiang, China
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China (X.H., S.Y., B.Y., G.L.)
| | - Yanmei Zhang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital (X.H., Y.Z., Y.W., G.L.), Hangzhou Medical College, Zhejiang, China
- School of Pharmaceutical Sciences (S.Y., Y.Z., G.L.), Hangzhou Medical College, Zhejiang, China
| | - Bozhi Ye
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China (X.H., S.Y., B.Y., G.L.)
| | - Yi Wang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital (X.H., Y.Z., Y.W., G.L.), Hangzhou Medical College, Zhejiang, China
| | - Huazhong Ying
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research (X.H., Q.S., Y.T., J.Z., W.L., Y.L., R.Z., J.W., H.Y.), Hangzhou Medical College, Zhejiang, China
| | - Guang Liang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital (X.H., Y.Z., Y.W., G.L.), Hangzhou Medical College, Zhejiang, China
- School of Pharmaceutical Sciences (S.Y., Y.Z., G.L.), Hangzhou Medical College, Zhejiang, China
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China (X.H., S.Y., B.Y., G.L.)
| |
Collapse
|
2
|
Pan Y, Qiao L, Zhang Y, Sooranna SR, Huang D, Ou M, Xu F, Chen L, Huang D. The molecular and network mechanisms of antilipidemic potential effects of Ganfule capsules in nonalcoholic fatty liver disease. Heliyon 2024; 10:e34297. [PMID: 39113948 PMCID: PMC11305243 DOI: 10.1016/j.heliyon.2024.e34297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a common liver disorder characterized by hepatic steatosis, inflammation and fibrosis. Ganfule (GFL), a traditional Chinese medicine, has demonstrated therapeutic potential in the treatment of NAFLD but the mechanisms involved are not fully understood.To evaluate the biochemical mechanisms of GFL in treating NAFLD by examining its effects on biological networks, key therapeutic targets, histopathological changes and clinical implications. Methods Chemical component screening, key target prediction, biological functional enrichment analysis, lipid profile localization analysis and complex network analysis were performed on GFL using multi-database mining, network analysis and molecular docking. An NAFLD rat model was then established and treated with different doses of GFL. Histopathological evaluation and western blotting were used to verify the expression levels of key target proteins in GFL-treated NAFLD rats. Results Network analysis analysis identified 12 core targets, 12 core active ingredients and 7 core Chinese medicinal herbs in GFL potentially involved in the treatment of NAFLD. Biological functional enrichment analysis revealed the involvement of lipid metabolism, apoptosis and intracellular signaling pathways. Molecular docking confirmed a strong affinity between GFL's core compounds and certain target proteins. Histopathological examination of an NAFLD rat model showed reduced hepatocellular steatosis after GFL treatment. Western blotting revealed significant downregulation of PPARA and PPARD protein expression and upregulation of PIK3CG and PRKACA protein expression in NAFLD rats treated with lower doses of GFL. Conclusions Our results suggest that GFL modulates key proteins involved in lipid metabolism and apoptosis pathways. GFL improved the histopathological features of NAFLD rats by regulating lipid metabolism as well as reducing hepatocyte apoptosis and hepatocellular steatosis. These findings offer insights into the biochemical mechanism of action of GFL and support its use in the treatment for NAFLD.
Collapse
Affiliation(s)
- Yu Pan
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, Peoples Republic of China
- National Engineering Research Center of Southwest Endangered Medicinal Resource Development, Nanning, 530023, Peoples Republic of China
| | - Liya Qiao
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, Peoples Republic of China
- Chinese Medicinal Materials Product Quality Supervision and Inspection Station, 530023, Peoples Republic of China
| | - Yunkun Zhang
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, Peoples Republic of China
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Hunan University of Chinese Medicine, Changsha, 410208, Peoples Republic of China
| | - Suren R. Sooranna
- Academic Department of Obstetrics and Gvnaecology, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London, SW109NH, United Kingdom
| | - Danna Huang
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, Peoples Republic of China
- National Engineering Research Center of Southwest Endangered Medicinal Resource Development, Nanning, 530023, Peoples Republic of China
| | - Min Ou
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, Peoples Republic of China
- National Engineering Research Center of Southwest Endangered Medicinal Resource Development, Nanning, 530023, Peoples Republic of China
| | - Fei Xu
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, Peoples Republic of China
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Hunan University of Chinese Medicine, Changsha, 410208, Peoples Republic of China
| | - Lu Chen
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, Peoples Republic of China
- National Engineering Research Center of Southwest Endangered Medicinal Resource Development, Nanning, 530023, Peoples Republic of China
| | - Dan Huang
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, Peoples Republic of China
- State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (Incubation), Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, 410208, Peoples Republic of China
| |
Collapse
|
3
|
Jiang T, Sun L, Wang Y, Zhang F, Guo J, Sun L, Jiang Y, Xue J, Duan J, Liu C. Podophyllotoxin via SIRT1/PPAR /NF-κB axis induced cardiac injury in rats based on the toxicological evidence chain (TEC) concept. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155655. [PMID: 38838636 DOI: 10.1016/j.phymed.2024.155655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/28/2024] [Accepted: 04/17/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND The study of cardiotoxicity of drugs has become an important part of clinical safety evaluation of drugs. It is commonly known that podophyllotoxin (PPT) and its many derivatives and congeners are broad-spectrum pharmacologically active substances. Clinical cardiotoxicity of PPT and its derivatives has been raised, basic research on the mechanism of cardiotoxicity remains insufficient. PURPOSE In present study, our group's innovative concept of toxicological evidence chain (TEC) was applied to reveal the cardiac toxicity mechanism of PPT by targeted metabolomics, TMT-based quantitative proteomics and western blot. METHODS The injury phenotype evidence (IPE) acquired from the toxicity manifestations, such as weight and behavior observation of Sprague-Dawley rat. The damage to rat hearts were assessed through histopathological examination and myocardial enzymes levels, which were defined as Adverse Outcomes Evidence (AOE). The damage to rat hearts was assessed through histopathological examination and myocardial enzyme levels, which were defined as evidence of adverse outcomes.Overall measurements of targeted metabolomics based on energy metabolism and TMT-based quantitative proteomics were obtained after exposure to PPT to acquire the Toxic Event Evidence (TEE). The mechanism of cardiac toxicity was speculated based on the integrated analysis of targeted metabolomics and TMT-based quantitative proteomics, which was verified by western blot. RESULTS The results indicated that exposure to PPT could result in significant elevation of myocardial enzymes and pathological alterations in rat hearts. In addition, we found that PPT caused disorders in cardiac energy metabolism, characterized by a decrease in energy metabolism fuels. TMT-based quantitative proteomics revealed that the PPAR (Peroxisome proliferators-activated receptor) signaling pathway needs further study. It is worth noting that PPT may suppress the expression of SIRT1, subsequently inhibiting AMPK, decreasing the expression of PGC-1α, PPARα and PPARγ. This results in disorders of glucose oxidation, glycolysis and ketone body metabolism. Additionally, the increase in the expression of p-IKK and p-IκBα, leads to the nuclear translocation of NF-κB p65 from the cytosol, thus triggering inflammation. CONCLUSION This study comprehensively evaluated cardiac toxicity of PPT and initially revealed the mechanism of cardiotoxicity,suggesting that PPT induced disorders of energy metabolism and inflammation via SIRT1/PPAR/NF-κB axis, potentially contributing to cardiac injury.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Lu Sun
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong 030600, China
| | - Yuming Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Fangfang Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jia Guo
- Department of Clinical Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Lingyun Sun
- Department of Clinical Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Yalin Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Juan Xue
- Department of Clinical Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Jiajia Duan
- Department of Clinical Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China.
| | - Chuanxin Liu
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
4
|
Han Y, Li S, Zhang Z, Ning X, Wu J, Zhang X. Bawei Chenxiang Wan ameliorates right ventricular hypertrophy in rats with high altitude heart disease by SIRT3-HIF1α-PDK/PDH signaling pathway improving fatty acid and glucose metabolism. BMC Complement Med Ther 2024; 24:190. [PMID: 38750550 PMCID: PMC11094862 DOI: 10.1186/s12906-024-04490-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 05/06/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Bawei Chenxiang Wan (BCW) is among the most effective and widely used therapies for coronary heart disease and angina pectoris in Tibet. However, whether it confers protection through a right-ventricle (RV) myocardial metabolic mechanism is unknown. METHODS Male Sprague-Dawley rats were orally administrated with BCW, which was injected concurrently with a bolus of Sugen5416, and subjected to hypoxia exposure (SuHx; 5000 m altitude) for 4 weeks. Right ventricular hypertrophy (RVH) in high-altitude heart disease (HAHD) was assessed using Fulton's index (FI; ratio of RV to left ventricle + septum weights) and heart-weight-to-body-weight ratio (HW/BW). The effect of therapeutic administration of BCW on the RVH hemodynamics was assessed through catheterization (mean right ventricular pressure and mean pulmonary artery pressure (mRVP and mPAP, respectively)). Tissue samples were used to perform histological staining, and confirmatory analyses of mRNA and protein levels were conducted to detect alterations in the mechanisms of RVH in HAHD. The protective mechanism of BCW was further verified via cell culture. RESULTS BCW considerably reduced SuHx-associated RVH, as indicated by macro morphology, HW/BW ratio, FI, mPAP, mRVP, hypertrophy markers, heart function, pathological structure, and myocardial enzymes. Moreover, BCW can alleviate the disorder of glucose and fatty acid metabolism through upregulation of carnitine palmitoyltransferase1ɑ, citrate synthase, and acetyl-CoA and downregulation of glucose transport-4, phosphofructokinase, and pyruvate, which resulted in the reduced levels of free fatty acid and lactic acid and increased aerobic oxidation. This process may be mediated via the regulation of sirtuin 3 (SIRT3)-hypoxia-inducible factor 1α (HIF1α)-pyruvate dehydrogenase kinase (PDK)/pyruvate dehydrogenase (PDH) signaling pathway. Subsequently, the inhibition of SIRT3 expression by 3-TYP (a selective inhibitor of SIRT3) can reverse substantially the anti-RVH effect of BCW in HAHD, as indicated by hypertrophy marker and serum myocardial enzyme levels. CONCLUSIONS BCW prevented SuHx-induced RVH in HAHD via the SIRT3-HIF1ɑ-PDK/PDH signaling pathway to alleviate the disturbance in fatty acid and glucose metabolism. Therefore, BCW can be used as an alternative drug for the treatment of RVH in HAHD.
Collapse
Affiliation(s)
- Yiwei Han
- School of Medicine, Xizang Minzu University, Wenhui Road East, Weicheng District, Xianyang, Shaanxi, 712082, P.R. China
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xianyang, Shaanxi, 712082, P.R. China
- Joint Laboratory for Research On Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, Xianyang, Shaanxi, 712082, P.R. China
| | - Shadi Li
- School of Medicine, Xizang Minzu University, Wenhui Road East, Weicheng District, Xianyang, Shaanxi, 712082, P.R. China
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xianyang, Shaanxi, 712082, P.R. China
- Joint Laboratory for Research On Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, Xianyang, Shaanxi, 712082, P.R. China
| | - Zhiying Zhang
- School of Medicine, Xizang Minzu University, Wenhui Road East, Weicheng District, Xianyang, Shaanxi, 712082, P.R. China
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xianyang, Shaanxi, 712082, P.R. China
- Joint Laboratory for Research On Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, Xianyang, Shaanxi, 712082, P.R. China
| | - Xin Ning
- School of Medicine, Xizang Minzu University, Wenhui Road East, Weicheng District, Xianyang, Shaanxi, 712082, P.R. China
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xianyang, Shaanxi, 712082, P.R. China
- Joint Laboratory for Research On Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, Xianyang, Shaanxi, 712082, P.R. China
| | - Jiajia Wu
- School of Medicine, Xizang Minzu University, Wenhui Road East, Weicheng District, Xianyang, Shaanxi, 712082, P.R. China
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xianyang, Shaanxi, 712082, P.R. China
- Joint Laboratory for Research On Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, Xianyang, Shaanxi, 712082, P.R. China
| | - Xiaoying Zhang
- School of Medicine, Xizang Minzu University, Wenhui Road East, Weicheng District, Xianyang, Shaanxi, 712082, P.R. China.
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xianyang, Shaanxi, 712082, P.R. China.
- Joint Laboratory for Research On Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, Xianyang, Shaanxi, 712082, P.R. China.
| |
Collapse
|
5
|
Liu X, Xu X, Zhang T, Xu L, Tao H, Liu Y, Zhang Y, Meng X. Fatty acid metabolism disorders and potential therapeutic traditional Chinese medicines in cardiovascular diseases. Phytother Res 2023; 37:4976-4998. [PMID: 37533230 DOI: 10.1002/ptr.7965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/13/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023]
Abstract
Cardiovascular diseases are currently the primary cause of mortality in the whole world. Growing evidence indicated that the disturbances in cardiac fatty acid metabolism are crucial contributors in the development of cardiovascular diseases. The abnormal cardiac fatty acid metabolism usually leads to energy deficit, oxidative stress, excessive apoptosis, and inflammation. Targeting fatty acid metabolism has been regarded as a novel approach to the treatment of cardiovascular diseases. However, there are currently no specific drugs that regulate fatty acid metabolism to treat cardiovascular diseases. Many traditional Chinese medicines have been widely used to treat cardiovascular diseases in clinics. And modern studies have shown that they exert a cardioprotective effect by regulating the expression of key proteins involved in fatty acid metabolism, such as peroxisome proliferator-activated receptor α and carnitine palmitoyl transferase 1. Hence, we systematically reviewed the relationship between fatty acid metabolism disorders and four types of cardiovascular diseases including heart failure, coronary artery disease, cardiac hypertrophy, and diabetic cardiomyopathy. In addition, 18 extracts and eight monomer components from traditional Chinese medicines showed cardioprotective effects by restoring cardiac fatty acid metabolism. This work aims to provide a reference for the finding of novel cardioprotective agents targeting fatty acid metabolism.
Collapse
Affiliation(s)
- Xianfeng Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Xinmei Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Tao Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Lei Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Honglin Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Yue Liu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, Sichuan, People's Republic of China
| |
Collapse
|
6
|
Small-molecule 7,8-dihydroxyflavone counteracts compensated and decompensated cardiac hypertrophy via AMPK activation. J Geriatr Cardiol 2022; 19:853-866. [PMID: 36561053 PMCID: PMC9748273 DOI: 10.11909/j.issn.1671-5411.2022.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Pathological cardiac hypertrophy is a compensated response to various stimuli and is considered a key risk factor for heart failure. 7,8-Dihydroxyflavone (7,8-DHF) is a flavonoid derivative that acts as a small-molecule brain-derived neurotrophic factor mimetic. The present study aimed to explore the potential role of 7,8-DHF in cardiac hypertrophy. METHODS Kunming mice and H9c2 cells were exposed to transverse aortic constriction or isoproterenol (ISO) with or without 7,8-DHF, respectively. F-actin staining was performed to calculate the cell area. Transcriptional levels of hypertrophic markers, including ANP, BNP, and β-MHC, were detected. Echocardiography, hematoxylin-eosin staining, and transmission electron microscopy were used to examine the cardiac function, histology, and ultrastructure of ventricles. Protein levels of mitochondria-related factors, such as adenosine monophosphate-activated protein kinase (AMPK), and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), were detected. RESULTS 7,8-DHF inhibited compensated and decompensated cardiac hypertrophy, diminished the cross-sectional area, and alleviated the mitochondrial disorders of cardiomyocytes. Meanwhile, 7,8-DHF reduced the cell size and repressed the mRNA levels of the hypertrophic markers of ISO-treated cardiomyocytes. In addition, 7,8-DHF activated AMPK and PGC-1α signals without affecting the protein levels of mitochondrial dynamics-related molecules. The effects of 7,8-DHF were eliminanted by Compound C, an AMPK inhibitor. CONCLUSIONS These findings suggest that 7,8-DHF inhibited cardiac hypertrophy and mitochondrial dysfunction by activating AMPK signaling, providing a potential agent for the treatment of pathological cardiac hypertrophy.
Collapse
|
7
|
7-Hydroxyflavone Alleviates Myocardial Ischemia/Reperfusion Injury in Rats by Regulating Inflammation. Molecules 2022; 27:molecules27175371. [PMID: 36080137 PMCID: PMC9458087 DOI: 10.3390/molecules27175371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
Inflammation is the primary pathological process of myocardial ischemia/reperfusion injury (MI/RI). 7-Hydroxyflavone (HF), a natural flavonoid with a variety of bioactivities, plays a crucial role in various biological processes. However, its cardioprotective effects and the underlying mechanisms of MI/RI have not been investigated. This study aimed to explore whether pretreatment with HF could attenuate MI/RI-induced inflammation in rats and investigate its potential mechanisms. The results showed that pretreatment with HF could significantly improve the anatomic data and electrocardiograph parameters, reduce the myocardial infarct size, decrease markers of myocardial injury (aspartate transaminase, creatine kinase, lactate dehydrogenase, and cardiac troponin I), inhibit inflammatory cytokines (IL-1β, IL-6, and TNF-α), suppress oxidative stress, and recover the architecture of the cardiomyocytes. The cardioprotective effect of HF was connected with the regulation of the MAPK/NF-κB signaling pathway. What is more, molecular docking was carried out to prove that HF could be stably combined with p38, ERK1/2, JNK, and NF-κB. In summary, this is a novel study demonstrating the cardioprotective effects of HF against MI/RI in vivo. Consequently, these results demonstrate that HF can be considered a promising potential therapy for MI/RI.
Collapse
|
8
|
Zhang F, Liu L, Xie Y, Wang J, Chen X, Zheng S, Li Y, Dang Y. Cardiac contractility modulation ameliorates myocardial metabolic remodeling in a rabbit model of chronic heart failure through activation of AMPK and PPAR-α pathway. Open Med (Wars) 2022; 17:365-374. [PMID: 35799598 PMCID: PMC8864057 DOI: 10.1515/med-2022-0415] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/03/2021] [Accepted: 11/20/2021] [Indexed: 11/15/2022] Open
Abstract
Abstract
Metabolic remodeling contributes to the pathological process of heart failure (HF). We explored the effects of cardiac contractility modulation (CCM) on myocardial metabolic remodeling in the rabbit model with HF. The HF in rabbit model was established by pressure uploading and then CCM was applied. We evaluated the cardiac structure and function by echocardiography, serum BNP level, and hematoxylin and eosin and Masson’s trichrome staining. We detected the accumulation of glycogen and lipid droplets in myocardial tissues by periodic acid-Schiff and Oil Red O staining. Then, we measured the contents of glucose, free fatty acid (FFA), lactic acid, pyruvate, and adenosine triphosphate (ATP) levels in myocardial tissues by corresponding kits and the expression levels of key factors related to myocardial substrate uptake and utilization by western blotting were analyzed. CCM significantly restored the cardiac structure and function in the rabbit model with HF. CCM therapy further decreased the accumulation of glycogen and lipid droplets. Furthermore, CCM reduced the contents of FFA, glucose, and lactic acid, and increased pyruvate and ATP levels in HF tissues. The protein expression levels related to myocardial substrate uptake and utilization were markedly improved with CCM treatment by further activating adenosine monophosphate-activated protein kinase and peroxisome proliferator-activated receptor-α signaling pathways.
Collapse
Affiliation(s)
- Feifei Zhang
- Department of Cardiology Center, Hebei General Hospital, Xipingxilu 348, Xinhua, Shijiazhuang, 050051, Hebei Province, China
| | - Litian Liu
- Department of Cardiology Center, Hebei General Hospital, Xipingxilu 348, Xinhua, Shijiazhuang, 050051, Hebei Province, China
| | - Yuetao Xie
- Department of Cardiology Center, Hebei General Hospital, Xipingxilu 348, Xinhua, Shijiazhuang, 050051, Hebei Province, China
| | - Jiaqi Wang
- Department of Cardiology Center, Hebei General Hospital, Xipingxilu 348, Xinhua, Shijiazhuang, 050051, Hebei Province, China
| | - Xuefeng Chen
- Department of Cardiology Center, Hebei General Hospital, Xipingxilu 348, Xinhua, Shijiazhuang, 050051, Hebei Province, China
| | - Shihang Zheng
- Department of Cardiology Center, Hebei General Hospital, Xipingxilu 348, Xinhua, Shijiazhuang, 050051, Hebei Province, China
| | - Yingxiao Li
- Department of Cardiology Center, Hebei General Hospital, Xipingxilu 348, Xinhua, Shijiazhuang, 050051, Hebei Province, China
| | - Yi Dang
- Department of Cardiology Center, Hebei General Hospital, Xipingxilu 348, Xinhua, Shijiazhuang, 050051, Hebei Province, China
| |
Collapse
|
9
|
Heidary Moghaddam R, Samimi Z, Asgary S, Mohammadi P, Hozeifi S, Hoseinzadeh-Chahkandak F, Xu S, Farzaei MH. Natural AMPK Activators in Cardiovascular Disease Prevention. Front Pharmacol 2022; 12:738420. [PMID: 35046800 PMCID: PMC8762275 DOI: 10.3389/fphar.2021.738420] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases (CVD), as a life-threatening global disease, is receiving worldwide attention. Seeking novel therapeutic strategies and agents is of utmost importance to curb CVD. AMP-activated protein kinase (AMPK) activators derived from natural products are promising agents for cardiovascular drug development owning to regulatory effects on physiological processes and diverse cardiometabolic disorders. In the past decade, different therapeutic agents from natural products and herbal medicines have been explored as good templates of AMPK activators. Hereby, we overviewed the role of AMPK signaling in the cardiovascular system, as well as evidence implicating AMPK activators as potential therapeutic tools. In the present review, efforts have been made to compile and update relevant information from both preclinical and clinical studies, which investigated the role of natural products as AMPK activators in cardiovascular therapeutics.
Collapse
Affiliation(s)
- Reza Heidary Moghaddam
- Clinical Research Development Center, Imam Ali and Taleghani Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zeinab Samimi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sedigheh Asgary
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute,.Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soroush Hozeifi
- School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Suowen Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
10
|
Yang D, Liu HQ, Liu FY, Guo Z, An P, Wang MY, Yang Z, Fan D, Tang QZ. Mitochondria in Pathological Cardiac Hypertrophy Research and Therapy. Front Cardiovasc Med 2022; 8:822969. [PMID: 35118147 PMCID: PMC8804293 DOI: 10.3389/fcvm.2021.822969] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022] Open
Abstract
Cardiac hypertrophy, a stereotypic cardiac response to increased workload, ultimately progresses to severe contractile dysfunction and uncompensated heart failure without appropriate intervention. Sustained cardiac overload inevitably results in high energy consumption, thus breaking the balance between mitochondrial energy supply and cardiac energy demand. In recent years, accumulating evidence has indicated that mitochondrial dysfunction is implicated in pathological cardiac hypertrophy. The significant alterations in mitochondrial energetics and mitochondrial proteome composition, as well as the altered expression of transcripts that have an impact on mitochondrial structure and function, may contribute to the initiation and progression of cardiac hypertrophy. This article presents a summary review of the morphological and functional changes of mitochondria during the hypertrophic response, followed by an overview of the latest research progress on the significant modulatory roles of mitochondria in cardiac hypertrophy. Our article is also to summarize the strategies of mitochondria-targeting as therapeutic targets to treat cardiac hypertrophy.
Collapse
Affiliation(s)
- Dan Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Han-Qing Liu
- Department of Thyroid and Breast, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fang-Yuan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Zhen Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Peng An
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Ming-Yu Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Zheng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Di Fan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
- *Correspondence: Di Fan
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
- Qi-Zhu Tang
| |
Collapse
|