1
|
Rustam F, Al-Shamayleh AS, Shafique R, Obregon SA, Iglesias RC, Gonzalez JPM, Ashraf I. Enhanced detection of diabetes mellitus using novel ensemble feature engineering approach and machine learning model. Sci Rep 2024; 14:23274. [PMID: 39375469 PMCID: PMC11458802 DOI: 10.1038/s41598-024-74357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/25/2024] [Indexed: 10/09/2024] Open
Abstract
Diabetes is a persistent health condition led by insufficient use or inappropriate use of insulin in the body. If left undetected, it can lead to further complications involving organ damage such as heart, lungs, and eyes. Timely detection of diabetes helps obtain the right medication, diet, and exercise plan to lead a healthy life. ML approach has been utilized to obtain rapid and reliable diabetes detection, however, existing approaches suffer from the use of limited datasets, lack of generalizability, and lower accuracy. This study proposes a novel feature extraction approach to overcome these limitations by using an ensemble of convolutional neural network (CNN) and long short-term memory (LSTM) models. Multiple datasets are combined to make a larger dataset for experiments and multiple features are utilized for investigating the efficacy of the proposed approach. Features from the extra tree classifier, CNN, and LSTM are also considered for comparison. Experimental results reveal the superb performance of CNN-LSTM-based features with random forest model obtaining a 0.99 accuracy score. This performance is further validated by comparison with existing approaches and k-fold cross-validation which shows the proposed approach provides robust results.
Collapse
Affiliation(s)
- Furqan Rustam
- School of Systems and Technology, Department of Software Engineering, University of Management and Technology, Lahore, 54770, Pakistan
| | - Ahmad Sami Al-Shamayleh
- Department of Data Science and Artificial Intelligence, Faculty of Information Technology, Al Ahliyya Amman University, Amman, 19328, Jordan
| | - Rahman Shafique
- Department of Information and Communication Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Silvia Aparicio Obregon
- Universidad Europea del Atlántico, Isabel Torres 21, 39011, Santander, Spain
- Universidad Internacional Iberoamericana, 24560, Campeche, Mexico
- Universidad Internacional Iberoamericana, Arecibo, Puerto Rico, 00613, USA
| | - Ruben Calderon Iglesias
- Universidad Europea del Atlántico, Isabel Torres 21, 39011, Santander, Spain
- Universidade Internacional do Cuanza, Cuito, Bie, Angola
- Universidad de La Romana, La Romana, República Dominicana
| | - J Pablo Miramontes Gonzalez
- Departamento de Medicina, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
- Servicio de Medicina Interna, Hospital Universitario Río Hortega, Valladolid, Spain
| | - Imran Ashraf
- Department of Information and Communication Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
2
|
Mesquita F, Bernardino J, Henriques J, Raposo JF, Ribeiro RT, Paredes S. Machine learning techniques to predict the risk of developing diabetic nephropathy: a literature review. J Diabetes Metab Disord 2024; 23:825-839. [PMID: 38932857 PMCID: PMC11196462 DOI: 10.1007/s40200-023-01357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/20/2023] [Indexed: 06/28/2024]
Abstract
Purpose Diabetes is a major public health challenge with widespread prevalence, often leading to complications such as Diabetic Nephropathy (DN)-a chronic condition that progressively impairs kidney function. In this context, it is important to evaluate if Machine learning models can exploit the inherent temporal factor in clinical data to predict the risk of developing DN faster and more accurately than current clinical models. Methods Three different databases were used for this literature review: Scopus, Web of Science, and PubMed. Only articles written in English and published between January 2015 and December 2022 were included. Results We included 11 studies, from which we discuss a number of algorithms capable of extracting knowledge from clinical data, incorporating dynamic aspects in patient assessment, and exploring their evolution over time. We also present a comparison of the different approaches, their performance, advantages, disadvantages, interpretation, and the value that the time factor can bring to a more successful prediction of diabetic nephropathy. Conclusion Our analysis showed that some studies ignored the temporal factor, while others partially exploited it. Greater use of the temporal aspect inherent in Electronic Health Records (EHR) data, together with the integration of omics data, could lead to the development of more reliable and powerful predictive models.
Collapse
Affiliation(s)
- F. Mesquita
- Polytechnic Institute of Coimbra, Coimbra Institute of Engineering, Rua Pedro Nunes - Quinta da Nora, 3030-199 Coimbra, Portugal
| | - J. Bernardino
- Polytechnic Institute of Coimbra, Coimbra Institute of Engineering, Rua Pedro Nunes - Quinta da Nora, 3030-199 Coimbra, Portugal
- Center for Informatics and Systems of University of Coimbra, University of Coimbra, Pólo II, 3030-290 Coimbra, Portugal
| | - J. Henriques
- Center for Informatics and Systems of University of Coimbra, University of Coimbra, Pólo II, 3030-290 Coimbra, Portugal
| | - JF. Raposo
- Education and Research Center, APDP Diabetes Portugal, Rua Do Salitre 118-120, 1250-203 Lisbon, Portugal
| | - RT. Ribeiro
- Education and Research Center, APDP Diabetes Portugal, Rua Do Salitre 118-120, 1250-203 Lisbon, Portugal
| | - S. Paredes
- Polytechnic Institute of Coimbra, Coimbra Institute of Engineering, Rua Pedro Nunes - Quinta da Nora, 3030-199 Coimbra, Portugal
- Center for Informatics and Systems of University of Coimbra, University of Coimbra, Pólo II, 3030-290 Coimbra, Portugal
| |
Collapse
|
3
|
Pucchio A, Krance SH, Pur DR, Bhatti J, Bassi A, Manichavagan K, Brahmbhatt S, Aggarwal I, Singh P, Virani A, Stanley M, Miranda RN, Felfeli T. Applications of artificial intelligence and bioinformatics methodologies in the analysis of ocular biofluid markers: a scoping review. Graefes Arch Clin Exp Ophthalmol 2024; 262:1041-1091. [PMID: 37421481 DOI: 10.1007/s00417-023-06100-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/25/2023] [Accepted: 05/06/2023] [Indexed: 07/10/2023] Open
Abstract
PURPOSE This scoping review summarizes the applications of artificial intelligence (AI) and bioinformatics methodologies in analysis of ocular biofluid markers. The secondary objective was to explore supervised and unsupervised AI techniques and their predictive accuracies. We also evaluate the integration of bioinformatics with AI tools. METHODS This scoping review was conducted across five electronic databases including EMBASE, Medline, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, and Web of Science from inception to July 14, 2021. Studies pertaining to biofluid marker analysis using AI or bioinformatics were included. RESULTS A total of 10,262 articles were retrieved from all databases and 177 studies met the inclusion criteria. The most commonly studied ocular diseases were diabetic eye diseases, with 50 papers (28%), while glaucoma was explored in 25 studies (14%), age-related macular degeneration in 20 (11%), dry eye disease in 10 (6%), and uveitis in 9 (5%). Supervised learning was used in 91 papers (51%), unsupervised AI in 83 (46%), and bioinformatics in 85 (48%). Ninety-eight papers (55%) used more than one class of AI (e.g. > 1 of supervised, unsupervised, bioinformatics, or statistical techniques), while 79 (45%) used only one. Supervised learning techniques were often used to predict disease status or prognosis, and demonstrated strong accuracy. Unsupervised AI algorithms were used to bolster the accuracy of other algorithms, identify molecularly distinct subgroups, or cluster cases into distinct subgroups that are useful for prediction of the disease course. Finally, bioinformatic tools were used to translate complex biomarker profiles or findings into interpretable data. CONCLUSION AI analysis of biofluid markers displayed diagnostic accuracy, provided insight into mechanisms of molecular etiologies, and had the ability to provide individualized targeted therapeutic treatment for patients. Given the progression of AI towards use in both research and the clinic, ophthalmologists should be broadly aware of the commonly used algorithms and their applications. Future research may be aimed at validating algorithms and integrating them in clinical practice.
Collapse
Affiliation(s)
- Aidan Pucchio
- Department of Ophthalmology, Queen's University, Kingston, ON, Canada
- Queens School of Medicine, Kingston, ON, Canada
| | - Saffire H Krance
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Daiana R Pur
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jasmine Bhatti
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Arshpreet Bassi
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | | | - Shaily Brahmbhatt
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | | | - Priyanka Singh
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Aleena Virani
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | | | - Rafael N Miranda
- The Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
| | - Tina Felfeli
- The Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada.
- Department of Ophthalmology and Vision Sciences, University of Toronto, 340 College Street, Suite 400, Toronto, ON, M5T 3A9, Canada.
| |
Collapse
|
4
|
Maleki Varnosfaderani S, Forouzanfar M. The Role of AI in Hospitals and Clinics: Transforming Healthcare in the 21st Century. Bioengineering (Basel) 2024; 11:337. [PMID: 38671759 PMCID: PMC11047988 DOI: 10.3390/bioengineering11040337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
As healthcare systems around the world face challenges such as escalating costs, limited access, and growing demand for personalized care, artificial intelligence (AI) is emerging as a key force for transformation. This review is motivated by the urgent need to harness AI's potential to mitigate these issues and aims to critically assess AI's integration in different healthcare domains. We explore how AI empowers clinical decision-making, optimizes hospital operation and management, refines medical image analysis, and revolutionizes patient care and monitoring through AI-powered wearables. Through several case studies, we review how AI has transformed specific healthcare domains and discuss the remaining challenges and possible solutions. Additionally, we will discuss methodologies for assessing AI healthcare solutions, ethical challenges of AI deployment, and the importance of data privacy and bias mitigation for responsible technology use. By presenting a critical assessment of AI's transformative potential, this review equips researchers with a deeper understanding of AI's current and future impact on healthcare. It encourages an interdisciplinary dialogue between researchers, clinicians, and technologists to navigate the complexities of AI implementation, fostering the development of AI-driven solutions that prioritize ethical standards, equity, and a patient-centered approach.
Collapse
Affiliation(s)
| | - Mohamad Forouzanfar
- Département de Génie des Systèmes, École de Technologie Supérieure (ÉTS), Université du Québec, Montréal, QC H3C 1K3, Canada
- Centre de Recherche de L’institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC H3W 1W5, Canada
| |
Collapse
|
5
|
Sheng Y, Zhang C, Huang J, Wang D, Xiao Q, Zhang H, Ha X. Comparison of conventional mathematical model and machine learning model based on recent advances in mathematical models for predicting diabetic kidney disease. Digit Health 2024; 10:20552076241238093. [PMID: 38465295 PMCID: PMC10921860 DOI: 10.1177/20552076241238093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
Previous research suggests that mathematical models could serve as valuable tools for diagnosing or predicting diseases like diabetic kidney disease, which often necessitate invasive examinations for conclusive diagnosis. In the big-data era, there are several mathematical modeling methods, but generally, two types are recognized: conventional mathematical model and machine learning model. Each modeling method has its advantages and disadvantages, but a thorough comparison of the two models is lacking. In this article, we describe and briefly compare the conventional mathematical model and machine learning model, and provide research prospects in this field.
Collapse
Affiliation(s)
- Yingda Sheng
- Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- The 940th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Lanzhou, Gansu, China
| | - Caimei Zhang
- Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- The 940th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Lanzhou, Gansu, China
| | - Jing Huang
- Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- The 940th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Lanzhou, Gansu, China
| | - Dan Wang
- Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- The 940th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Lanzhou, Gansu, China
| | - Qian Xiao
- Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- The 940th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Lanzhou, Gansu, China
| | - Haocheng Zhang
- The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xiaoqin Ha
- The 940th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Lanzhou, Gansu, China
| |
Collapse
|
6
|
Tse G, Lee Q, Chou OHI, Chung CT, Lee S, Chan JSK, Li G, Kaur N, Roever L, Liu H, Liu T, Zhou J. Healthcare Big Data in Hong Kong: Development and Implementation of Artificial Intelligence-Enhanced Predictive Models for Risk Stratification. Curr Probl Cardiol 2024; 49:102168. [PMID: 37871712 DOI: 10.1016/j.cpcardiol.2023.102168] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Routinely collected electronic health records (EHRs) data contain a vast amount of valuable information for conducting epidemiological studies. With the right tools, we can gain insights into disease processes and development, identify the best treatment and develop accurate models for predicting outcomes. Our recent systematic review has found that the number of big data studies from Hong Kong has rapidly increased since 2015, with an increasingly common application of artificial intelligence (AI). The advantages of big data are that i) the models developed are highly generalisable to the population, ii) multiple outcomes can be determined simultaneously, iii) ease of cross-validation by for model training, development and calibration, iv) huge numbers of useful variables can be analyzed, v) static and dynamic variables can be analyzed, vi) non-linear and latent interactions between variables can be captured, vii) artificial intelligence approaches can enhance the performance of prediction models. In this paper, we will provide several examples (cardiovascular disease, diabetes mellitus, Brugada syndrome, long QT syndrome) to illustrate efforts from a multi-disciplinary team to identify data from different modalities to develop models using territory-wide datasets, with the possibility of real-time risk updates by using new data captured from patients. The benefit is that only routinely collected data are required for developing highly accurate and high-performance models. AI-driven models outperform traditional models in terms of sensitivity, specificity, accuracy, area under the receiver operating characteristic and precision-recall curve, and F1 score. Web and/or mobile versions of the risk models allow clinicians to risk stratify patients quickly in clinical settings, thereby enabling clinical decision-making. Efforts are required to identify the best ways of implementing AI algorithms on the web and mobile apps.
Collapse
Affiliation(s)
- Gary Tse
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, China; Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Quinncy Lee
- Family Medicine Research Unit, Cardiovascular Analytics Group, PowerHealth Research Institute, Hong Kong, China
| | - Oscar Hou In Chou
- Family Medicine Research Unit, Cardiovascular Analytics Group, PowerHealth Research Institute, Hong Kong, China; Division of Clinical Pharmacology and Therapeutics, Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Cheuk To Chung
- Family Medicine Research Unit, Cardiovascular Analytics Group, PowerHealth Research Institute, Hong Kong, China
| | - Sharen Lee
- Family Medicine Research Unit, Cardiovascular Analytics Group, PowerHealth Research Institute, Hong Kong, China
| | - Jeffrey Shi Kai Chan
- Family Medicine Research Unit, Cardiovascular Analytics Group, PowerHealth Research Institute, Hong Kong, China
| | - Guoliang Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Narinder Kaur
- Family Medicine Research Unit, Cardiovascular Analytics Group, PowerHealth Research Institute, Hong Kong, China; School of Cardiovascular Science & Metabolic Health, University of Glasgow, UK
| | - Leonardo Roever
- Department of Clinical Research, Federal University of Uberlândia, Uberlândia, MG 38400384, Brazil
| | - Haipeng Liu
- Research Centre for Intelligent Healthcare, Faculty of Health and Life Sciences, Coventry University, Coventry, UK
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Jiandong Zhou
- Division of Health Science, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
7
|
Thakur D, Gera T, Bhardwaj V, AlZubi AA, Ali F, Singh J. An enhanced diabetes prediction amidst COVID-19 using ensemble models. Front Public Health 2023; 11:1331517. [PMID: 38155892 PMCID: PMC10754515 DOI: 10.3389/fpubh.2023.1331517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/21/2023] [Indexed: 12/30/2023] Open
Abstract
In the contemporary landscape of healthcare, the early and accurate prediction of diabetes has garnered paramount importance, especially in the wake of the COVID-19 pandemic where individuals with diabetes exhibit increased vulnerability. This research embarked on a mission to enhance diabetes prediction by employing state-of-the-art machine learning techniques. Initial evaluations highlighted the Support Vector Machines (SVM) classifier as a promising candidate with an accuracy of 76.62%. To further optimize predictions, the study delved into advanced feature engineering techniques, generating interaction and polynomial features that unearthed hidden patterns in the data. Subsequent correlation analyses, visualized through heatmaps, revealed significant correlations, especially with attributes like Glucose. By integrating the strengths of Decision Trees, Gradient Boosting, and SVM in an ensemble model, we achieved an accuracy of 93.2%, showcasing the potential of harmonizing diverse algorithms. This research offers a robust blueprint for diabetes prediction, holding profound implications for early diagnosis, personalized treatments, and preventive care in the context of global health challenges and with the goal of increasing life expectancy.
Collapse
Affiliation(s)
- Deepak Thakur
- Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
| | - Tanya Gera
- Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
| | - Vivek Bhardwaj
- Department of Computer Science and Engineering, Manipal University Jaipur, Jaipur, Rajasthan
| | - Ahmad Ali AlZubi
- Department of Computer Science, Community College, King Saud University, Riyadh, Saudi Arabia
| | - Farman Ali
- Department of Computer Science and Engineering, School of Convergence, College of Computing and Informatics, Sungkyunkwan University, Seoul, Republic of Korea
| | - Jaiteg Singh
- Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
| |
Collapse
|
8
|
Jain N, Patel B, Hanawal M, Lila AR, Memon S, Bandgar T, Kumar A. Machine learning for predicting diabetic metabolism in the Indian population using polar metabolomic and lipidomic features. Metabolomics 2023; 20:1. [PMID: 38017183 DOI: 10.1007/s11306-023-02066-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023]
Abstract
AIMS To identify metabolite and lipid biomarkers of diabetes in the Indian subpopulation in newly diagnosed diabetic and long-term diabetic individuals. To utilize the global polar metabolomic and lipidomic profiles to predict the susceptibility of an individual to diabetes using machine learning algorithms. MATERIALS AND METHODS 87 individuals, including healthy, newly diabetic, and long-term diabetics on medication, were included in the study. Post consent, their serum was used to isolate polar metabolome and lipidome. NMR and LCMS were used to identify the polar metabolites and lipids, respectively. Statistical analysis was done to determine significantly altered molecules. NMR and LCMS comprehensive data were utilized to generate diabetic models using machine learning algorithms. 10 more individuals (pre-diabetic) were recruited, and their polar metabolomic and lipidomic profiles were generated. Pre-diabetic metabolic profiles were then utilized to predict the diabetic status of the metabolome and lipidome beyond glucose levels. RESULTS Mannose, Betaine, Xanthine, Triglyceride (38:1), Sphingomyelin (d63:7), and Phosphatidic acid (37:2) are some of the top key biomarkers of diabetes. The predictive model generated showed the receiver operating characteristic area under the curve (ROC-AUC) as 1 on both test and validation data indicating excellent accuracy. This model then predicted the diabetic closeness of the metabolism of pre-diabetic individuals based on probability scores. CONCLUSION Polar metabolic and lipid profile of diabetic individuals is very different from that of healthy individuals. Lipid profile alters before the polar metabolic profile in diabetes-susceptible individuals. Without regard to glucose, the diabetic closeness of the metabolism of any individual can be determined.
Collapse
Affiliation(s)
- Nikita Jain
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India
| | - Bhaumik Patel
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India
| | - Manjesh Hanawal
- Industrial Engineering and Operations Research, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India
| | - Anurag R Lila
- Seth G.S. Medical College and KEM Hospital, Parel, Mumbai, 400012, India
| | - Saba Memon
- Seth G.S. Medical College and KEM Hospital, Parel, Mumbai, 400012, India
| | - Tushar Bandgar
- Seth G.S. Medical College and KEM Hospital, Parel, Mumbai, 400012, India
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India.
- Lab No. 606, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Bombay, Mumbai, 400076, India.
| |
Collapse
|
9
|
Gelaw NB, Muche AA, Alem AZ, Gebi NB, Chekol YM, Tesfie TK, Tebeje TM. Development and validation of risk prediction model for diabetic neuropathy among diabetes mellitus patients at selected referral hospitals, in Amhara regional state Northwest Ethiopia, 2005-2021. PLoS One 2023; 18:e0276472. [PMID: 37643198 PMCID: PMC10465000 DOI: 10.1371/journal.pone.0276472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/23/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Diabetic neuropathy is the most common complication in both Type-1 and Type-2 DM patients with more than one half of all patients developing nerve dysfunction in their lifetime. Although, risk prediction model was developed for diabetic neuropathy in developed countries, It is not applicable in clinical practice, due to poor data, methodological problems, inappropriately analyzed and reported. To date, no risk prediction model developed for diabetic neuropathy among DM in Ethiopia, Therefore, this study aimed prediction the risk of diabetic neuropathy among DM patients, used for guiding in clinical decision making for clinicians. OBJECTIVE Development and validation of risk prediction model for diabetic neuropathy among diabetes mellitus patients at selected referral hospitals, in Amhara regional state Northwest Ethiopia, 2005-2021. METHODS A retrospective follow up study was conducted with a total of 808 DM patients were enrolled from January 1,2005 to December 30,2021 at two selected referral hospitals in Amhara regional state. Multi-stage sampling techniques were used and the data was collected by checklist from medical records by Kobo collect and exported to STATA version-17 for analysis. Lasso method were used to select predictors and entered to multivariable logistic regression with P-value<0.05 was used for nomogram development. Model performance was assessed by AUC and calibration plot. Internal validation was done through bootstrapping method and decision curve analysis was performed to evaluate net benefit of model. RESULTS The incidence proportion of diabetic neuropathy among DM patients was 21.29% (95% CI; 18.59, 24.25). In multivariable logistic regression glycemic control, other comorbidities, physical activity, hypertension, alcohol drinking, type of treatment, white blood cells and red blood cells count were statistically significant. Nomogram was developed, has discriminating power AUC; 73.2% (95% CI; 69.0%, 77.3%) and calibration test (P-value = 0.45). It was internally validated by bootstrapping method with discrimination performance 71.7 (95% CI; 67.2%, 75.9%). It had less optimism coefficient (0.015). To make nomogram accessible, mobile based tool were developed. In machine learning, classification and regression tree has discriminating performance of 70.2% (95% CI; 65.8%, 74.6%). The model had high net benefit at different threshold probabilities in both nomogram and classification and regression tree. CONCLUSION The developed nomogram and decision tree, has good level of accuracy and well calibration, easily individualized prediction of diabetic neuropathy. Both models had added net benefit in clinical practice and to be clinically applicable mobile based tool were developed.
Collapse
Affiliation(s)
- Negalgn Byadgie Gelaw
- Department of Public Health, Mizan Aman College of Health Sciences, Mizan-Aman, Ethiopia
| | - Achenef Asmamaw Muche
- Department of Epidemiology and Biostatistics, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Adugnaw Zeleke Alem
- Department of Epidemiology and Biostatistics, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Nebiyu Bekele Gebi
- Department of Internal Medicine, School of Medicine, University of Gondar Comprehensive Specialized Hospital, Gondar, Ethiopia
| | - Yazachew Moges Chekol
- Department of Health Information Technology, Mizan Aman College of Health Sciences, Mizan-Aman, Ethiopia
| | - Tigabu Kidie Tesfie
- Department of Public Health, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Tsion Mulat Tebeje
- Unit of Epidemiology and Biostatistics, School of Public Health, College of Medicine and Health Sciences, Dilla University, Dilla, Ethiopia
| |
Collapse
|
10
|
Abegaz TM, Ahmed M, Sherbeny F, Diaby V, Chi H, Ali AA. Application of Machine Learning Algorithms to Predict Uncontrolled Diabetes Using the All of Us Research Program Data. Healthcare (Basel) 2023; 11:1138. [PMID: 37107973 PMCID: PMC10137945 DOI: 10.3390/healthcare11081138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
There is a paucity of predictive models for uncontrolled diabetes mellitus. The present study applied different machine learning algorithms on multiple patient characteristics to predict uncontrolled diabetes. Patients with diabetes above the age of 18 from the All of Us Research Program were included. Random forest, extreme gradient boost, logistic regression, and weighted ensemble model algorithms were employed. Patients who had a record of uncontrolled diabetes based on the international classification of diseases code were identified as cases. A set of features including basic demographic, biomarkers and hematological indices were included in the model. The random forest model demonstrated high performance in predicting uncontrolled diabetes, yielding an accuracy of 0.80 (95% CI: 0.79-0.81) as compared to the extreme gradient boost 0.74 (95% CI: 0.73-0.75), the logistic regression 0.64 (95% CI: 0.63-0.65) and the weighted ensemble model 0.77 (95% CI: 0.76-0.79). The maximum area under the receiver characteristics curve value was 0.77 (random forest model), while the minimum value was 0.7 (logistic regression model). Potassium levels, body weight, aspartate aminotransferase, height, and heart rate were important predictors of uncontrolled diabetes. The random forest model demonstrated a high performance in predicting uncontrolled diabetes. Serum electrolytes and physical measurements were important features in predicting uncontrolled diabetes. Machine learning techniques may be used to predict uncontrolled diabetes by incorporating these clinical characteristics.
Collapse
Affiliation(s)
- Tadesse M. Abegaz
- Economic, Social and Administrative Pharmacy (ESAP), College of Pharmacy and Pharmaceutical Sciences, Institute of Public Heath, Florida A&M University, Tallahassee, FL 32307, USA
| | - Muktar Ahmed
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Fatimah Sherbeny
- Economic, Social and Administrative Pharmacy (ESAP), College of Pharmacy and Pharmaceutical Sciences, Institute of Public Heath, Florida A&M University, Tallahassee, FL 32307, USA
| | - Vakaramoko Diaby
- College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Hongmei Chi
- The Department of Computer and Information Sciences, Florid A&M University, Tallahassee, FL 32307, USA
| | - Askal Ayalew Ali
- Economic, Social and Administrative Pharmacy (ESAP), College of Pharmacy and Pharmaceutical Sciences, Institute of Public Heath, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
11
|
Kanyongo W, Ezugwu AE. Machine learning approaches to medication adherence amongst NCD patients: A systematic literature review. INFORMATICS IN MEDICINE UNLOCKED 2023. [DOI: 10.1016/j.imu.2023.101210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
|
12
|
Afsaneh E, Sharifdini A, Ghazzaghi H, Ghobadi MZ. Recent applications of machine learning and deep learning models in the prediction, diagnosis, and management of diabetes: a comprehensive review. Diabetol Metab Syndr 2022; 14:196. [PMID: 36572938 PMCID: PMC9793536 DOI: 10.1186/s13098-022-00969-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
Diabetes as a metabolic illness can be characterized by increased amounts of blood glucose. This abnormal increase can lead to critical detriment to the other organs such as the kidneys, eyes, heart, nerves, and blood vessels. Therefore, its prediction, prognosis, and management are essential to prevent harmful effects and also recommend more useful treatments. For these goals, machine learning algorithms have found considerable attention and have been developed successfully. This review surveys the recently proposed machine learning (ML) and deep learning (DL) models for the objectives mentioned earlier. The reported results disclose that the ML and DL algorithms are promising approaches for controlling blood glucose and diabetes. However, they should be improved and employed in large datasets to affirm their applicability.
Collapse
|
13
|
Gosak L, Martinović K, Lorber M, Stiglic G. Artificial intelligence based prediction models for individuals at risk of multiple diabetic complications: A systematic review of the literature. J Nurs Manag 2022; 30:3765-3776. [PMID: 36329678 PMCID: PMC10100477 DOI: 10.1111/jonm.13894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/03/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
AIM The aim of this review is to examine the effectiveness of artificial intelligence in predicting multimorbid diabetes-related complications. BACKGROUND In diabetic patients, several complications are often present, which have a significant impact on the quality of life; therefore, it is crucial to predict the level of risk for diabetes and its complications. EVALUATION International databases PubMed, CINAHL, MEDLINE and Scopus were searched using the terms artificial intelligence, diabetes mellitus and prediction of complications to identify studies on the effectiveness of artificial intelligence for predicting multimorbid diabetes-related complications. The results were organized by outcomes to allow more efficient comparison. KEY ISSUES Based on the inclusion/exclusion criteria, 11 articles were included in the final analysis. The most frequently predicted complications were diabetic neuropathy (n = 7). Authors included from two to a maximum of 14 complications. The most commonly used prediction models were penalized regression, random forest and Naïve Bayes model neural network. CONCLUSION The use of artificial intelligence can predict the risks of diabetes complications with greater precision based on available multidimensional datasets and provides an important tool for nurses working in preventive health care. IMPLICATIONS FOR NURSING MANAGEMENT Using artificial intelligence contributes to a better quality of care, better autonomy of patients in diabetes management and reduction of complications, costs of medical care and mortality.
Collapse
Affiliation(s)
- Lucija Gosak
- Faculty of Health Sciences, University of Maribor, Maribor, Slovenia
| | - Kristina Martinović
- Faculty of Health Sciences, University of Maribor, Maribor, Slovenia.,Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | - Mateja Lorber
- Faculty of Health Sciences, University of Maribor, Maribor, Slovenia
| | - Gregor Stiglic
- Faculty of Health Sciences, University of Maribor, Maribor, Slovenia.,Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia.,Usher Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
14
|
Prediction of Diabetic Sensorimotor Polyneuropathy Using Machine Learning Techniques. J Clin Med 2021; 10:jcm10194576. [PMID: 34640594 PMCID: PMC8509372 DOI: 10.3390/jcm10194576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetic sensorimotor polyneuropathy (DSPN) is a major complication in patients with diabetes mellitus (DM), and early detection or prediction of DSPN is important for preventing or managing neuropathic pain and foot ulcer. Our aim is to delineate whether machine learning techniques are more useful than traditional statistical methods for predicting DSPN in DM patients. Four hundred seventy DM patients were classified into four groups (normal, possible, probable, and confirmed) based on clinical and electrophysiological findings of suspected DSPN. Three ML methods, XGBoost (XGB), support vector machine (SVM), and random forest (RF), and their combinations were used for analysis. RF showed the best area under the receiver operator characteristic curve (AUC, 0.8250) for differentiating between two categories—criteria by clinical findings (normal, possible, and probable groups) and those by electrophysiological findings (confirmed group)—and the result was superior to that of linear regression analysis (AUC = 0.6620). Average values of serum glucose, International Federation of Clinical Chemistry (IFCC), HbA1c, and albumin levels were identified as the four most important predictors of DSPN. In conclusion, machine learning techniques, especially RF, can predict DSPN in DM patients effectively, and electrophysiological analysis is important for identifying DSPN.
Collapse
|