1
|
Zhang L, Yin H, Xie Y, Zhang Y, Dong F, Wu K, Yang L, Lv H. Exploring the anti‑oxidative mechanisms of Rhodiola rosea in ameliorating myocardial fibrosis through network pharmacology and in vitro experiments. Mol Med Rep 2024; 30:214. [PMID: 39370810 PMCID: PMC11450433 DOI: 10.3892/mmr.2024.13338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024] Open
Abstract
Myocardial fibrosis (MF) significantly compromises cardiovascular health by affecting cardiac function through excessive collagen deposition. This impairs myocardial contraction and relaxation and leads to severe complications and increased mortality. The present study employed network pharmacology and in vitro assays to investigate the bioactive compounds of Rhodiola rosea and their targets. Using databases such as HERB, the Encyclopedia of Traditional Chinese Medicine, Pubchem, OMIM and GeneCards, the present study identified effective components and MF‑related targets. Network analysis was conducted with Cytoscape to develop a Drug‑Ingredient‑Target‑Disease network and the STRING database was utilized to construct a protein‑protein interaction network. Key nodes were analyzed for pathway enrichment using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. Molecular interactions were further explored through molecular docking techniques. The bioactivity of salidroside (SAL), the principal component of Rhodiola rosea, against MF was experimentally validated in H9c2 cardiomyocytes treated with angiotensin II and assessed for cell viability, protein expression and oxidative stress markers. Network pharmacology identified 25 active ingredients and 372 targets in Rhodiola rosea, linking SAL with pathways such as MAPK, EGFR, advanced glycosylation end products‑advanced glycosylation end products receptor and Forkhead box O. SAL showed significant interactions with core targets such as albumin, IL6, AKT serine/threonine kinase 1, MMP9 and caspase‑3. In vitro, SAL mitigated AngII‑induced increases in collagen I and alpha smooth muscle actin protein levels and oxidative stress markers, demonstrating dose‑dependent effectiveness in reversing MF. SAL from Rhodiola rosea exhibited potent anti‑oxidative properties that mitigated MF by modulating multiple molecular targets and signaling pathways. The present study underscored the therapeutic potential of SAL in treating oxidative stress‑related cardiovascular diseases.
Collapse
Affiliation(s)
- Luna Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Hang Yin
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Yumin Xie
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Yueyue Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Feihong Dong
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Ke Wu
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Le Yang
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Huiyi Lv
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| |
Collapse
|
2
|
Zhang S, Yu M, Wang F, Li S, Li X, Hu H, Zhang Z, Zhu X, Tian W. Salidroside promotes liver regeneration after partial hepatectomy in mice by modulating NLRP3 inflammasome-mediated pyroptosis pathway. Biochem Biophys Res Commun 2024; 735:150678. [PMID: 39270555 DOI: 10.1016/j.bbrc.2024.150678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/26/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
Insufficient residual liver tissue after partial hepatectomy (PH) may lead to serious complications such as hepatic failure and small-for-size syndrome. Salidroside (SAL) is obtained from Rhodiola rosea through modernized separation and extraction and has been validated for treating various liver diseases. It's yet unknown, nevertheless, how SAL affects liver regeneration after PH. This study aimed to determine whether SAL could promote liver regeneration after PH in mice. We demonstrated that SAL could attenuate liver injury after PH and promote hepatocyte proliferation and liver mass recovery. Mechanistically, SAL inhibited the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome, attenuating pyroptosis. RNA-seq analysis indicated that SAL downregulated the transcription of NLRP3 and GSDMD genes and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the NOD-like receptor signaling pathway was significantly enriched in down-regulated signaling pathways. Notably, SAL in combination with the NLRP3 inhibitor MCC950 did not further inhibit NLRP3 inflammasome and promote liver mass recovery. In summary, our findings proved that SAL could be a potential agent for improving liver function and promoting liver regeneration after PH.
Collapse
Affiliation(s)
- Saiya Zhang
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Meilu Yu
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Fen Wang
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Sha Li
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Xuefei Li
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Hongyu Hu
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Zhen Zhang
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Xiangpeng Zhu
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Weiqian Tian
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
3
|
Zhang T, Mi J, Qin X, Ouyang Z, Wang Y, Li Z, He S, Hu K, Wang R, Huang W. Rosmarinic Acid Alleviates Radiation-Induced Pulmonary Fibrosis by Downregulating the tRNA N7-Methylguanosine Modification-Regulated Fibroblast-to-Myofibroblast Transition Through the Exosome Pathway. J Inflamm Res 2024; 17:5567-5586. [PMID: 39188632 PMCID: PMC11346487 DOI: 10.2147/jir.s458794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/10/2024] [Indexed: 08/28/2024] Open
Abstract
Background Radiation-induced pulmonary fibrosis (RIPF) is a common complication after radiotherapy in thoracic cancer patients, and effective treatment methods are lacking. The purpose of this study was to investigate the protective effect of rosmarinic acid (RA) on RIPF in mice as well as the mechanism involved. Methods m7G-tRNA-seq and tRNA-seq analyses were conducted to identify m7G-modified tRNAs. Western blotting, immunohistochemistry, northwestern blotting, northern blotting, immunofluorescence, wound-healing assays and EdU experiments were performed to explore the molecular mechanism by which RA regulates fibroblast-to-myofibroblast transformation (FMT) by affecting the exosomes of lung epithelial cells. Ribo-seq and mRNA-seq analyses were used to explore the underlying target mRNAs. Seahorse assays and immunoprecipitation were carried out to elucidate the effects of RA on glycolysis and FMT processes via the regulation of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) acetylation. Results We found that RA had an antifibrotic effect on the lung tissues of RIPF model mice and inhibited the progression of FMT through exosomes derived from lung epithelial cells. Mechanistically, RA reduced the transcription and translation efficiency of sphingosine kinase 1 in lung fibroblasts by decreasing N7-methylguanosine modification of tRNA, downregulating the expression of tRNAs in irradiated lung epithelial cell-derived exosomes, and inhibiting the interaction between sphingosine kinase 1 and the N-acetyltransferase 10 protein in fibroblasts. Furthermore, the acetylation and cytoplasmic translocation of PFKFB3 were reduced by exosomes derived from irradiated lung epithelial cells, which following RA intervention. This suppression of the FMT process, which is triggered by glycolysis, and ultimately decelerating the progression of RIPF. Conclusion These findings suggest that RA is a potential therapeutic agent for RIPF.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, People’s Republic of China
| | - Jinglin Mi
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, People’s Republic of China
| | - Xinling Qin
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, People’s Republic of China
| | - Zhechen Ouyang
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, People’s Republic of China
| | - Yiru Wang
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, People’s Republic of China
| | - Zhixun Li
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, People’s Republic of China
| | - Siyi He
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, People’s Republic of China
| | - Kai Hu
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, People’s Republic of China
| | - Rensheng Wang
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, People’s Republic of China
| | - Weimei Huang
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|
4
|
Qu J, Wang L, Li Y, Li X. Liver sinusoidal endothelial cell: An important yet often overlooked player in the liver fibrosis. Clin Mol Hepatol 2024; 30:303-325. [PMID: 38414375 PMCID: PMC11261236 DOI: 10.3350/cmh.2024.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 02/29/2024] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) are liver-specific endothelial cells with the highest permeability than other mammalian endothelial cells, characterized by the presence of fenestrae on their surface, the absence of diaphragms and the lack of basement membrane. Located at the interface between blood and other liver cell types, LSECs mediate the exchange of substances between the blood and the Disse space, playing a crucial role in maintaining substance circulation and homeostasis of multicellular communication. As the initial responders to chronic liver injury, the abnormal LSEC activation not only changes their own physicochemical properties but also interrupts their communication with hepatic stellate cells and hepatocytes, which collectively aggravates the process of liver fibrosis. In this review, we have comprehensively updated the various pathways by which LSECs were involved in the initiation and aggravation of liver fibrosis, including but not limited to cellular phenotypic change, the induction of capillarization, decreased permeability and regulation of intercellular communications. Additionally, the intervention effects and latest regulatory mechanisms of anti-fibrotic drugs involved in each aspect have been summarized and discussed systematically. As we studied deeper into unraveling the intricate role of LSECs in the pathophysiology of liver fibrosis, we unveil a promising horizon that pave the way for enhanced patient outcomes.
Collapse
Affiliation(s)
- Jiaorong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Le Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yufei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Wang X, Cao S, Huang Y, Li L, Xu D, Liu L. Salidroside alleviates cholestasis-induced liver fibrosis by inhibiting hepatic stellate cells via activation of the PI3K/AKT/GSK-3β signaling pathway and regulating intestinal flora distribution. Front Pharmacol 2024; 15:1396023. [PMID: 38808258 PMCID: PMC11130389 DOI: 10.3389/fphar.2024.1396023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/15/2024] [Indexed: 05/30/2024] Open
Abstract
Salidroside (SAL), a phenylpropanoid bioactive compound, has various pharmacological properties, including antioxidant, anti-inflammatory, and hepatoprotective effects. However, the pharmacological effects and mechanisms of action of SAL on cholestatic liver injury are unclear. This study investigated the mechanism and effects of salidroside (SAL) on intestinal flora distribution and hepatic stellate cell (HSC) activation in cholestatic hepatic fibrosis. Bile duct ligation was used to cause cholestasis BALB/c mice. The therapeutic efficacy of SAL in liver fibrosis was assessed via serum/tissue biochemical analyses and liver tissue hematoxylin and eosin and Masson staining. Inflammation and oxidative stress were analyzed using enzyme-linked immunosorbent assay and western blotting. HSC were activated in vitro using lipopolysaccharide, and the effects of SAL on HSC migration and inflammatory factor expression were detected via scratch, transwell, and western blotting assays. The effects of SAL on the PI3K/AKT/GSK-3β pathway in vivo and in vitro were detected using western blotting. 16sRNA sequencing was used to detect the effect of SAL on the diversity of the intestinal flora. Ileal histopathology and western blotting were used to detect the protective effect of SAL on the intestinal mucosal barrier. SAL reduces liver inflammation and oxidative stress and protects against liver fibrosis with cholestasis. It inhibits HSC activation and activates the PI3K/AKT/GSK-3β pathway in vitro and in vivo. Additionally, SAL restores the abundance of intestinal flora, which contributes to the repair of the intestinal mucosal barrier, inhibits endotoxin translocation, and indirectly inhibits HSC activation, reversing the course of cholestatic liver fibrosis. SAL inhibits HSC activation through the PI3K/AKT/GSK-3β pathway and improves intestinal flora distribution, thereby protecting and reversing the progression of hepatic fibrosis.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China
| | - Shuxia Cao
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China
| | - Yuan Huang
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China
| | - Liangchang Li
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China
| | - Dongyuan Xu
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China
| | - Lan Liu
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China
- Department of Pathology, Yanbian University Hospital, Yanji, China
| |
Collapse
|
6
|
Meng L, Zhang C, Yu P. Treating cancer through modulating exosomal protein loading and function: The prospects of natural products and traditional Chinese medicine. Pharmacol Res 2024; 203:107179. [PMID: 38615876 DOI: 10.1016/j.phrs.2024.107179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 04/16/2024]
Abstract
Exosomes, small yet vital extracellular vesicles, play an integral role in intercellular communication. They transport critical components, such as proteins, lipid bilayers, DNA, RNA, and glycans, to target cells. These vesicles are crucial in modulating the extracellular matrix and orchestrating signal transduction processes. In oncology, exosomes are pivotal in tumor growth, metastasis, drug resistance, and immune modulation within the tumor microenvironment. Exosomal proteins, noted for their stability and specificity, have garnered widespread attention. This review delves into the mechanisms of exosomal protein loading and their impact on tumor development, with a focus on the regulatory effects of natural products and traditional Chinese medicine on exosomal protein loading and function. These insights not only offer new strategies and methodologies for cancer treatment but also provide scientific bases and directions for future clinical applications.
Collapse
Affiliation(s)
- Lulu Meng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Chao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Pei Yu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
7
|
Gao J, Zuo B, He Y. Liver sinusoidal endothelial cells as potential drivers of liver fibrosis (Review). Mol Med Rep 2024; 29:40. [PMID: 38240102 PMCID: PMC10828992 DOI: 10.3892/mmr.2024.13164] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Liver fibrosis due to viral or metabolic chronic liver diseases is a major challenge of global health. It is a critical pre‑stage condition of severe hepatopathy, characterized by excessive accumulation of extracellular matrix components and ongoing chronic inflammation. To date, early prevention of liver fibrosis remains challenging. As the most abundant non‑parenchymal hepatic cell population, liver sinusoidal endothelial cells (LSECs) are stabilizers that maintain the intrahepatic environment. Notably, LSECs dysfunction appears to be implicated in the progression of liver fibrosis via numerous mechanisms. Following sustained liver injury, they lose their fenestrae (cytoplasmic pores) and change their crosstalk with other cellular interactions in the hepatic blood environment. LSEC‑targeted therapy has shown promising effects on fibrosis resolution, opening up new opportunities for anti‑fibrotic therapy. In light of this, the present study summarized changes in LSECs during liver fibrosis and their interactions with hepatic milieu, as well as possible therapeutic approaches that specially target LSECs.
Collapse
Affiliation(s)
- Jiaqin Gao
- National Health Commission Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Ministry of Education Engineering Center of Hematological Disease, Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Bin Zuo
- National Health Commission Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Ministry of Education Engineering Center of Hematological Disease, Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yang He
- National Health Commission Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
8
|
Chen T, Zhang Y, Zhang Y, Ning Z, Xu Q, Lin Y, Gong J, Li J, Chen Z, Meng Y, Li Y, Li X. Autophagic degradation of MVBs in LSECs promotes Aldosterone induced-HSCs activation. Hepatol Int 2024; 18:273-288. [PMID: 37330971 DOI: 10.1007/s12072-023-10559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/29/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND AND AIMS The important role of extracellular vesicles (EVs) in liver fibrosis has been confirmed. However, EVs derived from liver sinusoidal endothelial cells (LSECs) in the activation of hepatic stellate cells (HSCs) and liver fibrosis is still unclear. Our previous work demonstrated that Aldosterone (Aldo) may have the potential to regulate EVs from LSECs via autophagy pathway. Thus, we aim to investigate the role of Aldo in the regulation of EVs derived from LSECs. APPROACH AND RESULTS Using an Aldo-continuous pumping rat model, we observed that Aldo-induced liver fibrosis and capillarization of LSECs. In vitro, transmission electron microscopy (TEM) revealed that stimulation of Aldo led to the upregulation of autophagy and degradation of multivesicular bodies (MVBs) in LSECs. Mechanistically, Aldo upregulated ATP6V0A2, which promoted lysosomal acidification and subsequent autophagy in LSECs. Inhibiting autophagy with si-ATG5 adeno-associated virus (AAV) in LSECs effectively mitigated Aldo-induced liver fibrosis in rats. RNA sequencing and nanoparticle tracking (NTA) analyses of EVs derived from LSECs indicated that Aldo result in a decrease in both the quantity and quality of EVs. We also observed a reduction in the protective miRNA-342-5P in EVs derived from Aldo-treated LSECs, which may play a critical role in HSCs activation. Target knockdown of EV secretion with si-RAB27a AAV in LSECs led to the development of liver fibrosis and HSC activation in rats. CONCLUSION Aldo-induced Autophagic degradation of MVBs in LSECs promotes a decrease in the quantity and quality of EVs derived from LSECs, resulting in the activation of HSCs and liver fibrosis under hyperaldosteronism. Modulating the autophagy level of LSECs and their EV secretion may represent a promising therapeutic approach for treating liver fibrosis.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, No. 1838, North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yan Zhang
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, No. 1838, North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yijie Zhang
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, No. 1838, North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zuowei Ning
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qihan Xu
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, No. 1838, North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ying Lin
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, No. 1838, North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiacheng Gong
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, No. 1838, North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jierui Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, No. 1838, North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhuoer Chen
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, No. 1838, North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ying Meng
- Department of Respiratory Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yang Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, No. 1838, North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China.
| | - Xu Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, No. 1838, North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
9
|
Qin L, Tan J, Lv X, Zhang J. Vanillic acid alleviates liver fibrosis through inhibiting autophagy in hepatic stellate cells via the MIF/CD74 signaling pathway. Biomed Pharmacother 2023; 168:115673. [PMID: 37857251 DOI: 10.1016/j.biopha.2023.115673] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023] Open
Abstract
MIF/CD74 signaling pathway and autophagy may be closely related to liver fibrosis. Vanillic acid (VA) is likely to have an anti-liver fibrosis effect, although related studies have not been reported. The aim of this study was to verify the role of hepatic stellate cells (HSCs) autophagy and the MIF/CD74 signaling pathway in the pathogenesis of liver fibrosis, and to investigate the effect of VA on liver fibrosis through in vivo and in vitro experiments. Our results showed that VA significantly attenuated CCl4-induced liver fibrosis. The alleviation of liver fibrosis with VA treatment was associated with a reduction of MIF, CD74, α-SMA, LC3B and Collagen 1. In addition, VA, MIF inhibitor (ISO-1) and autophagy inhibitor (3-MA) markedly inhibited the proliferation and migration of HSCs. This study indicates that VA could protect against HSCs activation, proliferation and migration by inhibiting the autophagy in HSCs via the MIF/CD74 signaling pathway so that alleviates liver fibrosis.
Collapse
Affiliation(s)
- Lifeng Qin
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases (Hubei Minzu University), Enshi, 445000, Hubei Province, People's Republic of China; Department of Gastroenterology, Minda Hospital of Hubei Minzu University, Enshi, Hubei Province 445000, People's Republic of China
| | - Jiawu Tan
- Department of Gastroenterology, Minda Hospital of Hubei Minzu University, Enshi, Hubei Province 445000, People's Republic of China
| | - Xiaoping Lv
- Departments of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, People's Republic of China
| | - Jiqiao Zhang
- Department of Gastroenterology, Minda Hospital of Hubei Minzu University, Enshi, Hubei Province 445000, People's Republic of China.
| |
Collapse
|
10
|
Yao Y, Chen D, Yue Z. The regulatory role and mechanism of exosomes in hepatic fibrosis. Front Pharmacol 2023; 14:1284742. [PMID: 38108065 PMCID: PMC10722150 DOI: 10.3389/fphar.2023.1284742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023] Open
Abstract
Globally, the prevalence and fatality rates of liver disorders are on the rise. Among chronic liver conditions, hepatic fibrosis stands out as a central pathological process. Despite this, approved treatments for hepatic fibrosis are currently lacking. Exosomes, small extracellular vesicles secreted by various cell types, play a significant role in intercellular communication and have emerged as essential mediators in liver fibrosis. In this regard, this review compiles the mechanisms through which exosomes regulate hepatic fibrosis, encompassing diverse targets and signaling pathways. Furthermore, it delves into the regulatory impact of exosomes modulated by natural plant-derived, endogenous, and synthetic compounds as potential therapeutic strategies for addressing hepatic fibrosis.
Collapse
Affiliation(s)
- Youli Yao
- College of Electronics and Information Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Da Chen
- College of Electronics and Information Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Zengchang Yue
- Department of Neurology, Mindong Hospital Affiliated to Fujian Medical University, Ningde, China
| |
Collapse
|
11
|
Chang YC, Liu HP, Chuang HL, Liao JW, Kao PL, Chan HL, Chen TH, Wang YC. Feline mammary carcinoma-derived extracellular vesicle promotes liver metastasis via sphingosine kinase-1-mediated premetastatic niche formation. Lab Anim Res 2023; 39:27. [PMID: 37941082 PMCID: PMC10634095 DOI: 10.1186/s42826-023-00180-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/26/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Feline mammary carcinoma (FMC) is one of the most prevalent malignancies of female cats. FMC is highly metastatic and thus leads to poor disease outcomes. Among all metastases, liver metastasis occurs in about 25% of FMC patients. However, the mechanism underlying hepatic metastasis of FMC remains largely uncharacterized. RESULTS Herein, we demonstrate that FMC-derived extracellular vesicles (FMC-EVs) promotes the liver metastasis of FMC by activating hepatic stellate cells (HSCs) to prime a hepatic premetastatic niche (PMN). Moreover, we provide evidence that sphingosine kinase 1 (SK1) delivered by FMC-EV was pivotal for the activation of HSC and the formation of hepatic PMN. Depletion of SK1 impaired cargo sorting in FMC-EV and the EV-potentiated HSC activation, and abolished hepatic colonization of FMC cells. CONCLUSIONS Taken together, our findings uncover a previously uncharacterized mechanism underlying liver-metastasis of FMC and provide new insights into prognosis and treatment of this feline malignancy.
Collapse
Affiliation(s)
- Yi-Chih Chang
- Department of Medical Laboratory Science & Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Hao-Ping Liu
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hsiao-Li Chuang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung, 40227, Taiwan
| | - Pei-Ling Kao
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung, 40227, Taiwan
| | - Hsun-Lung Chan
- Veterinary Research Institute, Ministry of Agriculture, Zhunan, Taiwan
| | - Ter-Hsin Chen
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung, 40227, Taiwan
| | - Yu-Chih Wang
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung, 40227, Taiwan.
| |
Collapse
|
12
|
Siapoush S, Rezaei R, Alavifard H, Hatami B, Zali MR, Vosough M, Lorzadeh S, Łos MJ, Baghaei K, Ghavami S. Therapeutic implications of targeting autophagy and TGF-β crosstalk for the treatment of liver fibrosis. Life Sci 2023; 329:121894. [PMID: 37380126 DOI: 10.1016/j.lfs.2023.121894] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023]
Abstract
Liver fibrosis is characterized by the excessive deposition and accumulation of extracellular matrix components, mainly collagens, and occurs in response to a broad spectrum of triggers with different etiologies. Under stress conditions, autophagy serves as a highly conserved homeostatic system for cell survival and is importantly involved in various biological processes. Transforming growth factor-β1 (TGF-β1) has emerged as a central cytokine in hepatic stellate cell (HSC) activation and is the main mediator of liver fibrosis. A growing body of evidence from preclinical and clinical studies suggests that TGF-β1 regulates autophagy, a process that affects various essential (patho)physiological aspects related to liver fibrosis. This review comprehensively highlights recent advances in our understanding of cellular and molecular mechanisms of autophagy, its regulation by TGF-β, and the implication of autophagy in the pathogenesis of progressive liver disorders. Moreover, we evaluated crosstalk between autophagy and TGF-β1 signalling and discussed whether simultaneous inhibition of these pathways could represent a novel approach to improve the efficacy of anti-fibrotic therapy in the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Samaneh Siapoush
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramazan Rezaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Helia Alavifard
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research center, Research institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research center, Research institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Marek J Łos
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100 Gliwice, Poland; Autophagy Research Center, Department of Biochemistry; Shiraz University of Medical Sciences, Shiraz, Iran; LinkoCare Life Sciences AB, Linkoping, Sweden
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Gastroenterology and Liver Diseases Research center, Research institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, Manitoba, Canada; Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Manitoba, Canada.
| |
Collapse
|
13
|
Zheng Y, Xie L, Yang D, Luo K, Li X. Small-molecule natural plants for reversing liver fibrosis based on modulation of hepatic stellate cells activation: An update. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 113:154721. [PMID: 36870824 DOI: 10.1016/j.phymed.2023.154721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Liver fibrosis (LF) is a trauma repair process carried out by the liver in response to various acute and chronic liver injuries. Its primary pathological characteristics are excessive proliferation and improper dismissal of the extracellular matrix, and if left untreated, it will progress into cirrhosis, liver cancer, and other diseases. Hepatic stellate cells (HSCs) activation is intimately associated to the onset of LF, and it is anticipated that addressing HSCs proliferation can reverse LF. Plant-based small-molecule medications have anti-LF properties, and their mechanisms of action involve suppression of extracellular matrix abnormally accumulating as well as anti-inflammation and anti-oxidative stress. New targeting HSC agents will therefore be needed to provide a potential curative response. PURPOSE The most recent HSC routes and small molecule natural plants that target HSC described domestically and internationally in recent years were examined in this review. METHODS The data was looked up using resources including ScienceDirect, CNKI, Web of Science, and PubMed. Keyword searches for information on hepatic stellate cells included "liver fibrosis", "natural plant", "hepatic stellate cells", "adverse reaction", "toxicity", etc. RESULTS: We discovered that plant monomers can target and control various pathways to prevent the activation and proliferation of HSC and promote the apoptosis of HSC in order to achieve the anti-LF effect in this work by compiling the plant monomers that influence many common pathways of HSC in recent years. It demonstrates the wide-ranging potential of plant monomers targeting different routes to combat LF, with a view to supplying new concepts and new strategies for natural plant therapy of LF as well as research and development of novel pharmaceuticals. The investigation of kaempferol, physalin B, and other plant monomers additionally motivated researchers to focus on the structure-activity link between the main chemicals and LF. CONCLUSION The creation of novel pharmaceuticals can benefit greatly from the use of natural components. They are often harmless for people, non-target creatures, and the environment because they are found in nature, and they can be employed as the starting chemicals for the creation of novel medications. Natural plants are valuable resources for creating new medications with fresh action targets because they feature original and distinctive action mechanisms.
Collapse
Affiliation(s)
- Yu Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Long Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dejun Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kaipei Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
14
|
Yin KL, Li M, Song PP, Duan YX, Ye WT, Tang W, Kokudo N, Gao Q, Liao R. Unraveling the Emerging Niche Role of Hepatic Stellate Cell-derived Exosomes in Liver Diseases. J Clin Transl Hepatol 2023; 11:441-451. [PMID: 36643031 PMCID: PMC9817040 DOI: 10.14218/jcth.2022.00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 01/18/2023] Open
Abstract
Hepatic stellate cells (HSCs) play an essential role in various liver diseases, and exosomes are critical mediators of intercellular communication in local and distant microenvironments. Cellular crosstalk between HSCs and surrounding multiple tissue-resident cells promotes or inhibits the activation of HSCs. Substantial evidence has revealed that HSC-derived exosomes are involved in the occurrence and development of liver diseases through the regulation of retinoid metabolism, lipid metabolism, glucose metabolism, protein metabolism, and mitochondrial metabolism. HSC-derived exosomes are underpinned by vehicle molecules, such as mRNAs and microRNAs, that function in, and significantly affect, the processes of various liver diseases, such as acute liver injury, alcoholic liver disease, nonalcoholic fatty liver disease, viral hepatitis, fibrosis, and cancer. As such, numerous exosomes derived from HSCs or HSC-associated exosomes have attracted attention because of their biological roles and translational applications as potential targets for therapeutic targets. Herein, we review the pathophysiological and metabolic processes associated with HSC-derived exosomes, their roles in various liver diseases and their potential clinical application.
Collapse
Affiliation(s)
- Kun-Li Yin
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ming Li
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Pei-Pei Song
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Yu-Xin Duan
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wen-Tao Ye
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Tang
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Norihiro Kokudo
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
- Correspondence to: Qiang Gao, Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, 180 Fenglin Road, Shanghai 200032, China. ORCID: https://orcid.org/0000-0002-6695-9906. ; Rui Liao, Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, 1 Youyi Road, Chongqing 400016, China. ORCID: https://orcid.org/0000-0002-0057-2792. E-mail:
| | - Rui Liao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Correspondence to: Qiang Gao, Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, 180 Fenglin Road, Shanghai 200032, China. ORCID: https://orcid.org/0000-0002-6695-9906. ; Rui Liao, Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, 1 Youyi Road, Chongqing 400016, China. ORCID: https://orcid.org/0000-0002-0057-2792. E-mail:
| |
Collapse
|
15
|
Ma Y, Hu L, Tang J, Guo W, Feng Y, Liu Y, Tang F. Three-Dimensional Cell Co-Culture Liver Models and Their Applications in Pharmaceutical Research. Int J Mol Sci 2023; 24:ijms24076248. [PMID: 37047220 PMCID: PMC10094553 DOI: 10.3390/ijms24076248] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
As the primary site for the biotransformation of drugs, the liver is the most focused on organ type in pharmaceutical research. However, despite being widely used in pharmaceutical research, animal models have inherent species differences, while two-dimensional (2D) liver cell monocultures or co-cultures and three-dimensional (3D) liver cell monoculture in vitro liver models do not sufficiently represent the complexity of the human liver’s structure and function, making the evaluation results from these tools less reliable. Therefore, there is a pressing need to develop more representative in vitro liver models for pharmaceutical research. Fortunately, an exciting new development in recent years has been the emergence of 3D liver cell co-culture models. These models hold great promise as in vitro pharmaceutical research tools, because they can reproduce liver structure and function more practically. This review begins by explaining the structure and main cell composition of the liver, before introducing the potential advantages of 3D cell co-culture liver models for pharmaceutical research. We also discuss the main sources of hepatocytes and the 3D cell co-culture methods used in constructing these models. In addition, we explore the applications of 3D cell co-culture liver models with different functional states and suggest prospects for their further development.
Collapse
|
16
|
Liu B, Wang J, Wang G, Jiang W, Li Z, Shi Y, Zhang J, Pei Q, Huang G, Wang L, Zhao S, Wu L, Zhang M, Wang W, Li X, Mou T, Zhang C, Ding Q. Hepatocyte-derived exosomes deliver H2AFJ to hepatic stellate cells and promote liver fibrosis via the MAPK/STMN1 axis activation. Int Immunopharmacol 2023; 115:109605. [PMID: 36608439 DOI: 10.1016/j.intimp.2022.109605] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023]
Abstract
Hepatic stellate cells (HSCs) activate and acquire proliferative features in response to liver injury. However, mechanisms involved in the activation of fibrotic HSCs remain uncharacterized. This study aims at elaborating the mechanistic basis by which exosomal H2AFJ derived from hepatocytes might affect the activation of HSCs and liver fibrosis. Bioinformatics analysis based on transcriptomic RNA-seq data was used to screen out the downstream regulatory genes and pathways of H2AFJ. Mouse hepatocytes AML-12 cells were stimulated with CCl4 to mimic an in vitro microenvironment of liver fibrosis, from which exosomes were isolated. Next, HSCs were co-cultured with hepatocyte-derived exosomes followed by detection of HSC migration and invasion in the presence of manipulated H2AFJ and STMN1 expression and MAPK pathway inhibitor. It was found that H2AFJ was highly expressed in hepatocyte-derived exosomes after CCl4 stimulation. Hepatocyte-derived exosomal H2AFJ promoted HSC migration and invasion. H2AFJ upregulated c-jun-mediated STMN1 by activating the MAPK signaling pathway. Furthermore, in vivo experiments verified that silencing of H2AFJ attenuated liver fibrosis in mice, while restoration of STMN1 negated its effect. Collectively, hepatocyte-derived exosomal H2AFJ aggravated liver fibrosis by activating the MAPK/STMN1 signaling pathway. This study provides a potential therapeutic target for alleviating liver fibrosis.
Collapse
Affiliation(s)
- Bin Liu
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, PR China
| | - Jinchao Wang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, PR China
| | - Guangchuan Wang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, PR China
| | - Wanli Jiang
- First Clinical School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Zhen Li
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, PR China
| | - Yongjun Shi
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, PR China
| | - Junyong Zhang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, PR China
| | - Qingshan Pei
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, PR China
| | - Guangjun Huang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, PR China
| | - Lifen Wang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, PR China
| | - Shengqiang Zhao
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, PR China
| | - Lei Wu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, PR China
| | - Mingyan Zhang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, PR China
| | - Wenwen Wang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, PR China
| | - Xiao Li
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, PR China
| | - Tong Mou
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, PR China
| | - Chunqing Zhang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, PR China
| | - Qian Ding
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, PR China.
| |
Collapse
|
17
|
Chen L, Lin B, Yang J, Zhong L, Xiong X, Wang X. Hydrogen sulfide alleviates ischemia induced liver injury by repressing the SPHK1/S1P pathway. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:73. [PMID: 36819566 PMCID: PMC9929751 DOI: 10.21037/atm-22-6460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/10/2023] [Indexed: 01/31/2023]
Abstract
Background Ischemia/reperfusion (I/R) induced liver injury is a severe pathological process which frequently occurs during clinical hepatic operations. The current study investigated the protective function and underlying mechanisms of hydrogen sulfide (H2S) in I/R induced liver injury. Methods The effects of H2S were examined using the fibroblast-like rat liver cell line BRL-3A (the name of normal hepatocytes in rats) cultured under hypoxic conditions and an I/R rat model. The viability of BRL-3A cells was assessed using the methylthiazolyldiphenyl-tetrazolium (MTT) assay and Hoechst analysis. The expression of C/EBP homologous protein (CHOP), sphingosine kinase 1 (SPHK1), and sphingosine 1-phosphate (S1P) were determined in hypoxic BRL-3A cells with or without H2S treatment. CHOP was overexpressed in hypoxic BRL-3A cells to further evaluate whether H2S protected the liver against I/R injury by decreasing endoplasmic reticulum (ER) stress. Finally, the inflammation levels in the serum and the histopathological changes of liver were examined in the I/R rat model to evaluate the therapeutic function of H2S on I/R induced liver injury in vivo. Results H2S alleviated hypoxic damage in BRL-3A cells. In addition, hypoxia increased the expression of CHOP, SPHK1, and S1P in BRL-3A cells, and this was abolished by H2S pretreatment. Notably, overexpression of CHOP significantly inhibited the effect of H2S on the viability of BRL-3A cells during hypoxia. Overall, H2S effectively protected against I/R induced liver injury, decreased the inflammatory responses, and attenuated apoptosis of hepatocyte via inhibiting the ER stress response. Conclusions These findings demonstrated that pre-treatment of H2S protected against I/R induced liver injury by repressing the SPHK1/S1P pathway via inhibition of ER stress, suggesting an effective therapeutic method for the treatment of I/R induced liver injury.
Collapse
Affiliation(s)
- Liang Chen
- Department of General Surgery, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou, China
| | - Bo Lin
- Department of General Surgery, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou, China
| | - Jianrong Yang
- Department of General Surgery, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou, China
| | - Lin Zhong
- Department of General Surgery, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou, China
| | - Xiaolan Xiong
- Department of General Surgery, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou, China
| | - Xiaolong Wang
- Department of General Surgery, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou, China
| |
Collapse
|
18
|
Liu Y, Zheng Y, Yang Y, Liu K, Wu J, Gao P, Zhang C. Exosomes in liver fibrosis: The role of modulating hepatic stellate cells and immune cells, and prospects for clinical applications. Front Immunol 2023; 14:1133297. [PMID: 37020547 PMCID: PMC10067730 DOI: 10.3389/fimmu.2023.1133297] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/01/2023] [Indexed: 04/07/2023] Open
Abstract
Liver fibrosis is a global health problem caused by chronic liver injury resulting from various factors. Hepatic stellate cells (HSCs) have been found to play a major role in liver fibrosis, and pathological stimuli lead to their transdifferentiation into myofibroblasts. Complex multidirectional interactions between HSCs, immune cells, and cytokines are also critical for the progression of liver fibrosis. Despite the advances in treatments for liver fibrosis, they do not meet the current medical needs. Exosomes are extracellular vesicles of 30-150 nm in diameter and are capable of intercellular transport of molecules such as lipids, proteins and nucleic acids. As an essential mediator of intercellular communication, exosomes are involved in the physiological and pathological processes of many diseases. In liver fibrosis, exosomes are involved in the pathogenesis mainly by regulating the activation of HSCs and the interaction between HSCs and immune cells. Serum-derived exosomes are promising biomarkers of liver fibrosis. Exosomes also have promising therapeutic potential in liver fibrosis. Exosomes derived from mesenchymal stem cells and other cells exhibit anti-liver fibrosis effects. Moreover, exosomes may serve as potential therapeutic targets for liver fibrosis and hold promise in becoming drug carriers for liver fibrosis treatment.
Collapse
Affiliation(s)
- Yufei Liu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhong Zheng
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yang Yang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Liu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianying Wu
- Department of Digestive Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peiyang Gao
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Chuantao Zhang, ; Peiyang Gao,
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Chuantao Zhang, ; Peiyang Gao,
| |
Collapse
|
19
|
Zhao X, Xue X, Cui Z, Kwame Amevor F, Wan Y, Fu K, Wang C, Peng C, Li Y. microRNAs-based diagnostic and therapeutic applications in liver fibrosis. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022:e1773. [PMID: 36585388 DOI: 10.1002/wrna.1773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 01/01/2023]
Abstract
Liver fibrosis is a process of over-extracellular matrix (ECM) aggregation and angiogenesis, which develops into cirrhosis and hepatocellular carcinoma (HCC). With the increasing pressure of liver fibrosis, new therapeutics to cure this disease requires much attention. Exosome-cargoed microRNAs (miRNAs) are emerging approaches in the precision of the liver fibrotic paradigm. In this review, we outlined the different types of hepatic cells derived miRNAs that drive intra-/extra-cellular interactive communication in liver fibrosis with different physiological and pathological processes. Specifically, we highlighted the possible mechanism of liver fibrosis pathogenesis associated with immune response and angiogenesis. In addition, potential clinical biomarkers and different stem cell transplant-derived miRNAs-based therapeutic strategies in liver fibrosis were summarized in this review. miRNAs-based approaches might help researchers devise new candidates for the cell-free treatment of liver fibrosis. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhifu Cui
- College Science and Technology, Southwest University, Chongqing, China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
20
|
Qu B, Liu X, Liang Y, Zheng K, Zhang C, Lu L. Salidroside in the Treatment of NAFLD/NASH. Chem Biodivers 2022; 19:e202200401. [PMID: 36210339 DOI: 10.1002/cbdv.202200401] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/03/2022] [Indexed: 12/27/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the commonest reason for chronic liver diseases in the world and is commonly related to the hepatic manifestation of the metabolic syndrome. Non-alcoholic steatohepatitis (NASH) is a deteriorating form of NAFLD, which can eventually develop into fibrosis, cirrhosis, and liver cancer. The reason for NAFLD/NASH development is complicated, such as liver lipid metabolism, oxidative stress, inflammatory response, apoptosis and autophagy, liver fibrosis and gut microbiota. Apart from bariatric surgery and lifestyle changes, officially approved drug therapy for NAFLD/NASH treatment is lacking. Salidroside (SDS) is a phenolic compound extensively distributed in the tubers of Rhodiola plants, which possesses many significant biological activities. This review summarized the related targets regulated by SDS in treating NAFLD/NASH. It is indicated that SDS could improve the status of NAFLD/NASH by ameliorating abnormal lipid metabolism, inhibiting oxidative stress, regulating apoptosis and autophagy, reducing inflammatory response, alleviating fibrosis and regulating gut microbiota. In conclusion, although the multiple bioactivities of SDS have been confirmed, the clinical data are inadequate and need to become the focus of attention in the later study.
Collapse
Affiliation(s)
- Baozhen Qu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, 127 Siliunan Road, Qingdao, 266042, China
| | - Xuemao Liu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, 127 Siliunan Road, Qingdao, 266042, China
| | - Yanjiao Liang
- Department of Oncology Center, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, 266042, China
| | - Keke Zheng
- Department of Oncology Center, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, 266042, China
| | - Chunling Zhang
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, 127 Siliunan Road, Qingdao, 266042, China
| | - Linlin Lu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, 127 Siliunan Road, Qingdao, 266042, China
| |
Collapse
|
21
|
Liu G, Yin XM. The Role of Extracellular Vesicles in Liver Pathogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1358-1367. [PMID: 35752228 PMCID: PMC9552020 DOI: 10.1016/j.ajpath.2022.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) are generated by cells in the form of exosomes, microvesicles, and apoptotic bodies. They can be taken up by neighboring cells, and their contents can have functional impact on the cells that engulf them. As the mediators of intercellular communication, EVs can play important roles in both physiological and pathologic contexts. In addition, early detection of EVs in different body fluids may offer a sensitive diagnostic tool for certain diseases, such as cancer. Furthermore, targeting specific EVs may also become a promising therapeutic approach. This review summarizes the latest findings of EVs in the field of liver research, with a focus on the different contents of the EVs and their impact on liver function and on the development of inflammation, fibrosis, and tumor in the liver. The goal of this review is to provide a succinct account of the various molecules that can mediate the function of EVs so the readers may apply this knowledge to their own research.
Collapse
Affiliation(s)
- Gang Liu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Xiao-Ming Yin
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana.
| |
Collapse
|
22
|
Song X, Shi J, Liu J, Liu Y, Yu Y, Qiu Y, Cao Z, Pan Y, Yuan X, Chu Y, Wu D. Recombinant truncated latency-associated peptide alleviates liver fibrosis in vitro and in vivo via inhibition of TGF-β/Smad pathway. Mol Med 2022; 28:80. [PMID: 35842576 PMCID: PMC9288003 DOI: 10.1186/s10020-022-00508-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Background Liver fibrosis is a progressive liver injury response. Transforming growth factor β1 (TGF-β1) is oversecreted during liver fibrosis and promotes the development of liver fibrosis. Therapeutic approaches targeting TGF-β1 and its downstream pathways are essential to inhibit liver fibrosis. The N-terminal latency-associated peptide (LAP) blocks the binding of TGF-β1 to its receptor. Removal of LAP is critical for the activation of TGF-β1. Therefore, inhibition of TGF-β1 and its downstream pathways by LAP may be a potential approach to affect liver fibrosis. Methods Truncated LAP (tLAP) plasmids were constructed. Recombinant proteins were purified by Ni affinity chromatography. The effects of LAP and tLAP on liver fibrosis were investigated in TGF-β1-induced HSC-T6 cells, AML12 cells and CCl4-induced liver fibrosis mice by real time cellular analysis (RTCA), western blot, real-time quantitative PCR (RT-qPCR), immunofluorescence and pathological staining. Results LAP and tLAP could inhibit TGF-β1-induced AML12 cells inflammation, apoptosis and EMT, and could inhibit TGF-β1-induced HSC-T6 cells proliferation and fibrosis. LAP and tLAP could attenuate the pathological changes of liver fibrosis and inhibit the expression of fibrosis-related proteins and mRNAs in CCl4-induced liver fibrosis mice. Conclusion LAP and tLAP could alleviate liver fibrosis in vitro and in vivo via inhibition of TGF-β/Smad pathway. TLAP has higher expression level and more effective anti-fibrosis activity compared to LAP. This study may provide new ideas for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Xudong Song
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No. 3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China.,College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Jiayi Shi
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No. 3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China.,College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Jieting Liu
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No. 3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China.,College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Yong Liu
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No. 3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China.,Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Yang Yu
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No. 3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China.,College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Yufei Qiu
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No. 3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China.,College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Zhiqin Cao
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No. 3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China.,College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Yu Pan
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No. 3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China.,College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Xiaohuan Yuan
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No. 3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China.,College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Yanhui Chu
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No. 3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China. .,College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China.
| | - Dan Wu
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No. 3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China. .,College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China.
| |
Collapse
|
23
|
Sun M, Zeng L, Hu M. Serum sphingosine-1 phosphate level is increased in patients with hepatitis B and displays a positive association with liver fibrosis. Am J Transl Res 2022; 14:4964-4976. [PMID: 35958454 PMCID: PMC9360858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To investigate the difference in serum sphingosine-1 phosphate (S1P) concentration between the HBV hepatitis patients and healthy controls, and its relevant association with serum liver fibrosis indicators. METHODS A total of 28 HBsAg (+) HBeAg (+) Anti-HBc (+) hepatitis B patients, 42 HBsAg (+) Anti-HBe (+) Anti-HBc (+) hepatitis B patients, and 21 healthy subjects with normal liver function were included. Liquid chromatography-tandem mass method was used to detect the level of serum S1P. RESULTS SerumS1P concentration of Anti-HBe (+) hepatitis B patients was higher than that of the control group (P=0.017) and HBeAg (+) patients (P=0.007). At the same time, there was no significant difference in the serum S1P concentration between HBeAg (+) hepatitis B patients and the control group (P>0.05). Moreover, serum S1P concentration was positively correlated with liver fibrosis indices, Collage Type IV Protein (r=0.264; P=0.011), and Chitosanase 3-like protein 1 (r=0.295; P=0.004). CONCLUSIONS Serum S1P level is increased in patients with hepatitis B and displays a positive association with liver fibrosis.
Collapse
Affiliation(s)
- Mei Sun
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University Changsha 410011, Hunan, China
| | - Ling Zeng
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University Changsha 410011, Hunan, China
| | - Min Hu
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University Changsha 410011, Hunan, China
| |
Collapse
|
24
|
Devaraj E, Perumal E, Subramaniyan R, Mustapha N. Liver fibrosis: Extracellular vesicles mediated intercellular communication in perisinusoidal space. Hepatology 2022; 76:275-285. [PMID: 34773651 DOI: 10.1002/hep.32239] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Ezhilarasan Devaraj
- Department of Pharmacology, The Blue Lab, Molecular Pharmacology and Toxicology Division, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Elumalai Perumal
- Department of Pharmacology, The Blue Lab, Molecular Pharmacology and Toxicology Division, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Raghunandhakumar Subramaniyan
- Department of Pharmacology, The Blue Lab, Molecular Pharmacology and Toxicology Division, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Najimi Mustapha
- Laboratory of Pediatric Hepatology and Cell Therapy, IREC Institute, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
25
|
Bae UJ, Park BH, Cho MK, Bae EJ. Therapeutic Effect of Acer tegmentosum Maxim Twig Extract in Bile Duct Ligation-Induced Acute Cholestasis in Mice. J Med Food 2022; 25:652-659. [PMID: 35708629 DOI: 10.1089/jmf.2022.k.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cholestatic liver disease, or cholestasis, is a condition characterized by liver inflammation and fibrosis following a bile duct obstruction and an intrahepatic accumulation of bile acids. Inhibiting inflammation is a promising therapeutic strategy for cholestatic liver diseases. Acer tegmentosum Maxim extract (ATE) is best known for its anti-inflammatory and antioxidative properties. In this study, we investigated the effects of ATE on liver injury and fibrosis in mice with bile duct ligation (BDL)-induced cholestasis through analysis of gene expression, cytokines, and histological examination. Oral administration of ATE (20 or 50 mg/kg) for 14 days significantly attenuated hepatocellular necrosis compared to vehicle-treated BDL mice, which was accompanied by the reduced level of serum bile acids and bilirubin. We determined that ATE treatment reduced liver inflammation, oxidative stress, and fibrosis. These beneficial effects of ATE were concurrent with the decreased expression of genes involved in the NF-κB pathway, suggesting that the anti-inflammatory effect of ATE could be a possible mechanism against cholestasis-associated liver injury. Our findings substantiate ATE's role as an alternative therapeutic agent for cholestasis-induced liver injury and fibrosis.
Collapse
Affiliation(s)
- Ui-Jin Bae
- Functional Food Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Korea
| | - Byung-Hyun Park
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju, Korea
| | - Min Kyung Cho
- Department of Pharmacology, College of Oriental Medicine, Dongguk University, Kyungju, Korea
| | - Eun Ju Bae
- School of Pharmacy, Jeonbuk National University, Jeonju, Korea
| |
Collapse
|
26
|
Wang C, Liu J, Yan Y, Tan Y. Role of Exosomes in Chronic Liver Disease Development and Their Potential Clinical Applications. J Immunol Res 2022; 2022:1695802. [PMID: 35571570 PMCID: PMC9106457 DOI: 10.1155/2022/1695802] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/02/2022] [Accepted: 04/18/2022] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are vesicular bodies (40-1000 nm) with double-layer membrane structures released by different cell types into extracellular environments, including apoptosis bodies, microvesicles, and exosomes. Exosomes (30-100 nm) are vesicles enclosed by extracellular membrane and contain effective molecules of secretory cells. They are derived from intracellular multivesicular bodies (MVBs) that fuse with the plasma membrane and release their intracellular vesicles by exocytosis. Research has shown that almost all human cells could secrete exosomes, which have a certain relationship with corresponding diseases. In chronic liver diseases, exosomes release a variety of bioactive components into extracellular spaces, mediating intercellular signal transduction and materials transport. Moreover, exosomes play a role in the diagnosis, treatment, and prognosis of various chronic liver diseases as potential biomarkers and therapeutic targets. Previous studies have found that mesenchymal stem cell-derived exosomes (MSC-ex) could alleviate acute and chronic liver injury and have the advantages of high biocompatibility and low immunogenicity. In this paper, we briefly summarize the role of exosomes in the pathogenesis of different chronic liver diseases and the latest research progresses of MSC-ex as the clinical therapeutic targets.
Collapse
Affiliation(s)
- Chen Wang
- The Third Hospital of Zhenjiang Affiliated Jiangsu University, Jiangsu University, Zhenjiang, 212005 Jiangsu, China
- School of Medicine, Jiangsu University, Zhenjiang, 212013 Jiangsu, China
| | - Jinwen Liu
- School of Medicine, Jiangsu University, Zhenjiang, 212013 Jiangsu, China
| | - Yongmin Yan
- School of Medicine, Jiangsu University, Zhenjiang, 212013 Jiangsu, China
| | - Youwen Tan
- The Third Hospital of Zhenjiang Affiliated Jiangsu University, Jiangsu University, Zhenjiang, 212005 Jiangsu, China
| |
Collapse
|
27
|
Ferdek PE, Krzysztofik D, Stopa KB, Kusiak AA, Paw M, Wnuk D, Jakubowska MA. When healing turns into killing ‐ the pathophysiology of pancreatic and hepatic fibrosis. J Physiol 2022; 600:2579-2612. [DOI: 10.1113/jp281135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/12/2022] [Indexed: 01/18/2023] Open
Affiliation(s)
- Pawel E. Ferdek
- Department of Cell Biology Faculty of Biochemistry Biophysics and Biotechnology Jagiellonian University Krakow Poland
| | - Daria Krzysztofik
- Malopolska Centre of Biotechnology Jagiellonian University Krakow Poland
| | - Kinga B. Stopa
- Malopolska Centre of Biotechnology Jagiellonian University Krakow Poland
| | - Agnieszka A. Kusiak
- Department of Cell Biology Faculty of Biochemistry Biophysics and Biotechnology Jagiellonian University Krakow Poland
| | - Milena Paw
- Department of Cell Biology Faculty of Biochemistry Biophysics and Biotechnology Jagiellonian University Krakow Poland
| | - Dawid Wnuk
- Department of Cell Biology Faculty of Biochemistry Biophysics and Biotechnology Jagiellonian University Krakow Poland
| | | |
Collapse
|
28
|
The Role of Exosomes in Inflammatory Diseases and Tumor-Related Inflammation. Cells 2022; 11:cells11061005. [PMID: 35326456 PMCID: PMC8947057 DOI: 10.3390/cells11061005] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 01/27/2023] Open
Abstract
Inflammation plays a decisive role in inducing tumorigenesis, promoting tumor development, tumor invasion and migration. The interaction of cancer cells with their surrounding stromal cells and inflammatory cells further forms an inflammatory tumor microenvironment (TME). The large number of cells present within the TME, such as mesenchymal stem cells (MSCs), macrophages, neutrophils, etc., play different roles in the changing TME. Exosomes, extracellular vesicles released by various types of cells, participate in a variety of inflammatory diseases and tumor-related inflammation. As an important communication medium between cells, exosomes continuously regulate the inflammatory microenvironment. In this review, we focused on the role of exosomes in inflammatory diseases and tumor-related inflammation. In addition, we also summarized the functions of exosomes released by various cells in inflammatory diseases and in the TME during the transformation of inflammatory diseases to tumors. We discussed in depth the potential of exosomes as targets and tools to treat inflammatory diseases and tumor-related inflammation.
Collapse
|
29
|
Li Y, Wu J, Liu R, Zhang Y, Li X. Extracellular vesicles: catching the light of intercellular communication in fibrotic liver diseases. Theranostics 2022; 12:6955-6971. [PMID: 36276639 PMCID: PMC9576620 DOI: 10.7150/thno.77256] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/20/2022] [Indexed: 02/05/2023] Open
Abstract
The increasing prevalence of fibrotic liver diseases resulting from different etiologies has become a major global problem for public health. Fibrotic liver diseases represent a redundant accumulation of extracellular matrix, dysregulation of immune homeostasis and angiogenesis, which eventually contribute to the progression of cirrhosis and liver malignancies. The concerted actions among liver cells including hepatocytes, hepatic stellate cells, kupffer cells, liver sinusoidal endothelial cells and other immune cells are essential for the outcome of liver fibrosis. Recently, a growing body of literature has highlighted that extracellular vesicles (EVs) are critical mediators of intercellular communication among different liver cells either in local or distant microenvironments, coordinating a variety of systemic pathological and physiological processes. Despite the increasing interests in this field, there are still relatively few studies to classify the contents and functions of EVs in intercellular transmission during hepatic fibrogenesis. This review aims to summarize the latest findings with regards to the cargo loading, release, and uptake of EVs in different liver cells and clarify the significant roles of EVs played in fibrotic liver diseases.
Collapse
Affiliation(s)
- Yijie Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jianzhi Wu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yinhao Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
- ✉ Corresponding author: Xiaojiaoyang Li, Ph.D., School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China. E-mail:
| |
Collapse
|
30
|
Yan Y, Zeng J, Xing L, Li C. Extra- and Intra-Cellular Mechanisms of Hepatic Stellate Cell Activation. Biomedicines 2021; 9:biomedicines9081014. [PMID: 34440218 PMCID: PMC8391653 DOI: 10.3390/biomedicines9081014] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/18/2022] Open
Abstract
Hepatic fibrosis is characterized by the pathological accumulation of extracellular matrix (ECM) in the liver resulting from the persistent liver injury and wound-healing reaction induced by various insults. Although hepatic fibrosis is considered reversible after eliminating the cause of injury, chronic injury left unchecked can progress to cirrhosis and liver cancer. A better understanding of the cellular and molecular mechanisms controlling the fibrotic response is needed to develop novel clinical strategies. It is well documented that activated hepatic stellate cells (HSCs) is the most principal cellular players promoting synthesis and deposition of ECM components. In the current review, we discuss pathways of HSC activation, emphasizing emerging extra- and intra-cellular signals that drive this important cellular response to hepatic fibrosis. A number of cell types and external stimuli converge upon HSCs to promote their activation, including hepatocytes, liver sinusoidal endothelial cells, macrophages, cytokines, altered ECM, hepatitis viral infection, enteric dysbiosis, lipid metabolism disorder, exosomes, microRNAs, alcohol, drugs and parasites. We also discuss the emerging signaling pathways and intracellular events that individually or synergistically drive HSC activation, including TGFβ/Smad, Notch, Wnt/β-catenin, Hedgehog and Hippo signaling pathways. These findings will provide novel potential therapeutic targets to arrest or reverse fibrosis and cirrhosis.
Collapse
|