1
|
Khanna S, Kumar S, Sharma P, Daksh R, Nandakumar K, Shenoy RR. Flavonoids regulating NLRP3 inflammasome: a promising approach in alleviating diabetic peripheral neuropathy. Inflammopharmacology 2025:10.1007/s10787-025-01729-7. [PMID: 40205269 DOI: 10.1007/s10787-025-01729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 04/11/2025]
Abstract
A common and serious side effect of diabetes is diabetic peripheral neuropathy (DPN), which is characterised by gradual nerve damage brought on by oxidative stress, chronic inflammation, and prolonged hyperglycemia. Studies identify NLRP3 inflammasome as a key mediator in the pathogenesis of DPN, connecting neuroinflammation and neuronal damage to metabolic failure. Because of their strong anti-inflammatory and antioxidant qualities, flavonoids, a broad class of naturally occurring polyphenols, have drawn interest as potential treatments for DPN. The various ways that flavonoids affect the NLRP3 inflammasome and their potential as a treatment for DPN are examined in this review. It has been demonstrated that flavonoids prevent NLRP3 activation, which lowers the release of pro-inflammatory cytokines including IL-1β and IL-18 and causes neuroinflammation. Flavonoids work mechanistically by reducing oxidative stress, altering important signalling pathways, and blocking the activities of NF-κB and caspase-1, which are both essential for the activation of the NLRP3 inflammasome. Preclinical research has shown that flavonoids have strong neuroprotective benefits, and few clinical evidence also points to the potential of flavonoids to improve nerve function and lessen neuropathic pain in diabetic patients. The current review emphasises how flavonoids may be used as a treatment strategy to target inflammation in DPN caused by the NLRP3 inflammasome. By targeting important inflammatory pathways, flavonoids provide a new way to slow the progression of this debilitating illness. Further investigation into the mechanisms, clinical translation, and novel drug delivery techniques could enhance the therapeutic efficacy of diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Saumya Khanna
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Sachindra Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Pratyasha Sharma
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Rajni Daksh
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Rekha Raghuveer Shenoy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104.
| |
Collapse
|
2
|
Lestari IT, Anggadiredja K, Garmana AN, Utami RA. Ameliorating Effect of Red Fruit ( Pandanus conoides Lamk) Oil in Streptozotosin-Induced Diabetic Peripheral Neuropathy Rat Model: role of oxidative and neuroinflammatory pathways. J Pharmacopuncture 2025; 28:11-23. [PMID: 40165881 PMCID: PMC11933913 DOI: 10.3831/kpi.2025.28.1.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/16/2024] [Accepted: 01/09/2025] [Indexed: 04/02/2025] Open
Abstract
Objectives Diabetic peripheral neuropathy (DPN) is the most common cause of neuropathy worldwide, with oxidative and inflammatory being the pathways involved in the disease pathology. Red fruit (Pandanus conoides Lamk) oil (RFO) is known to have potent antioxidants and anti-inflammatory activities. To investigate the effects of RFO in a rat model of streptozotocin-induced DPN. Methods Male Wistar rats were induced with 55 mg/kg streptozotocin (STZ) intraperitoneally. Rats with fasting blood glucose ≥ 200 mg/dL were assigned into groups treated with vehicle, pregabalin 30 mg/kg, and 0.3, 0.6, or 1.2 mL/kg RFO, respectively. The treatments were given for 3 weeks, six weeks after STZ induction. Neuropathic pain was evaluated by cold allodynia and thermal hyperalgesia tests. Histopathological changes of the pancreas and sciatic nerve were evaluated by the Gaussian adaptive threshold method. Feed and drinking intake, blood glucose levels, body weight, and sciatic nerve proinflammatory cytokines were also measured. Results There were increases in blood glucose levels, feed and drink intake, levels of MDA, TNF-α, IL-6, NFκB, and iNOS; decrease in catalase level; and damage to the sciatic nerve in the vehicle-treated DPN rat model compared with normal rats (p < 0.05). Meanwhile, significant decrease in weight, number of pancreatic β cells, latency times for thermal hyperalgesia as well as cold allodynia were observed in this group of rats. RFO administration at 0.6 and 1.2 mL/kg significantly improved all of the measured indices, except for iNOS, where only decreasing trend was observed. Pregabalin did not affect blood glucose levels, body weight or pancreatic β cells but improved thermal hyperalgesia as well as cold allodynia, the sciatic nerve cell counts, TNF-α IL-6, NFκB, and iNOS levels. Conclusion RFO improves DPN by neuroprotective effect through the involvement of the oxidative and neuroinflammatory pathways.
Collapse
Affiliation(s)
- Indah Tri Lestari
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| | - Kusnandar Anggadiredja
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| | - Afrillia Nuryanti Garmana
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| | - Ratna Annisa Utami
- Department of Pharmaceutics, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| |
Collapse
|
3
|
Kui W, Li Y, Gu Z, Xie L, Huang A, Kong S, Song L, Li L, Yu J, Xue CC, Wang K. Electroacupuncture Inhibits NLRP3-Mediated Microglial Pyroptosis to Ameliorate Chronic Neuropathic Pain in Rats. J Pain Res 2025; 18:1115-1129. [PMID: 40070891 PMCID: PMC11895692 DOI: 10.2147/jpr.s506569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 03/01/2025] [Indexed: 03/14/2025] Open
Abstract
Background Patients with neuropathic pain (NP), caused by injury or disease of the somatosensory nervous system, usually suffer from severe pain. Our previous studies revealed that electroacupuncture (EA) stimulation could effectively improve NP. However, the underlying mechanisms of EA have not been fully clarified. This study aimed to investigate the specific mechanisms of EA in alleviating NP, focusing on the pyroptosis. Materials and Methods Chronic Constriction Injury (CCI) model was established on the male Sprague-Dawley rats. CCI rats were treated with EA at acupoints GV20 and ST36 or/with the NOD-like receptor protein 3 (NLRP3) antagonist MCC950. EA treatment was administered for successive 14 days 7 days after the CCI surgery. The mechanical withdrawal threshold (MWT) and paw withdrawal latency (PWL) were performed during the experiment. At the end of the experiment, spinal cord segments and serum of rats were collected, ELISA detected the expression of inflammatory factors, immunofluorescence detected the microglia and neuron cells with pyroptosis biomarkers, and Western blot detected the NLRP3 pathway. Results EA treatment significantly alleviated pain hypersensitivity by increasing the MWT and PWL. Moreover, EA reduced levels of pro-inflammatory cytokines IL-1β and TNF-α in the spinal tissue. Mechanistically, the pyroptosis-related proteins, including NLRP3, N-GSDMD, Cleaved Caspase-1, IL-18 as well as IL-1β were downregulated by EA, indicating that EA attenuated the pyroptosis phenotype in NP rats. In particular, EA reduced the co-expression of NLRP3, Caspase-1 and N-GSDMD in microglia rather than in neuronal or astrocytic cells within the spinal cord of CCI rats. Pharmacological inhibition of NLRP3 inflammasome by MCC950 alleviates CCI-induced pain hypersensitivity while blocking EA's effect on anti-pyroptosis in CCI rats. Conclusion These findings demonstrate the EA ameliorates the neuroinflammation and pyroptosis to relieve chronic NP by suppressing NLRP3 inflammasome activation in microglia. EA may serve as a viable treatment therapy for chronic NP.
Collapse
Affiliation(s)
- Wenyun Kui
- Department of Pain, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People’s Republic of China
| | - Yanan Li
- Department of Pain, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People’s Republic of China
| | - Zhen Gu
- Department of Pain, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People’s Republic of China
| | - Lei Xie
- Department of Pain, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People’s Republic of China
| | - Aiping Huang
- Department of Pain, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People’s Republic of China
| | - Shuyi Kong
- Department of Pain, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People’s Republic of China
| | - Lilong Song
- Department of Pain, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People’s Republic of China
| | - Lingxing Li
- Department of Pain, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People’s Republic of China
| | - Jun Yu
- Department of Pain, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People’s Republic of China
| | - Chun-Chun Xue
- Department of Pain, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People’s Republic of China
| | - Kaiqiang Wang
- Department of Pain, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People’s Republic of China
| |
Collapse
|
4
|
Sriwastawa K, Kumar A. Mitochondrial dysfunction in diabetic neuropathy: Impaired mitophagy triggers NLRP3 inflammasome. Mitochondrion 2024; 79:101972. [PMID: 39362475 DOI: 10.1016/j.mito.2024.101972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/28/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Diabetic neuropathy is one of the challenging complications of diabetes and is characterized by peripheral nerve damage due to hyperglycemia in diabetes. Mitochondrial dysfunction has been reported as one of the key pathophysiological factor contributing to nerve damage in diabetic neuropathy, clinically manifesting as neurodegenerative changes like functional and sensorimotor deficits. Accumulating evidence suggests a clear correlation between mitochondrial dysfunction and NLRP3 inflammasome activation. Unraveling deeper molecular aspects of mitochondrial dysfunction may provide safer and effective therapeutic alternatives. This review links mitochondrial dysfunction and appraises its role in the pathophysiology of diabetic neuropathy. We have also tried to delineate the role of mitophagy in NLRP3 inflammasome activation in experimental diabetic neuropathy.
Collapse
Affiliation(s)
- Keshari Sriwastawa
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab, India.
| |
Collapse
|
5
|
Hu N, Liu J, Luo Y, Li Y. A comprehensive review of traditional Chinese medicine in treating neuropathic pain. Heliyon 2024; 10:e37350. [PMID: 39296122 PMCID: PMC11407996 DOI: 10.1016/j.heliyon.2024.e37350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Neuropathic pain (NP) is a common, intractable chronic pain caused by nerve dysfunction and primary lesion of the nervous system. The etiology and pathogenesis of NP have not yet been clarified, so there is a lack of precise and effective clinical treatments. In recent years, traditional Chinese medicine (TCM) has shown increasing advantages in alleviating NP. Our review aimed to define the therapeutic effect of TCM (including TCM prescriptions, TCM extracts and natural products from TCM) on NP and reveal the underlying mechanisms. Literature from 2018 to 2024 was collected from databases including Web of Science, PubMed, ScienceDirect, Google academic and CNKI databases. Herbal medicine, Traditional Chinese medicines (TCM), neuropathic pain, neuralgia and peripheral neuropathy were used as the search terms. The anti-NP activity of TCM is clarified to propose strategies for discovering active compounds against NP, and provide reference to screen anti-NP drugs from TCM. We concluded that TCM has the characteristics of multi-level, multi-component, multi-target and multi-pathway, which can alleviate NP through various pathways such as anti-inflammation, anti-oxidant, anti-apoptotic pathway, regulating autophagy, regulating intestinal flora, and influencing ion channels. Based on the experimental study and anti-NP mechanism of TCM, this paper can offer analytical evidence to support the effectiveness in treating NP. These references will be helpful to the research and development of innovative TCM with multiple levels and multiple targets. TCM can be an effective treatment for NP and can serve as a treasure house for new drug development.
Collapse
Affiliation(s)
- Naihua Hu
- Deyang Hospital of Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, No. 159, Section 2, Tianshan South Road, Deyang, 618000, Sichuan, China
| | - Jie Liu
- Deyang Hospital of Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, No. 159, Section 2, Tianshan South Road, Deyang, 618000, Sichuan, China
| | - Yong Luo
- Deyang Hospital of Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, No. 159, Section 2, Tianshan South Road, Deyang, 618000, Sichuan, China
| | - Yunxia Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
6
|
Wang Q, Xie Y, Ma S, Luo H, Qiu Y. Role of microglia in diabetic neuropathic pain. Front Cell Dev Biol 2024; 12:1421191. [PMID: 39135776 PMCID: PMC11317412 DOI: 10.3389/fcell.2024.1421191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024] Open
Abstract
Approximately one-third of the patients with diabetes worldwide suffer from neuropathic pain, mainly categorized by spontaneous and stimulus-induced pain. Microglia are a class of immune effector cells residing in the central nervous system and play a pivotal role in diabetic neuropathic pain (DNP). Microglia specifically respond to hyperglycemia along with inflammatory cytokines and adenosine triphosphate produced during hyperglycemic damage to nerve fibers. Because of the presence of multiple receptors on the microglial surface, microglia are dynamically and highly responsive to their immediate environment. Following peripheral sensitization caused by hyperglycemia, microglia are affected by the cascade of inflammatory factors and other substances and respond accordingly, resulting in a change in their functional state for DNP pathogenesis. Inhibition of receptors such as P2X reporters, reducing cytokine expression levels in the microglial reactivity mechanisms, and inhibiting their intracellular signaling pathways can effectively alleviate DNP. A variety of drugs attenuate DNP by inhibiting the aforementioned processes induced by microglial reactivity. In this review, we summarize the pathological mechanisms by which microglia promote and maintain DNP, the drugs and therapeutic techniques available, and the latest advances in this field.
Collapse
Affiliation(s)
- Qian Wang
- Department of Endocrinology and Metabolism, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, China
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yilin Xie
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Shichao Ma
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yue Qiu
- Department of Endocrinology and Metabolism, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, China
| |
Collapse
|
7
|
Dong P, Zhou L, Wang X, Xue L, Du Y, Cui R. Study on the effect and mechanism of Zhenzhu Tongluo pills in treating diabetic peripheral neuropathy injury. Eur J Med Res 2024; 29:149. [PMID: 38429764 PMCID: PMC10908044 DOI: 10.1186/s40001-024-01744-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/23/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND As a traditional Mongolian medicine, Zhenzhu Tongluo pills has played a good neuroprotective function in clinic. However, the key mechanisms by which it works are poorly studied. OBJECTIVES To study the effect and mechanism of Zhenzhu Tongluo pills in treating diabetic peripheral neuropathy injury. METHODS Diabetic peripheral neuropathy model was established by injecting STZ into rats. Physiological, behavioral, morphological and functional analyses were used to evaluate that the overall therapeutic effect of rats, ELISA, qRT-PCR, Western blot, immunohistochemical staining, HE staining and TUNEL staining were used to further study the related mechanism. RESULTS Zhenzhu Tongluo pills can significantly improve the physiological changes, behavioral abnormalities, structural and functional damage in diabetic peripheral neuropathy rats, which may be related to the anti-inflammatory and anti-apoptotic effects that realized by regulating PI3K/AKT, MAPK, NF-κB signaling pathways. CONCLUSIONS Zhenzhu Tongluo pills has neuroprotective effect, and anti-inflammatory and anti-apoptosis may be the important way of its function.
Collapse
Affiliation(s)
- Pengfei Dong
- Department of Chinese Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, China
| | - Lin Zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Xiaohui Wang
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Lianping Xue
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yang Du
- Second Ward of Internal Medicine, Rehabilitation Hospital of Zhengzhou Cigarette Factory, Zhengzhou, 450000, China
| | - Rui Cui
- Department of Ultrasonography, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
| |
Collapse
|
8
|
Zhao G, Zhang T, Li J, Li L, Chen P, Zhang C, Li K, Cui C. Parkin-mediated mitophagy is a potential treatment for oxaliplatin-induced peripheral neuropathy. Am J Physiol Cell Physiol 2024; 326:C214-C228. [PMID: 38073486 PMCID: PMC11192483 DOI: 10.1152/ajpcell.00276.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/17/2023] [Accepted: 10/29/2023] [Indexed: 01/06/2024]
Abstract
Oxaliplatin-induced peripheral nerve pain (OIPNP) is a common chemotherapy-related complication, but the mechanism is complex. Mitochondria are vital for cellular homeostasis and regulating oxidative stress. Parkin-mediated mitophagy is a cellular process that removes damaged mitochondria, exhibiting a protective effect in various diseases; however, its role in OIPNP remains unclear. In this study, we found that Parkin-mediated mitophagy was decreased, and reactive oxygen species (ROS) was upregulated in OIPNP rat dorsal root ganglion (DRG) in vivo and in PC12 cells stimulated with oxaliplatin (OXA) in vitro. Overexpression of Parkin indicated that OXA might cause mitochondrial and cell damage by inhibiting mitophagy. We also showed that salidroside (SAL) upregulated Parkin-mediated mitophagy to eliminate damaged mitochondria and promote PC12 cell survival. Knockdown of Parkin indicated that mitophagy is crucial for apoptosis and mitochondrial homeostasis in PC12 cells. In vivo study also demonstrated that SAL enhances Parkin-mediated mitophagy in the DRG and alleviates peripheral nerve injury and pain. These results suggest that Parkin-mediated mitophagy is involved in the pathogenesis of OIPNP and may be a potential therapeutic target for OIPNP.NEW & NOTEWORTHY This article discusses the effects and mechanisms of Parkin-mediated mitophagy in oxaliplatin-induced peripheral nerve pain (OIPNP) from both in vivo and in vitro. We believe that our study makes a significant contribution to the literature because OIPNP has always been the focus of clinical medicine, and mitochondrial quality regulation mechanisms especially Parkin-mediated mitophagy, have been deeply studied in recent years. We use a variety of molecular biological techniques and animal experiments to support our argument.
Collapse
Affiliation(s)
- Guoqing Zhao
- Anesthesiology Department, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Te Zhang
- Anesthesiology Department, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Jiannan Li
- Department of Plastic and Reconstructive Microsurgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Longyun Li
- Anesthesiology Department, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Peng Chen
- Anesthesiology Department, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Chunlu Zhang
- Anesthesiology Department, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Kai Li
- Anesthesiology Department, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Cancan Cui
- Radiology Department, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
9
|
Wu D, Wang P, Zhao C, Su J, Zhang J, Ma W, Zhang Y, Xu H. Levo-tetrahydropalmatine ameliorates neuropathic pain by inhibiting the activation of the Clec7a-MAPK/NF-κB-NLRP3 inflammasome axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155075. [PMID: 37741158 DOI: 10.1016/j.phymed.2023.155075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 08/27/2023] [Accepted: 09/09/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Because of the complex pathogenesis of neuropathic pain (NP), the therapeutic efficacy of existing drugs is not satisfactory. Accumulating studies have indicated that neuroinflammation may play a key role in NP onset and progression. Levo-tetrahydropalmatine (l-THP) has been extensively used for relieving chronic pain for decades. However, its potential mechanisms against NP have not yet been fully elucidated. PURPOSE Exploring and elucidating the therapeutic effect and pharmacological mechanism of l-THP in treating NP. METHODS RNA-seq and bioinformatics analyses were carried out to identify effective target profiling of I-THP in chronic constrictive injury (CCI) rats. The I-THP related hub targets and signaling pathways were obtained via bioinformatics analysis, then subjected to in-depth analyses through experiments in vivo. A gain-of-function study further confirmed the role of Clec7a in l-THP-mediated pain relief. Finally, the interaction between l-THP and Clec7a was verified through molecular docking and surface plasmon resonance (SPR). RESULTS l-THP treatment effectively alleviated mechanical and thermal allodynia in NP model rats. Functionally, the I-THP effective targets were mainly enriched in inflammatory response-related pathways. Furthermore, Clec7a-MAPK/NF-κB-NLRP3 inflammasome axis was selected as one of the potential pathways of l-THP against NP. Mechanically, l-THP markedly reduced CCI-induced Clec7a overexpression, significantly inhibited the Clec7a-triggered phosphorylation of MAPK and NF-κB-p65, and decreased the expression of pyroptosis-related protein NLRP3 and Caspase-1-p20. The analgesic effect of l-THP on NP was partly eliminated when transfecting the overexpression vector virus pLVSO5Clec7a. Importantly, molecular docking and SPR data revealed that l-THP directly binds with the Clec7a protein. CONCLUSION This study is the first to indicate that l-THP may exert an analgesic effect through inhibiting neuroinflammation via the Clec7a-MAPK/NF-κB-NLRP3 inflammasome axis, supporting the clinical utility of l-THP in NP therapy.
Collapse
Affiliation(s)
- Dan Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Ping Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Chunhui Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Jin Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Junhong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Wangming Ma
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Yanqiong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China.
| | - Haiyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China.
| |
Collapse
|
10
|
Basu P, Maier C, Averitt DL, Basu A. NLR family pyrin domain containing 3 (NLRP3) inflammasomes and peripheral neuropathic pain - Emphasis on microRNAs (miRNAs) as important regulators. Eur J Pharmacol 2023; 955:175901. [PMID: 37451423 DOI: 10.1016/j.ejphar.2023.175901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Neuropathic pain is caused by the lesion or disease of the somatosensory system and can be initiated and/or maintained by both central and peripheral mechanisms. Nerve injury leads to neuronal damage and apoptosis associated with the release of an array of pathogen- or damage-associated molecular patterns to activate inflammasomes. The activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome contributes to neuropathic pain and may represent a novel target for pain therapeutic development. In the current review, we provide an up-to-date summary of the recent findings on the involvement of NLRP3 inflammasome in modulating neuropathic pain development and maintenance, focusing on peripheral neuropathic conditions. Here we provide a detailed review of the mechanisms whereby NLRP3 inflammasomes contribute to neuropathic pain via (1) neuroinflammation, (2) apoptosis, (3) pyroptosis, (4) proinflammatory cytokine release, (5) mitochondrial dysfunction, and (6) oxidative stress. We then present the current research literature reporting on the antinociceptive effects of several natural products and pharmacological interventions that target activation, expression, and/or regulation of NLRP3 inflammasome. Furthermore, we emphasize the effects of microRNAs as another regulator of NLRP3 inflammasome. In conclusion, we summarize the possible caveats and future perspectives that might provide successful therapeutic approaches against NLRP3 inflammasome for treating or preventing neuropathic pain conditions.
Collapse
Affiliation(s)
- Paramita Basu
- Pittsburgh Center for Pain Research, The Pittsburgh Project to End Opioid Misuse, Department of Anesthesiology & Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| | - Camelia Maier
- Division of Biology, School of the Sciences, Texas Woman's University, Denton, TX, 76204-5799, USA.
| | - Dayna L Averitt
- Division of Biology, School of the Sciences, Texas Woman's University, Denton, TX, 76204-5799, USA.
| | - Arpita Basu
- Department of Kinesiology and Nutrition Sciences, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV, 89154, USA.
| |
Collapse
|
11
|
Li B, Guo J, Zhou X, Li W, Wang N, Cao R, Cui S. The emerging role of pyroptosis in neuropathic pain. Int Immunopharmacol 2023; 121:110562. [PMID: 37364324 DOI: 10.1016/j.intimp.2023.110562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/10/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
Neuropathic pain caused by somatosensory system injuries is notoriously difficult to treat. Previous research has shown that neuroinflammation and cell death have been implicated in the pathophysiology of neuropathic pain. Pyroptosis is a form of programmed cell death associated with inflammatory processes, as it can enhance or sustain the inflammatory response by releasing pro-inflammatory cytokines. This review presents the current knowledge on pyroptosis and its underlying mechanisms, including the canonical and noncanonical pathways. Moreover, we discuss recent findings on the role of pyroptosis in neuropathic pain and its potential as a therapeutic target. In conclusion, this review highlights the potential significance of pyroptosis as a promising target for developing innovative therapies to treat neuropathic pain.
Collapse
Affiliation(s)
- Baolong Li
- Department of Hand and Foot Surgery, The Third Bethune Hospital of Jilin University, Changchun, China; Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Jin Guo
- Department of Hand and Foot Surgery, The Third Bethune Hospital of Jilin University, Changchun, China; Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Xiongyao Zhou
- Department of Hand and Foot Surgery, The Third Bethune Hospital of Jilin University, Changchun, China; Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Weizhen Li
- Department of Hand and Foot Surgery, The Third Bethune Hospital of Jilin University, Changchun, China; Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Ningning Wang
- Department of Hand and Foot Surgery, The Third Bethune Hospital of Jilin University, Changchun, China; Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Rangjuan Cao
- Department of Hand and Foot Surgery, The Third Bethune Hospital of Jilin University, Changchun, China; Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China.
| | - Shusen Cui
- Department of Hand and Foot Surgery, The Third Bethune Hospital of Jilin University, Changchun, China; Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China.
| |
Collapse
|
12
|
Sun K, Zhang H, Zhang T, Sun N, Hao J, Wang Z, Gao C. Spinal HDAC6 mediates nociceptive behaviors induced by chronic constriction injury via neuronal activation and neuroinflammation. Mol Pain 2023; 19:17448069231218352. [PMID: 37982151 PMCID: PMC10734332 DOI: 10.1177/17448069231218352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/23/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023] Open
Abstract
Neuropathic pain (NP) is often accompanied by psychiatric comorbidities and currently lacks effective treatment. Prior research has shown that HDAC6 plays a crucial role in pain sensitization, but the specific mechanisms remain unclear. HDAC6 inhibitors have been found to alleviate mechanical allodynia caused by inflammation and peripheral nerve damage. In this study, we investigated the cellular mechanisms of HDAC6 in the development and maintenance of neuropathic pain. Our findings indicate that HDAC6 expression in the spinal cord (SC) is upregulated in a time-dependent manner following chronic constriction injury (CCI). HDAC6 is primarily expressed in neurons and microglia in the spinal cord. CCI-induced HDAC6 production was abolished by intrathecal injection of a microglia inhibitor. ACY-1215, a specific HDAC6 inhibitor, significantly reduced CCI-induced mechanical allodynia, but not thermal hyperalgesia. ACY-1215 also inhibited neuron activation and suppressed CCI-induced pyroptosis and neuroinflammatory responses. In summary, our results suggest that HDAC6 contributes to the development and maintenance of NP through neuronal activation and neuroinflammation. HDAC6 may be a promising target for treating NP.
Collapse
Affiliation(s)
- Kai Sun
- Nanjing Medical University, Nanjing, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, China
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hao Zhang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, China
| | - Ting Zhang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, China
- Department of Pain Management, Xuzhou Central Hospital, Xuzhou, China
| | - Nan Sun
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, China
| | - Jingru Hao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, China
| | - Zhiping Wang
- Nanjing Medical University, Nanjing, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, China
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Can Gao
- Nanjing Medical University, Nanjing, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, China
- School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
13
|
Attenuation of Some Inflammatory Markers by Endurance Training in the Spinal Cord of Rats with Diabetic Neuropathic Pain. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:6551358. [PMID: 35655729 PMCID: PMC9132667 DOI: 10.1155/2022/6551358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/01/2022] [Accepted: 04/21/2022] [Indexed: 11/17/2022]
Abstract
Nervous inflammation is an important component of the pathogenesis of neurodegenerative diseases including chronic diabetic neuropathic pain. In order to obtain a decrease in the progression of diabetic neuronal damage, it may be necessary to examine therapeutic options that involve antioxidants and anti-inflammatory agents. The aim of this study was to investigate the attenuation of inflammatory factors with endurance training in the spinal cord of rats with neuropathic pain. Thirty-two 8-week-old male Wistar rats (with a weight range of 204 ± 11.3 g) were randomly divided into 4 groups (n = 8), including (1) diabetic neuropathy (50 mg/kg streptozotocin intraperitoneal injection), (2) diabetic neuropathy training (30 minutes of endurance training at 15 meters per minute, 5 days a week for 6 weeks), (3) healthy training, and (4) healthy control. After confirmation of diabetic neuropathy by behavioral tests, training protocol and supplementation were performed. The NLRP3, P38 MAPK, TNF-α, and IL-1β gene expressions were measured by a real-time technique in the spinal cord tissue. One-way analysis of variance and Tukey's post hoc test were used for statistical analysis. Endurance training reduced the sensitivity of the nervous system to thermal hyperalgesia and mechanical allodynia; also, compared to the diabetic neuropathy group, the gene expressions of NLTP3, P38 MAPK, TNF-α, and IL-1β were significantly reduced by endurance training (P < 0.05). Endurance training modulates NLRP3, P38 MAPK, and TNF-α, IL-1β gene expressions and improves the sensitivity of nociceptors to pain factors. Accordingly, it is recommended to use endurance training to reduce neuropathic pain for diabetics.
Collapse
|